首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A significant fraction of the Tetrahymena clones isolated from natural habitats self (mating occurs within a clone). Early attempts to study such clones failed because stable subclones were rarely, if ever, observed, and isolated pairs all died. Isozyme analysis revealed that these wild selfers were a diverse group; some were very similar to T. australis, a species with synclonal mating type determination and to T. elliotti, shown recently to have a karyonidal mating type system. One originally stable clone of T. australis included some selfing clones after a few years in our laboratory. Other clones manifested unique zymograms. Subclones isolated from 18 selfer strains were heterogeneous. All subclones of several selfers mated massively at each transfer through 100 fissions. Selfing among subclones of other selfers was highly variable or not observed. Although 77% of the pairs isolated died, and 9% of the pair cultures selfed, 15 selfers yielded some viable nonselfing “immature” progeny. Additional immature progeny were obtained by isolating pairs from macronuclear retention synclones. Although some “immature” progeny eventually selfed, most remained stable. Giemsa staining revealed macronuclear anlagen in nearly all mating pairs and some anomalies. Crosses among the F1 progeny clones of the T. elliotti selfers yield viability data comparable to those from crosses among normal strains. Perhaps perpetual selfing is a mechanism of getting rid of deleterious combinations of genes and uncovering better combinations in homozygous state by playing genetic roulette. © 1992 Wiley-Liss, Inc.  相似文献   

2.
Selfing clones of Tetrahymena pigmentosa show several interesting genetic features, and provide some insight into the mechanisms of mating type (mt) determination. They differ significantly from those of Tetrahymena thermophila. They are distributed nonrandomly in crosses. Their rates of stabilization are highly variable, but most are much lower than those reported for T. thermophila. A number of subclones derived from nearly all the selfers have maintained stable mts in culture for several years. However, some subclones manifest persistent selfing, long after the calculated completion of allelic assortment for heterozygous loci. This phenomenon along with the perpetual maintenance of dominant mts in heterozygotes shows that phenotypic assortment is not involved in mt expression. In crosses, many selfers exhibit quantitative and qualitative aberrations in the transmission of alleles to the gametes; some of the micronuclear changes underlying these aberrations occur during vegetative growth. There are rare illegitimate appearances of dominant alleles in sexual progeny, and more common illegitimate appearances of the most recessive phenotype.--Various models to explain mt determination in this species are considered. One which might account for the troubling phenomena of the system consists of an active mat expression site, with "cassettes" at other sites specific for the different dominant alleles and capable of transposition to the expression site.  相似文献   

3.
The evolutionary dynamics of neutral alleles under the Wright-Fisher model are well understood. Similarly, the effect of population turnover on neutral genetic diversity in a metapopulation has attracted recent attention in theoretical studies. Here we present the results of computer simulations of a simple model that considers the effects of finite population size and metapopulation dynamics on a mating-system polymorphism involving selfing and outcrossing morphs. The details of the model are based on empirical data from dimorphic populations of the annual plant Eichhornia paniculata, but the results are also of relevance to species with density-dependent selfing rates in general. In our model, the prior selfing rate is determined by two alleles segregating at a single diploid locus. After prior selfing occurs, some remaining ovules are selfed through competing self-fertilisation in finite populations as a result of random mating among gametes. Fitness differences between the mating-system morphs were determined by inbreeding depression and pollen discounting in a context-dependent manner. Simulation results showed evidence of frequency dependence in the action of pollen discounting and inbreeding depression in finite populations. In particular, as a result of selfing in outcrossers through random mating among gametes, selfers experienced a "fixation bias" through drift, even when the mating-system locus was selectively neutral. In a metapopulation, high colony turnover generally favoured the fixation of the outcrossing morph, because inbreeding depression reduced opportunities for colony establishment by selfers through seed dispersal. Our results thus demonstrate that population size and metapopulation processes can lead to evolutionary dynamics involving pollen and seed dispersal that are not predicted for large populations with stable demography.  相似文献   

