首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reversibility of the epidermal growth factor (EGF) receptor self-phosphorylation reaction was studied using highly purified receptor from A431 human epidermoid carcinoma cells. Self-phosphorylation is inhibited by the reaction product ADP in a dose-dependent manner exhibiting an IC50 approximately 2 microM. In addition, phosphorylated EGF receptor can be rapidly dephosphorylated in the presence of ADP. The dephosphorylation reaction results in equimolar production of ATP and loss of phosphate from the receptor. The reverse reaction is dependent on time and ADP exhibiting a t1/2 of 15 s and a Km(ADP) = 0.40 +/- 0.14 microM. The dephosphorylation reaction can be effectively inhibited by an exogenous peptide substrate for the forward reaction, i.e., the src-peptide (a synthetic peptide corresponding to one of the self-phosphorylation sites in p60v-src). This suggests that the dephosphorylation reaction is intrinsic to the EGF receptor. The equilibrium constant, K, for the self-phosphorylation reaction was estimated to be 0.5-1.6 using kinetic and reactant/product concentration analyses. Assuming that the standard free energy change, delta G0, for ATP hydrolysis is -9.5 kcal/mol, an observed delta G0 for hydrolysis of the EGF receptor phosphotyrosine bond was calculated to be -9 to -10 kcal/mol. These results indicate that the EGF receptor self-phosphorylation reaction, which appears important in the regulation of EGF receptor function, is readily reversible and that the phosphotyrosine bond formed by this reaction is of relatively high energy.  相似文献   

2.
The regulation of kinase activity associated with insulin receptor by phosphorylation and dephosphorylation has been examined using partially purified receptor immobilized on insulin-agarose. The immobilized receptor preparation exhibits predominately tyrosine but also serine and threonine kinase activities toward insulin receptor beta subunit and exogenous histone. Phosphorylation of the insulin receptor preparation with increasing concentrations of unlabeled ATP, followed by washing to remove the unreacted ATP, results in a progressive activation of the receptor kinase activity when assayed in the presence of histone and [gamma-32P]ATP. A maximal 4-fold activation is achieved by prior incubation of receptor with concentrations of ATP approaching 1 mM. High pressure liquid chromatographic analysis of tryptic hydrolysates of the 32P-labeled insulin receptor beta subunit reveals three domains of phosphorylation (designated peaks 1, 2, and 3). Phosphotyrosine and phosphoserine residues are present in these three domains while peak 2 contains phosphothreonine as well. Thus, at least seven sites are available for phosphorylation on the beta subunit of the insulin receptor. Incubation of the phosphorylated insulin receptor with alkaline phosphatase at 15 degrees C results in the selective dephosphorylation of the phosphotyrosine residues on the beta subunit of the receptor while the phosphoserine and phosphothreonine contents are not affected. The dephosphorylation of the receptor is accompanied by a marked 65% inhibition of the receptor kinase activity. Almost 90% of the decrease in [32P]phosphate content of the receptor after alkaline phosphatase treatment is accounted for by a decrease in phosphotyrosine content in peak 2, while very small decreases are observed in peaks 1 and 3, respectively. These results demonstrate that the extent of phosphorylation of tyrosine residues in receptor domain 2 closely parallels the receptor kinase activity state, suggesting phosphorylation of this domain may play a key role in regulating the insulin receptor tyrosine kinase.  相似文献   

3.
We have studied the reversibility of insulin receptor phosphorylation to establish the relation between this autophosphorylation reaction and the initiation of insulin action and between dephosphorylation and the termination of insulin effects in cells. In cultured Fao hepatoma cells labeled with 32PO4(3-), insulin increased 5-fold the phosphorylation of the beta-subunit of the insulin receptor at serine, threonine, and tyrosine residues. Addition of anti-insulin antiserum to cells incubated with insulin caused dissociation of insulin from the receptor and concurrent dephosphorylation of the beta-subunit. 32PO4(3-) associated with the insulin-stimulated receptor could be decreased by the addition of sodium phosphate to the medium but with a slower time course. Insulin stimulated phosphorylation of insulin receptor purified partially on immobilized wheat germ agglutinin. This reaction utilized [gamma-32P] ATP and occurred exclusively on tyrosine residues. Addition of unlabeled ATP caused a decrease in the amount of PO4(3-) associated with the receptor. Insulin-stimulated phosphorylation was also observed if the receptors were further purified by immunoprecipitation with anti-insulin receptor antibody prior to the phosphorylation reaction; however, addition of unlabeled ATP to this system did not chase the labeled 32PO4(3-) from the beta-subunit. These data are consistent with the notion that phosphorylation and dephosphorylation of the insulin receptor parallel the onset and termination of insulin action. Phosphatase activity involved in the dephosphorylation of the insulin receptor appears to be a glycoprotein because it was retained after partial purification of the receptor on wheat germ agglutinin-agarose; however, this phosphatase activity is distinct from the insulin receptor because it was not retained after immunoprecipitation of the receptor with anti-insulin receptor antibodies.  相似文献   

