首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The stability of the genetic structure of rhizobial populations nodulating Phaseolus vulgaris cultivated in a traditionally managed milpa plot in Mexico was studied over three consecutive years. The set of molecular markers analyzed (including partial rrs, glnII, nifH, and nodB sequences), along with host range experiments, placed the isolates examined in Rhizobium etli bv. phaseoli and Rhizobium gallicum bv. gallicum. Cluster analysis of multilocus enzyme electrophoresis and plasmid profile data separated the two species and identified numerically dominant clones within each of them. Population genetic analyses showed that there was high genetic differentiation between the two species and that there was low intrapopulation differentiation of the species over the 3 years. The results of linkage disequilibrium analyses are consistent with an epidemic genetic structure for both species, with frequent genetic exchange taking place within conspecific populations but not between the R. etli and R. gallicum populations. A subsample of isolates was selected and used for 16S ribosomal DNA PCR-restriction fragment length polymorphism analysis, nifH copy number determination, and host range experiments. Plasmid profiles and nifH hybridization patterns also revealed the occurrence of lateral plasmid transfer among distinct multilocus genotypes within species but not between species. Both species were recovered from nodules of the same plants, indicating that mechanisms other than host, spatial, or temporal isolation may account for the genetic barrier between the species. The biogeographic implications of finding an R. gallicum bv. gallicum population nodulating common bean in America are discussed.  相似文献   

2.
Phaseolus vulgaris L. (common bean) is nodulated by rhizobia present in the fields around the Seibersdorf laboratory despite the fact that common bean has not been grown for a long time. Using PCR analysis with repetitive primers, plasmid profiles, nifH profiles, PCR-RFLP analysis of the 16S rRNA gene and of the 16S rRNA-23S rRNA intergenic spacer and the nodulation phenotype, two well-differentiating groups could be distinguished. One group showed high similarity to Rhizobium sp. R602sp, isolated from common bean in France, while the other showed the same characteristics as R. etli . We detected little variation in the symbiotic regions but found higher diversity when using approaches targeting the whole genome. Many isolates obtained in this study might have diverged from a limited number of strains, therefore the Austrian isolates showed high saprophytic and nodulation competence in that particular soil.  相似文献   

3.
We determined the nucleotide sequences of 16S rRNA gene segments from five Rhizobium strains that have been isolated from tropical legume species. All share the capacity to nodulate Phaseolus vulgaris L., the common bean. Phylogenetic analysis confirmed that these strains are of two different chromosomal lineages. We defined the host ranges of two strains of Rhizobium etli and three strains of R. tropici, comparing them with those of the two most divergently related new strains. Twenty-two of the 43 tested legume species were nodulated by three or more of these strains. All seven strains have broad host ranges that include woody species such as Albizia lebbeck, Gliricidia maculata, and Leucaena leucocephala.  相似文献   

4.
5.
Summary Two monosomics of Phaseolus vulgaris (2n = 22) were found among selfed progeny of plants treated with colchicine. The monosomic chromosomes involved were identified as chromosomes H and J according to the previously suggested Giemsa karyotype. Both monosomic plants had slower growth rate and smaller size as compared with their respective euploid sibs. However, no apparent morphological characteristics distinguished the two monosomics. The frequencies of transmission through selfing of monosomics H and J were 9% and 10 % respectively.  相似文献   

6.
Efforts to develop molecular tools for genetic analysis and breeding of common bean in the tropics are still limited. The number of microsatellite markers available for the crop is small compared to other crops of similar social and economic importance. As part of a project to broaden the use of molecular tools in bean breeding, a genomic library enriched for AG/TC repeat sequences was constructed for Phaseolus vulgaris. Twenty microsatellite markers were initially developed and 10 were characterized using a panel of 85 representative accessions of the bean gene bank. The number of alleles per marker ranged from three to 10. The polymorphism information content (PIC) varied from 0.23 to 0.80. The results indicate that the new markers can be readily used in genetically analysis of common bean.  相似文献   

7.
8.
Evidence for genetic diversity in cultivated common bean (Phaseolus vulgaris) is reviewed. Multivariate statistical analyses of morphological, agronomic, and molecular data, as well as other available information on Latin American landraces representing various geographical and ecological regions of their primary centers of domestications in the Americas, reveal the existence of two major groups of germplasm: Middle American and Andean South American, which could be further divided into six races. Three races originated in Middle America (races Durango, Jalisco, and Mesoamerica) and three in Andean South America (races Chile, Nueva Granada, and Peru). Their distinctive characteristics and their relationships with previously reported gene pools are discussed.  相似文献   