4.
The thrips herbivore Apterothrips apteris reproduces both sexually and parthenogenetically and exhibits fine-scale local adaptation to individual phenotypes of its host plant, Erigeron glaucus. We ask whether we can disrupt the ability of thrips to use progeny of their “home”-plant clone by outcrossing females with males from other plant clones. We compare the performance of sexually produced thrips to that of parthenogenetically produced thrips on plant progeny of the home clone. Because we use thrips from plant clones experiencing both high and low infestations by thrips, we also ask whether the relative performance of “sexuals” versus “parthenogens” differs with the infestation level of the home clone. Plant progeny of 10 E. glaucus clones were either the product of selfing or of outcrossing with the other 9 clones. We have shown in previous work that selfing preserved the parental phenotype with respect to attack by thrips. Because of this result, we predicted that parthenogens should fare better than sexuals on the selfed progeny of the home-plant clone. Our results, however, showed the contrary: sexuals outperformed parthenogens on these selfed plants. We also found that plant characters appear to influence thrips performance more than the mating system of thrips. We found no evidence for outbreeding depression in this system.  相似文献   

5.
6.
Gametes of Volvulina steinii bear near-apical mating papillae. Zygospore germination yields a single biflagellate cell that develops into a colony xuhose asexual progeny are all of the same mating type. Backcrossing of clones of progeny indicated a 1 :1 ratio of mating types among the progeny. Of 20 clones from a number of localities, none was homothallic and 3 showed no matins: reaction. Mating reactions of clones crossed in all possible combinations indicated the presence of 2 sexually isolated groups of clones producing smooth-walled zygospores and 1 group that produced spiny-walled zygospores. In the latter group weak and nonreciprocal mating reactions occurred in some clone combinations. Failure of germination of spiny-walled zygospores from certain crosses suggests further subdivision into genetically isolated groups.  相似文献   

7.
Byrne BC 《Genetics》1973,74(1):63-80
Six genic mutations restricting clones to mating type VII (O) were isolated in syngen 4, Paramecium aurelia. The only three extensively tested were neither allelic nor closely linked. A second type of mutation, allelic to one of the O restricted mutants, was also found. Clones homozygous for this mutant gene were selfers, producing both O and E (VIII) mating types, but only when they were progeny of mating type E parental clones. While all seven mutant genes behaved as recessives in monohybrid crosses, clones heterozygous at two different loci often demonstrated an unanticipated phenotype: selfing. The significance of the findings is discussed in relation to mating type determination and the evolution of mating type systems.  相似文献   

8.
Sexual reproduction may be advantageous for hosts that are preyed on or parasitized by enemies that are highly adapted to them. Sexual reproduction can create rare genotypes that may escape predation by virtue of rarity and can create variable progeny that may escape predation if enemies are specialized to only one genotype of host. Populations of the herbivorous thrips, Apterothrips apteris, have been shown to be adapted to individual Erigeron glaucus clones. Here, we show that thrips adapted to the parental clone could better use plant progeny of the “home” clone produced through selfing than progeny derived from selfing of other clones. Thus, despite recombination, progeny produced by selfing presented a resource that was similar to the parental phenotype with respect to use by adapted thrips. We also show that E. glaucus susceptibility to thrips has a genetic basis and then ask whether outcrossing provides a means for E. glaucus clones to escape attack by adapted thrips. When we compared the success of thrips on progeny produced by selfing or outcrossing of the home clone, we found that the merits or disadvantages associated with outcrossing were dependent on the susceptibility to infestation of the parental clones. Selfing by clones characterized by low infestations of thrips appeared to preserve resistant genotypes; all outcrossed progeny had, on average, higher infestation levels than selfed progeny. In contrast, outcrossed progeny of clones characterized by high infestations of thrips had either the same thrips density as progeny from selfing, when the pollen donor was a highly infested clone, or lower density, when the pollen donor was a low infestation clone. The advantages of outcrossing were caused by the alleles contributed to progeny rather than to progeny variability or rarity.  相似文献   