4.
The effect of insulin and ATP on insulin receptor beta subunit conformation was studied in vitro with radioiodinated monoclonal antibodies directed at several regions of the receptor beta subunit. Insulin plus ATP inhibited their binding to the receptor. The greatest inhibitory effect of insulin and ATP was seen with antibody 17A3 which recognizes a domain of the beta subunit that is near the major tyrosine autophosphorylation sites at residues 1158, 1162, and 1163. ATP alone inhibited 17A3 binding with a one-half maximal ATP inhibitory concentration of 186 +/- 7 microM. Insulin at concentrations as low as 100 pM potentiated the effect of ATP; at 100 nM where insulin had its maximal effect, insulin lowered the one-half maximal inhibitory concentration of ATP to 16 +/- 6 microM. At 1 mM CTP, GTP, ITP, TTP, and AMP were without effect in either the presence or absence of insulin; in contrast, ADP was inhibitory in the presence of insulin. Of major interest was adenyl-5'-yl imidodiphosphate (AMP-PNP). This nonhydrolyzable analog of ATP inhibited 17A3 binding, and the effect of AMP-PNP (like ATP) was potentiated by insulin. Two insulin receptor beta subunit mutants then were studied. Mutant receptor F3, where the major tyrosine autophosphorylation sites at residues 1158, 1162, and 1163 were changed to phenylalanines, bound to 17A3; antibody binding was inhibited by insulin and ATP in a manner similar to normal receptors. In contrast, mutant receptor M1030, where the lysine in the ATP binding site at residue 1030 was changed to methionine, bound 17A3, but unlike either normal receptors or F3 receptors, the binding of 17A3 was not inhibited by insulin and ATP. Therefore, these studies raise the possibility that, in vivo, ATP binding in the presence of insulin may induce a conformational change in the insulin receptor beta subunit which in turn signals some of the biological effects of insulin.  相似文献   

5.
Phosphorylation and dephosphorylation of the insulin receptor were examined in permeabilized rat adipocytes using pulse-chase techniques. Maximum insulin-dependent phosphorylation during a 2-min labeling period with 75 microM [gamma-32P]ATP was attained at 10(-6)-10(-7) M insulin with a small effect at 10(-9) M. The reaction utilized either Mn2+ or Mg2+, but insulin-dependent phosphorylation was 11-fold greater with Mn2+. In the absence of insulin, phosphorylation was 6-fold greater with Mn2+. With either cation, insulin (10(-7) M) was a potent stimulator of receptor phosphorylation with 5- and 8-fold increases above control levels in the presence of Mg2+ and Mn2+, respectively. Phosphorylation of the insulin receptor reached an apparent steady state within 30 s at 37 degrees C under all conditions. By phosphoamino acid analysis, all insulin- and Mn2+-dependent phosphorylation in the 95-kDa subunit of the insulin receptor was phosphotyrosine. A small amount of phosphoserine was detected, but it was not affected by either insulin or Mn2+. Dephosphorylation of the insulin receptor was examined by "chasing" labeled ATP after 2 min with a 40-fold excess of unlabeled ATP. Maximum dephosphorylation was reached in 2 min under all conditions. Insulin had no effect on the dephosphorylation reaction. The labile fraction of Mn2+-dependent phosphoreceptor dephosphorylated to one-half of its initial level in approximately 21 s at 37 degrees C. Vanadate, a potent phosphotyrosine phosphatase inhibitor, inhibited dephosphorylation of this phosphoreceptor by 25%. When vanadate was present during the 2-min labeling period, phosphorylation of control, and insulin-dependent receptor was increased by 50%. In summary, rapid "in vitro" autophosphorylation of the insulin receptor is coupled to an equally rapid dephosphorylation reaction in permeabilized adipocytes. This suggests that phosphorylation of the insulin receptor is a dynamic, rapidly reversible, insulin-dependent response in target cells and is consistent with it being involved in insulin signal transduction and insulin action.  相似文献   