9.
Microsatellite marker diversity in common bean (Phaseolus vulgaris L.)   总被引:7,自引:0,他引:7  
A diversity survey was used to estimate allelic diversity and heterozygosity of 129 microsatellite markers in a panel of 44 common bean (Phaseolus vulgaris L.) genotypes that have been used as parents of mapping populations. Two types of microsatellites were evaluated, based respectively on gene coding and genomic sequences. Genetic diversity was evaluated by estimating the polymorphism information content (PIC), as well as the distribution and range of alleles sizes. Gene-based microsatellites proved to be less polymorphic than genomic microsatellites in terms of both number of alleles (6.0 vs. 9.2) and PIC values (0.446 vs. 0.594) while greater size differences between the largest and the smallest allele were observed for the genomic microsatellites than for the gene-based microsatellites (31.4 vs. 19.1 bp). Markers that showed a high number of alleles were identified with a maximum of 28 alleles for the marker BMd1. The microsatellites were useful for distinguishing Andean and Mesoamerican genotypes, for uncovering the races within each genepool and for separating wild accessions from cultivars. Greater polymorphism and race structure was found within the Andean gene pool than within the Mesoamerican gene pool and polymorphism rate between genotypes was consistent with genepool and race identity. Comparisons between Andean genotypes had higher polymorphism (53.0%) on average than comparisons among Mesoamerican genotypes (33.4%). Within the Mesoamerican parental combinations, the intra-racial combinations between Mesoamerica and Durango or Jalisco race genotypes showed higher average rates of polymorphism (37.5%) than the within-race combinations between Mesoamerica race genotypes (31.7%). In multiple correspondance analysis we found two principal clusters of genotypes corresponding to the Mesoamerican and Andean gene pools and subgroups representing specific races especially for the Nueva Granada and Peru races of the Andean gene pool. Intra population diversity was higher within the Andean genepool than within the Mesoamerican genepool and this pattern was observed for both gene-based and genomic microsatellites. Furthermore, intra-population diversity within the Andean races (0.356 on average) was higher than within the Mesoamerican races (0.302). Within the Andean gene pool, race Peru had higher diversity compared to race Nueva Granada, while within the Mesoamerican gene pool, the races Durango, Guatemala and Jalisco had comparable levels of diversity which were below that of race Mesoamerica.  相似文献   

10.
The inheritance of partial resistance within eight bean cultivars to a single-pustule isolate of bean rust was studied by means of a F1 diallel test. General combining ability (GCA) and specific combining ability (SCA) were very highly significant over two seasons and in interaction with seasons. The partitioning of the sums of squares indicated the greater importance of GCA in the inheritance of the resistance. Reciprocal effects were not significant. The estimates of narrow-sense heritability in the two seasons were 0.899 ± 0.056 and 0.603 ± 0.065.  相似文献   

11.
We report on two field experiments that were conducted in 1991 and 1992 at the South Coast Extension and Research Center, Irvine, CA, to study the incidence of multiple paternity in the common bean (Phaseolus vulgaris L.). Hypocotyl color and shikimate dehydrogenase (Skdh) isozymes were used as genetic markers. The white-seeded cultivar ‘Ferry Morse 53’ (FM 53) was used as the female parent. This cultivar is homozygous recessive (pp) for hypocotyl color. The pollen source parents were three homozygous dominant (PP) purple-hypocotyled, black-seeded cultivars. Three cultivars, ‘ICA Pijao,’ G4459, and the maternal parent FM 53, are of Mesoamerican origin and homozygous for the fast (F) allele at the Skdh locus. The other cultivar, Black Valentine, is of Andean origin and is homozygous for the slow (S) allele at the Skdh locus. Overall, 6 125 pods were obtained from 57 and 111 plants harvested individually in 1991 and 1992, respectively. All progeny, 28938 seeds, were scored for hypocotyl color at the seedling stage. The purple-hypocotyled seedlings were genotyped for the Skdh locus to identify their pollen parents. Multiple paternity was identified in all the pods with hybrid seeds (i.e., those of intercultivar crosses) at 5.8% and 8.1% in 1991 and 1992, respectively. All multiply sired pods produced both nonhybrid and hybrid seeds. As many as three successful fathers per pod were identified, but the number of markers limited measuring higher levels of multiple paternity. Most multiply sired pods (≈70%) were filled by nonhybrid seeds plus a single hybrid seed. Ovule position effect within multiply sired pods was inferred from the nonrandom distribution of hybrid seeds within a pod. On average, hybrid seeds occurred more frequently in ovules in position 7 (most basal) and in position 1 (most stylar) than in ovules in the middle positions of the pod.  相似文献   