9.
Selfing or mating between related individuals in self-compatible hermaphroditic tree species may lead to inbreeding depression (ID) due to homozygosis in recessive, identical by descent alleles. In general, studies of ID in tree species have been based on comparisons of selfed individuals (produced by controlled pollination) with outcrossed individuals for quantitative traits in progeny tests. However, this approach requires a long time to quantify the extent of ID. Thus, we used an approach based on genetic markers to estimate coancestry coefficients between assigned parents from paternity analysis in two populations of the Neotropical tree Cariniana legalis. Using this method, we were able to determine which seedlings in a nursery trial originated from; (i) outcrossing between un-related trees, (ii) mating between related trees and (iii) selfing. We detected a low selfing rate (<10 %), but a substantial quantity of seedlings from mating between related parents (minimum of 35.7 %). In general, the outcrossed seedlings from unrelated parents exhibited significantly greater genetic diversity than those resulting from selfing and mating among relatives. The extent of ID varied among traits and populations. Outcrossed seedlings originating from unrelated trees generally showed greater survival than seedlings originating from selfing and related parents. Inbreeding depression was greater in the selfed seedlings than in those from mating among related parents. The results are discussed in terms of implications for genetic conservation, breeding and environmental restoration using the species.  相似文献   

10.
ABSTRACT. The clonal life history of ciliated protists is characterized by a sequence of phenotypes; sexual immaturity, maturity, and senescence. The distinctiveness of immaturity and maturity has been investigated. Standard assays of the onset of maturity of progeny clones from a cross between stocks EC1 and EC2 of Euplotes crassus demonstrated significant differences among clones and among testers within clones. They also revealed that the first positive test(s) of a progeny subclone were typically followed by at least one negative test. Special protocols were devised to investigate if maturity was reversible at the cellular level. In these experiments, the first mating pair of a progeny subclone was split before the consummation of mating. From these two cells as well as from control progeny and tester cells, subclones were established and every leftover cell was tested for maturity after each transfer. Both standard and split-pair progeny subclones had immature and slow- to-mate cells. The number of fissions before progeny exhibited sexual behavior indistinguishable from the testers was more than twice that to the first mating reaction of a subclone. At the first sign of maturity, progeny lines are a heterogeneous population of cells able and not able to mate, but remarkably, clonal descendants of those able to mate may become unable to mate. The development of maturity is progressive, quantitative and non-monotonic rather than an instantaneous switch.  相似文献   

11.
Classical theory on mating system evolution suggests that simultaneous hermaphrodites should either outcross if they have high inbreeding depression (ID) or self‐fertilize if they have low ID. However, a mixture of selfing and outcrossing persists in many species. Previous studies with the tapeworm Schistocephalus solidus have found worms to self‐fertilize some of their eggs despite ID. The probability for selfing to spread depends on the relative fitness of selfers, as well as the genetic basis for ID and whether it can be effectively purged. We bred S. solidus through two consecutive generations of selfing and recorded several fitness correlates over the whole life cycle. After one round of selfing, ID was pronounced, particularly in early‐life traits, and the conservatively estimated lifetime fitness of selfed progeny was only 9% that of the outcrossed controls. After a second generation of selfing, ID remained high but was significantly reduced in several traits, which is consistent with the purging of deleterious recessive alleles (the estimated load of lethal equivalents dropped by 48%). Severe ID, even if it can be rapidly purged, likely prevents transitions toward pure selfing in this parasite, although we also cannot exclude the possibility that low‐level selfing has undetected benefits.  相似文献   