6.
To localize and characterize the regulatory nucleotide site of skeletal muscle sarcoplasmic reticulum Ca2+-ATPase, we have investigated the effects of ADP, ATP, and analogues of these nucleotides on the rate of dephosphorylation of both native ATPase and ATPase modified with fluorescein 5'-isothiocyanate (FITC), a reagent which hinders access of nucleotides to the ATPase catalytic site without affecting phosphorylation from Pi. Dephosphorylation of the phosphoenzyme formed from Pi was monitored by rapid filtration or stopped-flow fluorescence, mostly at 20 degrees C, pH 6.0, and in the absence of potassium. Fluorescence measurements were made possible through the use of 8-bromo-ATP, which selectively quenched certain tryptophan residues of the ATPase, thereby allowing the intrinsic fluorescence changes associated with dephosphorylation to be measured in the presence of bound nucleotide. ATP, 8-bromo-ATP, and trinitrophenyladenosine diand triphosphate, but not ADP, enhanced the rate of dephosphorylation of native ATPase 2-3-fold when added in the absence of divalent cations. Millimolar concentrations of Mg2+ eliminated the accelerating effects. Acceleration in the absence of Mg2+ was observed at relatively low concentrations of ATP and 8-bromo-ATP (0.01-0.1 mM) and binding of metal-free ATP and ADP, but not Mg.ATP, to the phosphoenzyme in this concentration range was demonstrated directly. Modification of the ATPase with FITC blocked nucleotide binding in the submillimolar concentration range and eliminated the nucleotide-induced acceleration of dephosphorylation. These results show that dephosphorylation, under these conditions, is regulated by ATP but not by Mg.ATP or ADP, and that the catalytic site is the locus of this "regulatory" ATP binding site.  相似文献   

7.
Cycle-purified microtubule protein from mammalian brain incorporated [32P]Pi upon incubation with [gamma-32P]GTP under the conditions used to promote assembly. This phosphorylation also occurred in the same proteins when phosphorylated with [gamma-32P]ATP and was only slightly stimulated by cAMP. GTP was a much less effective substrate than ATP. The transfer of phosphoryl groups from [gamma-32P]GTP to endogenous proteins followed a linear time-course and was stimulated by low concentrations of ATP and, more efficiently, by ADP. These data are in agreement with the predictions derived from a mechanism of phosphorylation by which [gamma-32P]GTP does not act as a phosphoryl donor for the protein kinase activity but, instead, only as a repository of high group transfer potential phosphoryl groups used to make [gamma-32P]ATP, from contaminating ADP, by means of the nucleoside diphosphate kinase activity. Using 100 mM fluoride, which suppressed protein phosphorylation without inhibiting the nucleoside diphosphate kinase activity, formation of [gamma-32P]ATP was detected. Fluoride was also able to protect microtubules from a slow depolymerization which was found to occur during long-term incubation of microtubules. This indicates that the phosphorylation observed in the presence of GTP is sufficient to destabilize microtubules.  相似文献   

8.
9.
Mechanically induced ATP release from human airway epithelial cells regulates mucociliary clearance through cell surface nucleotide receptors. Ectoenzymes detected on these cells were recently shown to terminate ATP-mediated responses by sequential dephosphorylation of extracellular ATP into ADP, AMP, and adenosine. We now demonstrate that an ecto-adenylate kinase (ecto-AK) contributes to the metabolism of adenine nucleotides on human airway epithelial surfaces by the reversible reaction: ATP + AMP 2ADP. This phosphotransferase exhibited a bilateral distribution on polarized primary cultures of human bronchial epithelial cells with a 4-fold higher activity on the mucosal surface. Ecto-AK presented an absolute requirement for magnesium and adenine-based nucleotides. UMP, GMP, and CMP could not substitute for AMP as gamma-phosphate acceptor, and UDP could not replace ADP. Apparent K(m) and V(max) values were 23 +/- 5 microM and 1.1 +/- 0.1 nmol x min(-1) x cm(-2) for ATP and 43 +/- 6 microM and 0.5 +/- 0.1 nmol x min(-1) x cm(-2) for ADP. Ecto-AK accounted for 20% of [gamma-(32)P]ATP dephosphorylation, and the impermeant AK inhibitor, diadenosine pentaphosphate, reduced ADPase activity by more than 70% on both epithelial surfaces. Time course experiments on ATP metabolism demonstrated that ecto-AK significantly prolongs effective ATP and ADP concentrations on airway epithelial surfaces for P2 receptor signaling and reduces by 6-fold adenosine production. Our data suggest a role for this nucleotide entrapment cycle in the propagation of purine-mediated mucociliary clearance on human airway epithelial surfaces.  相似文献   