12.
More than 18,000 accessions of common bean (Thaseolus vulgaris, Fabaceae) from the Centro Internacional de Agricultura Tropical (CIAT) germplasm bank were examined at two locations in Colombia. A large variation in cultivated dry bean was found among accessions from primary centers of domestication in Middle and South America. For some bean types, such as medium- and large-seeded white, variation was greater among germplasm from western Asia (Turkey) and Europe (Portugal, Spain, Greece, France, Italy, and Bulgaria). Based on growth habit, on seed, pod, and leaf characteristics, and on ecological regions of adaptation, dry-bean germplasm was divided into a total of six gene pools from Middle American and four gene pools from South American centers of domestication. Most of the variation in the snap or stringless bean appears to be of relatively recent origin; it was greatest among cultivars from China, Europe, and the United States. These could be grouped into two additional gene pools. A strategy for breeding and transfer of genes across gene pools is also discussed.  相似文献   

13.
Common bean (Phaseolus vulgaris L.) plants were grown for 21–28 days in plastic container-modified Leonard jar assemblies and placed in a controlled-environment room. The nodules on each plant were removed, counted; selected plants were repotted, grown and intercrossed to produce progenies for the next cycle of recurrent selection. Among the ten parent lines, Puebla 152 and WBR 22–34 produced the most nodules and Rio Tibagi and Negro Argel the fewest, when averaged over five experiments. An analysis of number of nodules on F1 plants resulting from crosses made in a partial diallel design among the ten parents revealed highly significants variation for general combining ability (GCA) but not for specific combining ability (SCA). After three cycles of recurrent selection for nodule number per plant, the mean nodule number was 211% of the mean for the 10 parents control. Total nodule weight on selected plants also increased, but individual nodule weight decreased. Nineteen C1 and 18 C2 lines resulting from the individual plants selected for greater nodule number, along with the ten parents and two non-nodulating soybean lines included as non-fixing check plants were grown in a single experiment in a low-N field. C2 lines on average accumulated significantly more N per plant than either the parents or C1 lines, providing evidence for increased N2 fixation measured by the N difference method. These data show that more nodules, possibly resulting from greater susceptibility to nodulation, are an important, heritable component of symbiosis and that selection for increased nodule number resulted in lines capable of fixing more atmospheric N2.  相似文献   

14.
A field experiment under rainfed conditions was conducted in Durango, México, to assess N2-fixation of three cultivars of common bean (Phaseolus vulgaris L.) using 15N-methodology. In addition, diversity of rhizobial isolates obtained from nodules of the different plant genotypes was evaluated by intrinsic antibiotic resistance (IAR), PCR using enterobacterial repetitive intergenic consensus (ERIC) primers, PCR-RFLP analysis of the 16S rRNA gene and multilocus enzyme electrophoresis (MLEE). Selected isolates were used to determine acetylene reduction and competitive ability under greenhouse conditions. The three cultivars tested did not show high variation in N2-fixation, the %Ndfa values ranged from 19 to 26%. Variability in N2-fixation efficiency among various native rhizobial isolates was very high and our results indicate that differences in competitive abilitiy exist also. PCR-RFLP of the 16S rRNA gene and MLEE revealed that most of the isolates belong to the species Rhizobium etli. Intrinsic antibiotic resistance analysis and ERIC-PCR showed high diversity among isolates. In contrast, our results using MLEE show low genetic diversity (H = 0.105).  相似文献   

15.

Background and Aims

The actual number of domestications of a crop is one of the key questions in domestication studies. Answers to this question have generally been based on relationships between wild progenitors and domesticated descendants determined with anonymous molecular markers. In this study, this question was investigated by determining the number of instances a domestication phenotype had been selected in a crop species. One of the traits that appeared during domestication of common bean (Phaseolus vulgaris) is determinacy, in which stems end with a terminal inflorescence. It has been shown earlier that a homologue of the arabidopsis TFL1 gene – PvTFL1y – controls determinacy in a naturally occurring variation of common bean.

Methods

Sequence variation was analysed for PvTFL1y in a sample of 46 wild and domesticated accessions that included determinate and indeterminate accessions.

Key Results

Indeterminate types – wild and domesticated – showed only synonymous nucleotide substitutions. Determinate types – observed only among domesticated accessions – showed, in addition to synonymous substitutions, non-synonymous substitutions, indels, a putative intron-splicing failure, a retrotransposon insertion and a deletion of the entire locus. The retrotransposon insertion was observed in 70 % of determinate cultivars, in the Americas and elsewhere. Other determinate mutants had a more restricted distribution in the Americas only, either in the Andean or in the Mesoamerican gene pool of common bean.