12.
We explore the relationship between plant mating system (selfing or outcrossing) and niche breadth to gain new insights into processes that drive species distributions. Using a comparative approach with highly selfing versus highly outcrossing sister species, we test the extent to which: (1) species pairs have evolved significant niche divergence and less niche overlap, (2) selfers have wider niche breadths than outcrossers or vice versa, and (3) niches of selfers and outcrossers are defined by significant differences in environmental variables. We applied predictive ecological niche modeling approaches to estimate and contrast niche divergence, overlap and breadth, and to identify key environmental variables associated with each species’ niche for seven sister species with divergent mating systems. Data from 4862 geo-referenced herbarium occurrence records were compiled for 14 species in Collinsia and Tonella (Plantaginaceae) and 19 environmental variables associated with each record. We found sister species display significant niche divergence, though not as a function of divergence time, and overall, selfers have significantly wider niche breadths compared to their outcrossing sisters. Our results suggest that a selfing mating system likely contributes to the greater capacity to reach, reproduce, establish, and adapt to new habitats, which increases niche breadth of selfers.  相似文献   

13.
Selfing in the chestnut blight fungus, Cryphonectria parasitica, occurs by two different genetic mechanisms. Most self-fertile isolates of C. parasitica are heterokaryotic for mating type, and the progeny from selfing segregate for mating type. Further, we resolved mating-type (MAT) heterokaryons into homokaryons of both mating types by isolating uninucleate asexual spores (conidia). However, because ascospore progeny, with rare exceptions, are not MAT heterokaryons, C. parasitica must lack a regular mechanism to maintain heterokaryosis by selfing. We hypothesize that heterokaryon formation may occur either because of recurrent biparental inbreeding, or by mating-type switching, possibly one involving some kind of parasexual process. The second mechanism found for selfing in C. parasitica occurred less frequently. Three single-conidial isolates (MAT-1 and MAT-2) selfed and produced progeny that did not segregate for mating type. It is currently not known if meiosis occurs during ascospore formation by this mechanism.  相似文献   

14.
Methods for inducing selfing, and the relation between selfing and the life cycle of Euplotes woodruffi syngen 3 are reported. Three intercrossing stocks were used in this experiment. Selfing was induced with several treatments as follows: cell-free fluid from the cultures of complementary mating types; intact cells of GI or S phase in the cell cycle; heat-killed cells, and lysed cells of GI-, S-, and D-phase cells which were prepared by freeze-thawing. Stock SJ-27 was used as a parental stock from which Fl clones were originated through selfing. The other two stocks, SJ-8 and SJ-19, were used as testers. The period of immaturity varied from clone to clone. The heterotypic conjugation of clones with cells of stock SJ-8 seems to occur earlier in the life cycle than with cells of stock SJ-19. This result shows that this syngen has an adolescent period in the life cycle. The length of selfing immaturity seems to be different from that of crossing immaturity, and selfing appeared slightly later than crossing with testers. But the clones in which selfing 1st occurred are considered to be in adolescence or maturity, not in senility. Once selfing appeared in any clone, the clone continued to produce selfing pairs till just before clonal death. The viability of selfing and of outcrossing were compared and found not significantly different. Inbreeding depression took place in some of the F2 clones by successive selfing. The viability of F2 clones from young parents was significantly higher than that from old parents (220 to 230 fissions) both in selfing and outcrossing. The total life spans which were studied in three F1 clones were 168 to 264 fissions.  相似文献   