10.
Greene MW  Garofalo RS 《Biochemistry》2002,41(22):7082-7091
Insulin receptor substrates (IRS) 1 and 2 are phosphorylated on serine/threonine (Ser/Thr) residues in quiescent cells (basal phosphorylation), and phosphorylation on both Ser/Thr and tyrosine residues is increased upon insulin stimulation. To determine whether basal Ser/Thr phosphorylation of IRS proteins influences insulin receptor catalyzed tyrosine phosphorylation, recombinant FLAG epitope-tagged IRS-1 (F-IRS-1) and IRS-2 (F-IRS-2) were expressed, purified, and subjected to both dephosphorylation and hyperphosphorylation prior to phosphorylation by the insulin receptor kinase. As expected, hyperphosphorylation of F-IRS-1 and F-IRS-2 by GSK3beta decreased their subsequent phosphorylation on tyrosine residues by the insulin receptor. Surprisingly, however, dephosphorylation of the basal Ser/Thr phosphorylation sites impaired subsequent phosphorylation on tyrosine, suggesting that basal Ser/Thr phosphorylation of F-IRS-1 and F-IRS-2 plays a positive role in phosphorylation by the insulin receptor tyrosine kinase. Dephosphorylation of basal Ser/Thr sites on F-IRS-1 also significantly reduced tyrosine phosphorylation by the IGF-1 receptor. However, dephosphorylation of F-IRS-2 significantly increased phosphorylation by the IGF-1 receptor, suggesting that basal phosphorylation of IRS-2 has divergent effects on its interaction with the insulin and IGF-1 receptors. Phosphorylation of endogenous IRS-1 and IRS-2 from 3T3-L1 adipocytes was modulated in a similar manner. IRS-1 and IRS-2 from serum-fed cells were hyperphosphorylated, and dephosphorylation induced either by serum deprivation or by alkaline phosphatase treatment after immunoprecipitation led to an increase in tyrosine phosphorylation by the insulin receptor. Dephosphorylation of IRS-1 and IRS-2 immunoprecipitated from serum-deprived cells, however, resulted in inhibition of tyrosine phosphorylation by the insulin receptor. These data suggest that Ser/Thr phosphorylation can have both a positive and a negative regulatory role on tyrosine phosphorylation of IRS-1 and IRS-2 by insulin and IGF-1 receptors.  相似文献   

11.
Egli M  Mori T  Pattanayek R  Xu Y  Qin X  Johnson CH 《Biochemistry》2012,51(8):1547-1558
The circadian clock of the cyanobacterium Synechococcus elongatus can be reconstituted in vitro from three proteins, KaiA, KaiB, and KaiC in the presence of ATP, to tick in a temperature-compensated manner. KaiC, the central cog of this oscillator, forms a homohexamer with 12 ATP molecules bound between its N- and C-terminal domains and exhibits unusual properties. Both the N-terminal (CI) and C-terminal (CII) domains harbor ATPase activity, and the subunit interfaces between CII domains are the sites of autokinase and autophosphatase activities. Hydrolysis of ATP correlates with phosphorylation at threonine and serine sites across subunits in an orchestrated manner, such that first T432 and then S431 are phosphorylated, followed by dephosphorylation of these residues in the same order. Although structural work has provided insight into the mechanisms of ATPase and kinase, the location and mechanism of the phosphatase have remained enigmatic. From the available experimental data based on a range of approaches, including KaiC crystal structures and small-angle X-ray scattering models, metal ion dependence, site-directed mutagenesis (i.e., E318, the general base), and measurements of the associated clock periods, phosphorylation patterns, and dephosphorylation courses as well as a lack of sequence motifs in KaiC that are typically associated with known phosphatases, we hypothesized that KaiCII makes use of the same active site for phosphorylation and dephosphorlyation. We observed that wild-type KaiC (wt-KaiC) exhibits an ATP synthase activity that is significantly reduced in the T432A/S431A mutant. We interpret the first observation as evidence that KaiCII is a phosphotransferase instead of a phosphatase and the second that the enzyme is capable of generating ATP, both from ADP and P(i) (in a reversal of the ATPase reaction) and from ADP and P-T432/P-S431 (dephosphorylation). This new concept regarding the mechanism of dephosphorylation is also supported by the strikingly similar makeups of the active sites at the interfaces between α/β heterodimers of F1-ATPase and between monomeric subunits in the KaiCII hexamer. Several KaiCII residues play a critical role in the relative activities of kinase and ATP synthase, among them R385, which stabilizes the compact form and helps kinase action reach a plateau, and T426, a short-lived phosphorylation site that promotes and affects the order of dephosphorylation.  相似文献   