Conclusions

Although each of the determinacy haplotypes probably does not represent distinct domestication events, they are consistent with the multiple (seven) domestication pattern in the genus Phaseolus. The predominance of determinacy in the Andean gene pool may reflect domestication of common bean prior to maize introduction in the Andes.  相似文献   

16.
Common bean (Phaseolus vulgaris L.) is the most important grain legume for direct human consumption. Proteomic studies in legumes have increased significantly in the last years but few studies have been performed to date in P. vulgaris. We report here a proteomic analysis of bean seeds by two-dimensional electrophoresis (2-DE). Three different protein extraction methods (TCA-acetone, phenol and the commercial clean-up kit) were used taking into account that the extractome can have a determinant impact on the level of quality of downstream protein separation and identification. To demonstrate the quality of the 2-DE analysis, a selection of 50 gel spots was used in protein identification by mass spectrometry (MALDI-TOF MS and MALDI-TOF/TOF). The results showed that a considerable proportion of spots (70%) were identified in spite of incomplete genome/protein databases for bean and other legume species. Most identified proteins corresponded to storage protein, carbohydrate metabolism, defense and stress response, including proteins highly abundant in the seed of P. vulgaris such as the phaseolin, the phytohemagglutinin and the lectin-related α-amylase inhibitor.  相似文献   

17.
Field and greenhouse experiments were conducted to assess the nitrogen fixation rates of four cultivars of common bean (Phaseolus vulgaris L.) at different growth stages. The 15N isotope dilution technique was used to quantify biological nitrogen fixation. In the greenhouse, cultivars M4403 and Kallmet accumulated 301 and 189 mg N plant–1, respectively, up to 63 days after planting (DAP) of which 57 and 43% was derived from atmosphere. Under field conditions, cultivars Bayocel and Flor de Mayo RMC accumulated in 77 DAP, 147 and 135 kg N ha–1, respectively, of which approximately one-half was derived from the atmosphere. The rates of N2 fixation determined at different growth stages increased as the plants developed, and reached a maximum during the reproductive stage both under field and greenhouse conditions. Differences in translocation of N were observed between the cultivars tested, particularly under field conditions. Thus, the fixed N harvest index was 93 and 60 for cultivars Flor de Mayo and Bayocel, respectively. In early stages of growth, the total content of ureides in the plants correlated with the N fixation rates. The findings reported in the present paper can be used to build a strategy for enhancing biological N2 fixation in common bean.  相似文献   

18.
19.
Climbing common bean (Phaseolus vulgaris L.) genotypes have among the highest yield potential of all accessions found in the species. Genetic improvement of climbing beans would benefit from an understanding of the inheritance of climbing capacity (made up of plant height [PH] and internode length [IL] traits). The objective of this study was to determine the inheritance of climbing capacity traits in 3 crosses made within and between gene pools (Andean x Andean [BRB32 x MAC47], Mesoamerican x Mesoamerican [Tío Canela x G2333], and Mesoamerican x Andean [G2333 x G19839]) using generation means analysis. For each population, we used 6 generations (P(1), P(2), F(1), F(2), BC(1)P(1), and BC(1)P(2)) that were evaluated at 2 growth stages (40 and 70 days after planting). Results showed the importance of additive compared with the dominant-additive portion of the genetic model. Broad-sense heritabilities for the traits varied from 62.3% to 85.6% for PH and from 66.5% to 83.7% for IL. The generation means analysis and estimates of heritability suggested that the inheritance of PH and IL in climbing beans is relatively simple.  相似文献   

20.
Summary The yield data of 39 cultivars of diverse commercial classes of beans (Phaseolus vulgaris L.) planted in seven locations in Michigan were subjected to cluster and canonical variate analyses. The essential findings and conclusions can be summarized as follows: (1) Cluster analysis classified the cultivars into sub-sets or clusters almost identically coinciding with their commercial class designation. Canonical variate analysis completely confirmed the sub-groupings. Within class similarities were attributed to a narrow genetic base resulting from a common genetic relationship, or at least sharing of a common gene pool. (2) It was found that two clusters could possess almost identical mean (cluster mean) yields, and deviate in opposite directions over the same range of environments. (3) When total genotype × environmental interaction variance was partitioned into between and within clusters, the cluster × environment portion constituted 80% of the total. (4) These results imply that if the behavior of a given cultivar across a series of environments is known, the behavior of all other members of the class across a similar range of environments would be predictable.Journal Article No. 10329 of the Michigan Agricultural Experiment Station  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号