15.
Hermaphroditism allows considerable scope for contributing genes to subsequent generations through various mixtures of selfed and outcrossed offspring. The fitness consequences of different family compositions determine the evolutionarily stable mating strategy and depend on the interplay of genetic features, the nature of mating, and factors that govern offspring development. This theoretical article considers the relative contributions of these influences and their interacting effects on mating-system evolution, given a fixed genetic load within a population. Strong inbreeding depression after offspring gain independence selects for exclusive outcrossing, regardless of the intensity of predispersal inbreeding depression, unless insufficient mating limits offspring production. The extent to which selfing evolves under weak postdispersal inbreeding depression depends on predispersal inbreeding depression and the opportunity for resource limitation of offspring production. Mixed selfing and outcrossing is an evolutionarily stable strategy (ESS) if selfed zygotes survive poorly, but selfed offspring survive well, and maternal individuals produce enough "extra" eggs that deaths of unviable outcrossed embryos do not impact offspring production (reproductive compensation). Mixed mating can also be an ESS, despite weak lifetime inbreeding depression, if self-mating reduces the number of male gametes available for outcrossing (male-gamete discounting). Reproductive compensation and male-gamete discounting act largely independently on mating-system evolution. ESS mating systems always involve either complete fertilization or fertilization of enough eggs to induce resource competition among embryos, so although reproductive assurance is adaptive with insufficient mating, it is never an ESS. Our results illustrate the theoretical importance of different constraints on offspring production (availability of male gametes, egg production, and maternal resources) for both the course and outcome of mating-system evolution, whereas unequal competition between selfed and outcrossed embryos has limited effect. These results also underscore the significance of heterogeneity in the nature and intensity of inbreeding depression during the life cycle for the evolution of hermaphrodite mating systems.  相似文献   

16.
The fact that selfing increases seed set (reproductive assurance) has often been put forward as an important selective force for the evolution of selfing. However, the role of reproductive assurance in hermaphroditic populations is far from being clear because of a lack of theoretical work. Here, I propose a theoretical model that analyzes self-fertilization in the presence of reproductive assurance. Because reproductive assurance directly influences the per capita growth rate, I developed an explicit demographic model for partial selfers in the presence of reproductive assurance, specifically when outcrossing is limited by the possibility of pollen transfer (Allee effect). Mating system parameters are derived as a function of the underlying demographical parameters. The functional link between population demography and mating system parameters (reproductive assurance, selfing rate) can be characterized. The demographic model permits the analysis of the evolution of self-fertilization in stable populations when reproductive assurance occurs. The model reveals some counterintuitive results such as the fact that increasing the fraction of selfed ovules can, in certain circumstances, increase the fraction of outcrossed ovules. Moreover, I demonstrate that reproductive assurance per se cannot account for the evolution of stable mixed selfing rates. Also, the model reveals that the extinction of outcrossing populations depends on small changes in population density (ecological perturbations), while the transition from outcrossing to selfing can, in certain cases, lead the population to extinction (evolutionary suicide). More generally, this paper highlights the fact that self-fertilization affects both the dynamics of individuals and the dynamics of selfing genes in hermaphroditic populations.  相似文献   

17.
Paramecium tetraurelia, stock d113, although completely homozygous, produces two kinds of genomically identical clones: N (nondischarge) clones incapable of trichocyst exocytosis (discharge) from intact cells in response to picric acid; and D (discharge) clones that do respond. These alternatives are irreversibly determined (at 27°C) during a determination sensitive period the first day after fertilization (autogamy, conjugation, or cytogamy): D parents are always determined to produce D progeny; N parents produce mostly N progeny if kept in exhausted medium, but mostly D progeny if kept in bacterized nutrient medium, throughout the sensitive period. If connecting bridges between mates persist long after the time for pair separation, the N member of N×D conjugant and cytogamous pairs produces D progeny even if exposed to exhausted medium throughout the sensitive period, thus indicating the presence in D mates of a D-determining cytoplasmic factor, δ, which overrides effects of external conditions. N and D determinations are brought about on newly developing somatic nuclei (macronuclear anlagen). After macronuclear development has been completed, determination is irreversible in it and its descendant macronuclei. M (mixed) clones produce N, D, and partial D cells; within these clones, diverse subclones can be selected. Crosses of d113 (N)×standard wild stock 51 (D) yield no segregation in F2, indicating no genomic difference between d113 (N) and wild type (D), δ may be a genic product regulating its own production. This results in “cytoplasmic inheritance” of D vs N in crosses of D×N followed by exhausted medium during the sensitive period. As with the only other well-analyzed comparable example, mating types, neither a genetic nor an epigenetic interpretation has yet been excluded for this system of developmental differentiation.  相似文献   