12.
Two proteins (Mr = 145,000 and Mr = 130,000) of rat liver microsomal membrane are selectively phosphorylated in a characteristic biphasic time course by incubating the membrane with [gamma-32P]ATP in the absence of exogenously added Mg2+ (Lam, K. S., and Kasper, C. B. (1980) J. Biol. Chem. 255, 259-266). This endogenous phosphorylation system was solubilized with Triton X-100 and fractionated by chromatography with DEAE-cellulose and Sepharose 4B. The resulting preparation lacked both ATPase and inorganic pyrophosphatase activity, but retained its original character: the first phase occurred in the presence of ATP but the second phase was initiated after its depletion, implying the presence of a phosphodonor other than ATP. The putative phosphoryl donors were demonstrated to be ATP in the first phase and in the second phase tripolyphosphate, which is present in [gamma-32P]ATP preparations as a radioactive impurity. The latter conclusion was corroborated by results showing that tripolyphosphate purified from a commercial [gamma-32P]ATP and chemically synthesized [32P] tripolyphosphate were both capable of phosphorylating the two proteins and that the unlabeled tripolyphosphate competed effectively against the phosphodonor. A rapid dephosphorylation was observed in both phases upon removal of substrates during the reaction, indicating that there is a continuous turnover of the phosphoryl groups being transferred to the proteins. The second phase of phosphorylation maintained by the tripolyphosphate was shown to be reversibly inhibited by micromolar levels of ATP, ADP, and nonhydrolyzable analogues of these compounds. The implications of this unique phosphorylation system are discussed.  相似文献   

13.
Protein kinases are essential signaling enzymes that transfer phosphates from bound ATP to select amino acids in protein targets. For most kinases, the phosphoryl transfer step is highly efficient, while the rate-limiting step for substrate processing involves slow release of the product ADP. It is generally thought that structural factors intrinsic to the kinase domain and the nucleotide-binding pocket control this step and consequently the efficiency of protein phosphorylation for these cases. However, the kinase domains of protein kinases are commonly flanked by sequences that regulate catalytic function. To address whether such sequences could alter nucleotide exchange and, thus, regulate protein phosphorylation, the presence of activating residues external to the kinase domain was probed in the serine protein kinase SRPK1. Deletion analyses indicate that a small segment of a large spacer insert domain and a portion of an N-terminal extension function cooperatively to increase nucleotide exchange. The data point to a new mode of protein kinase regulation in which select sequences outside the kinase domain constitute a nucleotide release factor that likely interacts with the small lobe of the kinase domain and enhances protein substrate phosphorylation through increases in ADP dissociation rate.  相似文献   

