首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Isoenzymes of peroxidase were separated on acrylamide gels in 2 genotypes of Linum usitatissimum L. and their F 1, F 2 and first backcross progeny. Active extracts were obtained from homogenates of main stem tissue; activity was measured both before and after electrophoretic separation. The relationship of isoenzyme activity to gross (prior to electrophoretic separation) activity was investigated, as well as the relative behaviour of isoenzyme activity in the various genotypes and generations. Gross activity was correlated with isoenzyme activity; there was also evidence of maternal as well as genetic effects on isoenzyme activity.  相似文献   

2.
Summary Crosses were made, in all combinations, between 2 parental genotypes of Linum and their reciprocal F 1 hybrids. The parents and progeny obtained were grown in controlled environmental conditions and sampled at 35 and 70 days after germination to determine, on an individual plant basis, total plant fresh weight and peroxidase activity of main stem tissue. Peroxidase activity required transformation to a log10 scale, whereas the original linear scale was satisfactory for plant weight. There was no correlation between plant weight and corresponding peroxidase activity. Pronounced heterosis appeared in the F 1's for both characters at sample 1, but this heterosis had declined at sample 2 and in the F 2's. Heterosis operated in a positive direction for plant weight and in a negative direction for peroxidase activity. No consistent differences were found amongst the variances of segregating or non-segregating generations for either character.  相似文献   

3.
Anionic peroxidase isoenzymes, separated on acrylamide gels, were examined in two flax genotrophs and in their reciprocal F2 hybrids. Isoenzyme 1 exhibited a significant difference in Rm between stem base and apex and there was a gradient of decreasing Rm and activity between base and apex. Isoenzyme 2 displayed only the activity gradient. The parents differed significantly in the Rm's and activities of isoenzymes 1 and 2, and the F2's showed complete dominance of the L parent for Rm, with activities being approximately intermediate.  相似文献   

4.
Changes of soluble and ionically bound peroxidase and indoleacetic acid (IAA) oxidase activities were followed during peach seed development. Soluble peroxidase activity was located mainly in the embryo plus endosperm tissue, whereas wall ionically bound activities were found predominantly in the integument tissue. The different peroxidase isoenzymes present in the extracts were characterized by polyacrylamide gel electrophoresis and isoelectric focusing; the main soluble isoenzyme of embryo plus endosperm tissue was an anionic isoperoxidase of R F 0.07. Basic ionically bound isoenzymes were located only in the integument tissue, but two soluble anionic isoenzymes of R F 0.23 and 0.51 were also present in this tissue. In parallel, peroxidase protein content was estimated specifically using polyclonal antibodies. The kinetic data and the changes of seed IAA oxidase activity during fruit development suggested that basic peroxidase isoenzymes from ionically bound extracts of integument might be involved in IAA degradation. Received September 11, 1997; accepted October 21, 1997  相似文献   

5.
Four successive reciprocal backcrosses between F1 (obtained from wild Brassica juncea as maternal plants and transgenic glyphosate- or glufosinate-tolerant oilseed rape, B. napus, as paternal plants) or subsequent herbicide-tolerant backcross progenies and wild B. juncea were achieved by hand pollination to assess potential transgene flow. The third and forth reciprocal backcrosses produced a number of seeds per silique similar to that of self-pollinated wild B. juncea, except in plants with glufosinate-tolerant backcross progeny used as maternal plants and wild B. juncea as paternal plants, which produced fewer seeds per silique than did self-pollinated wild B. juncea. Germination percentages of reciprocal backcross progenies were high and equivalent to those of wild B. juncea. The herbicide-tolerant first reciprocal backcross progenies produced fewer siliques per plant than did wild B. juncea, but the herbicide-tolerant second or third reciprocal backcross progenies did not differ from the wild B. juncea in siliques per plant. The herbicide-tolerant second and third reciprocal backcross progenies produced an amount of seeds per silique similar to that of wild B. juncea except for with the glufosinate-tolerant first and second backcross progeny used as maternal plants and wild B. juncea as paternal plants. In the presence of herbicide selection pressure, inheritance of the glyphosate-tolerant transgene was stable across the second and third backcross generation, whereas the glufosinate-tolerant transgene was maintained, despite a lack of stabilized introgression. The occurrence of fertile, transgenic weed-like plants after only three crosses (F1, first backcross, second backcross) suggests a potential rapid spread of transgenes from oilseed rape into its wild relative wild B. juncea. Transgene flow from glyphosate-tolerant oilseed rape might be easier than that from glufosinate-tolerant oilseed rape to wild B. juncea. The original insertion site of the transgene could affect introgression.  相似文献   