18.
The life styles of ciliated protists are particularly suitable for experimental analyses of certain aspects of developmental and genetic biology. The progression from sexual immaturity to maturity to senescence represents one of the most intriguing aspects of developmental programs. The extent to which progeny clones, their subclones, and testers used in the assay result in different lengths of immaturity has been investigated in Euplotes crassus. Six subclones from each of 12 progeny clones from a cross between stocks EC1 and EC2 were tested for maturity with stocks EC3, EC4, and EC5 on every transfer. Analysis of variance was used to partition the total variation in fissions to maturity into parts due to clones, subclones, and testers and the interactions between these levels. The error, interaction of subclones and testers, corresponds to a standard deviation of only 4.1 fissions, while the within clone within tester means range from 15.2 to 46.7 fissions; all levels except testers contribute significantly to the total variation. Most of the variability is attributable to clones (66%), the next most to error (16%), the next most to interaction of clones by testers (13%), and the least to subclones (5%). An a posteriori analysis examined whether the differences among clones were due to the cytoplasm of the clone ancestor (exconjugant), its mat (mating-type) locus genotype, or the mated pair it came from. None of these characteristics was able to interpret simply the large variability among clones. These results provide evidence that the transition from immaturity to maturity is quantitative and complex rather than a jump from one well-defined state to another.  相似文献   

19.
PARASITES AND THE EVOLUTION OF SELF-FERTILIZATION   总被引:4,自引:0,他引:4  
Abstract.— Assuming all else is equal, an allele for selfing should spread when rare in an outcrossing population and rapidly reach fixation. Such an allele will not spread, however, if self‐fertilization results in inbreeding depression so severe that the fitness of selfed offspring is less that half that of outcrossed offspring. Here we consider an ecological force that may also counter the spread of a selfing allele: coevolution with parasites. Computer simulations were conducted for four different genetic models governing the details of infection. Within each of these models, we varied both the level of selfing in the parasite and the level of male‐gamete discounting in the host (i.e., the reduction in outcrossing fitness through male function due to the selfing allele). We then sought the equilibrium level of host selfing under the different conditions. The results show that, over a wide range of conditions, parasites can select for host reproductive strategies in which both selfed and outcrossed progeny are produced (mixed mating). In addition, mixed mating, where it exits, tends to be biased toward selfing.  相似文献   

20.
How females establish in populations of cosexuals is central to understanding the evolution of gender dimorphism in angiosperms. Inbreeding avoidance hypotheses propose that females can establish and be maintained if cosexual fitness is reduced because they self-fertilize, and their progeny express inbreeding depression. Here we assess the role of inbreeding avoidance in maintaining sexual system variation in Wurmbea biglandulosa. We estimated costs of self-pollination, mating patterns, and inbreeding depression in gender monomorphic (cosexuals only) and dimorphic (males and females) populations. Costs of selfing, estimated from seed set of experimentally self- and cross-pollinated flowers, were severe in both males and cosexuals (inbreeding depression, sigma = 0.86). In a field experiment, intact males that could self produced fewer seeds than both emasculated males and females, whereas seed set of intact and emasculated cosexuals did not differ. Thus, pollinator-mediated selfing reduces fitness of males but not cosexuals under natural conditions. Outcrossing rates of males revealed substantial selfing (t = 0.68), whereas females and cosexuals were outcrossed (0.92 and 0.97). For males, progeny inbreeding coefficients exceeded parental coefficients (0.220 vs. 0.009), whereas for females and cosexuals these coefficients did not differ and approached zero. Differences in coefficients between males and their progeny indicate that selfed progeny express severe inbreeding depression (sigma = 0.93). Combined with inbreeding depression for seed set, cumulative sigma = 0.99, indicating that most or all selfed zygotes fail to reach reproductive maturity. We propose that present sexual system variation in W. biglandulosa is maintained by high inbreeding depression coupled with differences in selfing rates among monomorphic and dimorphic populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号