14.
The autophosphorylation, from [gamma-32P]ATP, of insulin and epidermal growth factor receptors in rat liver endosomes peaked at 2-5 min and declined thereafter. When autophosphorylation from either [gamma-32P]ATP or unlabeled ATP was stopped after 5 min by adding excess EDTA +/- ATP, the phosphotyrosine (PY) content of each receptor decreased at 37 degrees C with a t 1/2 of 1.6 min. This was equally so whether the PY content of 32P-labeled receptors was analyzed by autoradiography of KOH-treated gels or by Western blotting with PY antibodies of immunoprecipitated receptors. The dephosphorylation reaction was strictly dependent on the presence of sulfhydryl, was unaffected by the addition of rat liver cytosol, and was temperature-dependent. The phosphotyrosine phosphatase(s) (PTPase(s)) appeared to be tightly anchored to the endosomal membrane, since the dephosphorylation reaction was unaffected by sodium carbonate and 0.6 M KCl treatments. However, treatment with Triton X-100 abolished dephosphorylation, implying an intimate association between the PTPase(s) and its substrate in an intact membrane environment. The powerful insulinomimetic agent pervanadate was the most potent inhibitor (50% inhibition at 1 microM). Increasing the dose of injected ligand augmented the rate of insulin and decreased that of EGF receptor dephosphorylation, respectively. Immunoblotting with specific antibodies failed to identify PTPase 1B or T-cell PTPase in ENs, whereas positive signals were seen in plasma membrane. These studies indicate that the phosphorylation state of receptor tyrosine kinases is dynamically regulated, with dephosphorylation, by closely associated PTPase(s), playing an important role.  相似文献   

15.
Recent results suggest consideration of a new concept for oxidative phosphorylation in which a prime function of energy is to bring about release of ATP formed at the catalytic site by reversal of hydrolysis. Data with submitochondrial particles include properties of an uncoupler insensitive Pi=HOH exchange, a rapid reversible formation of bound ATP in presence of uncouplers, and predictable patterns of 32-Pi incorporation into ATP in rapid mixing experiments. ADP is confirmed as the primary Pi acceptor in mitochondrial ATP synthesis, but with chloroplasts ADP is also rapidly labeled. Other findings with pyrophosphatase and with transport ATPase harmonize with the new concept. Measurements of the reversal of ATP cleavage and binding by myosin suggest that oxygen exchanges result from reversible cleavage of ATP to ADP and Pi at the catalytic site and that the principal free energy change in ATP cleavage occurs in ATP binding. Reversal of conformational changes accompanying ATP binding and cleavage is proposed to drive the actin filament in contraction. Thus energy transductions linked to ATP in both mitochondria and muscle may occur primarily through protein conformational change.  相似文献   

16.
Choline kinase, responsible for the phosphorylation of choline to phosphocholine as the first step of the CDP-choline pathway for the biosynthesis of phosphatidylcholine, has been recognized as a new target for anticancer therapy. Crystal structures of human choline kinase in its apo, ADP and phosphocholine-bound complexes, respectively, reveal the molecular details of the substrate binding sites. ATP binds in a cavity where residues from both the N and C-terminal lobes contribute to form a cleft, while the choline-binding site constitutes a deep hydrophobic groove in the C-terminal domain with a rim composed of negatively charged residues. Upon binding of choline, the enzyme undergoes conformational changes independently affecting the N-terminal domain and the ATP-binding loop. From this structural analysis and comparison with other kinases, and from mutagenesis data on the homologous Caenorhabditis elegans choline kinase, a model of the ternary ADP.phosphocholine complex was built that reveals the molecular basis for the phosphoryl transfer activity of this enzyme.  相似文献   

17.
T F Yan  M Tao 《Biochemistry》1983,22(23):5340-5346
The reversibility of the reactions catalyzed by the wheat germ kinase and the cyclic AMP independent protein kinases isolated from human erythrocytes (casein kinases A and G) and rabbit skeletal muscle (casein kinases I and II) has been investigated. The reverse reaction requires ADP, Mg2+, phosphoprotein, and kinase and results in the formation of ATP from the phosphoprotein and ADP. The requirement for ADP in the wheat germ kinase and casein kinases II and G catalyzed reactions appears to be nonspecific. These kinases can also utilize GDP, IDP, and UDP as phosphoryl acceptors. Studies with the wheat germ protein T-substrate indicate that the phosphorylation of this protein substrate by the kinases is fully reversible. By contrast, the phosphorylation of phosvitin and casein is only partially reversible. Since the T-substrate is found to contain multiple phosphorylation sites and can serve as phosphoryl acceptor for the various kinases, the specificity of the phosphorylation of the substrate by the kinases is examined by way of the reverse reaction. The wheat germ kinase, casein kinase G, and casein kinase II appear to phosphorylate the same sites on the T-substrate as they are capable of completely dephosphorylating each other's 32P-T-substrate. Each of these kinases can catalyze the incorporation of 12 mol of 32P/48 000 g of T-substrate. In contrast, casein kinases A and I can incorporate only 6 mol of 32P/48 000 g of T-substrate. Studies on the reverse reactions suggest that these phosphorylation sites may be the same for both enzymes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The biological effects of insulin are initiated by the binding of insulin to the insulin receptor. Insulin binds to the extracellular domain of the insulin receptor and induces conformational changes in the receptor, leading to autophosphorylation of the receptor on intracellular tyrosine residues. These phosphorylated tyrosine residues act as binding sites for proteins which subsequently may be phosphorylated by the insulin receptor. As a result, yet other proteins can be recruited to form larger complexes and, in the case of enzymes, changes in their activity may take place. By a combination of these processes, the activated insulin receptor initiates cascades of biochemical events which are regulated mainly by specific phosphorylation or dephosphorylation reactions. Intermediates which are involved in the normal insulin signalling pathway are subjects of expanding research.  相似文献   

19.
N Stahl  W P Jencks 《Biochemistry》1987,26(24):7654-7667
Phosphorylation of the sarcoplasmic reticulum calcium ATPase, E, is first order with kb = 70 +/- 7 s-1 after free enzyme was mixed with saturating ATP and 50 microM Ca2+; this is one-third the rate constant of 220 s-1 for phosphorylation of enzyme preincubated with calcium, cE.Ca2, after being mixed with ATP under the same conditions (pH 7.0, Ca2+-loaded vesicles, 100 mM KCl, 5 mM Mg2+, 25 degrees C). Phosphorylation of E with ATP and Ca2+ in the presence of 0.25 mM ADP gives approximately 50% E approximately P.Ca2 with kobsd = 77 s-1, not the sum of the forward and reverse rate constants, kobsd = kf + kr = 140 s-1, that is expected for approach to equilibrium if phosphorylation were rate limiting. These results show that (1) kb represents a slow conformational change, rather than phosphoryl transfer, and (2) different pathways are followed for the phosphorylation of E and of cE.Ca2. The absence of a lag for phosphorylation of E with saturating ATP and Ca2+ indicates that all other steps, including the binding of Ca2+ ions and phosphoryl transfer, have rate constants of greater than 500 s-1. Chase experiments with unlabeled ATP or with ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) show that the rate constants for dissociation of [gamma-32P]ATP and Ca2+ are comparable to kb. Dissociation of ATP occurs at 47 s-1 from E.ATP.Ca2+ and at 24 s-1 from E.ATP. Approximately 20% phosphorylation occurs following an EGTA chase 4.5 ms after the addition of 300 microM ATP and 50 microM Ca2+ to enzyme. This shows that Ca2+ binds rapidly to the free enzyme, from outside the vesicle, before the conformational change (kb). The fraction of Ca2+-free E.[gamma-32P]ATP that is trapped to give labeled phosphoenzyme after the addition of Ca2+ and a chase of unlabeled ATP is half-maximal at 6.8 microM Ca2+, with a Hill slope of n = 1.8. The calculated dissociation constant for Ca2+ from E.ATP.Ca2 is approximately 2.2 X 10(-10) M2 (K0.5 = 15 microM). The rate constant for the slow phase of the biphasic reaction of E approximately P.Ca2 with 1.1 mM ADP increases 2.5-fold when [Ca2+] is decreased from 50 microM to 10 nM, with half-maximal increase at 1.7 microM Ca2+. This shows that Ca2+ is dissociating from a different species, aE.ATP.Ca2, that is active for catalysis of phosphoryl transfer, has a high affinity for Ca2+, and dissociates Ca2+ with k less than or equal to 45 s-1.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Induced fit in arginine kinase   总被引:1,自引:0,他引:1       下载免费PDF全文
Creatine kinase (CK) and arginine kinase (AK) are related enzymes that reversibly transfer a phosphoryl group between a guanidino compound and ADP. In the buffering of ATP energy levels, they are central to energy metabolism and have been paradigms of classical enzymology. Comparison of the open substrate-free structure of CK and the closed substrate-bound structure of AK reveals differences that are consistent with prior biophysical evidence of substrate-induced conformational changes. Large and small domains undergo a hinged 13 degrees rotation. Several loops become ordered and adopt different positions in the presence of substrate, including one (residues 309-319) that moves 15 A to fold over the substrates. The conformational changes appear to be necessary in aligning the two substrates for catalysis, in configuring the active site only when productive phosphoryl transfer is possible, and excluding water from the active site to avoid wasteful ATP hydrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号