6.
Summary The relationship of peroxidase activity with plant height and grain weight has been studied in seven different varieties of bread wheat belonging to diverse genotypes, and their F1 crosses. The association between plant height and peroxidase activity was highly significant and negative. Based on the similarity index values of peroxidase isoenzymes, the seven wheat genotypes could be classified into two groups: the first group consisting of triple and quadruple dwarf varieties and the other of tall, single and double dwarf. A negative correlation between peroxidase activity and grain weight was also observed. However, the results of this study indicate a possibility of developing a dwarf plant type with low peroxidase activity and well filled grains.  相似文献   

7.
The sexually compatible strains ofCoprinus cinereus 5302 and Dd 13 revealed chromosome length polymorphisms in their electrophoretic karyotypes. The dikaryon derived from two monokaryons contained a mixture of the two electrophoretic patterns. F1 progenies were isolated by crossingC. cinereus 5302 and Dd 13 strains and it showed unique karyotypes. Chromosome length polymorphisms of both parental strains were inherited at random in the F1 progenies. As a result, several novel electrophoretic karyotypes which had not been observed in either parental strains were found in the F1 progeny. The rDNA probe hybridized with one chromosome in both parental strains, with two chromosomes in the hybridization pattern of both parental strains in the dikaryon, and with one to two chromosomes in the F1 progenies. The relation between mating type and hybridization pattern has thus not been made clear in the case of F1 progeny.  相似文献   

8.
The southern cattle tick, Boophilus  microplus (Canestrini), has developed resistance to amitraz in several countries in recent years. A study was conducted at the USDA Cattle Fever Tick Research Laboratory in Texas to investigate the mode of inheritance of amitraz resistance with cross-mating experiments. The Muñoz strain, a laboratory reared acaricide-susceptible reference strain, was used as the susceptible parent and the Santa Luiza strain, originating in Brazil, was used as the resistant parent. A modified Food and Agriculture Organization Larval Packet Test was used to measure the levels of susceptibility of larvae of the parental strains, F1, backcross, F2, and F3 generations. Results of reciprocal crossing experiments suggested that amitraz resistance was inherited as an incomplete recessive trait. There was a strong maternal effect on larval progeny’s susceptibility to amitraz in both the F1 and the subsequent generations. The values of the degree of dominance were estimated at ?0.156 and ?0.500 for the F1 larvae with resistant and susceptible female parents, respectively. Results of bioassays on larval progeny of the F1 backcrossed with the resistant parent strain and that of the F2 generations suggested that more than one gene was responsible for amitraz resistance in the Santa Luiza strain. Comparisons of biological parameters (engorged female weight, egg mass weight, and female-to-egg weight conversion efficiency index) indicated significant differences between different genotypes. The differences appeared to be heritable, but not related to amitraz resistance. Results from this study may have significant implications for the management of amitraz resistance.  相似文献   

9.
Summary As a criterion for the selection from a population of individuals with a high potential as parents of synthetic varieties, the general varietal ability of an individual is defined as the mean expression of all possible synthetics of a given size(s) having this plant as a common parent. Using known expressions for the prediction of the performance of advanced generations of diploid synthetic varieties, general varietal ability is expressed in terms of the F 1 and I 1 progenies of the plants under test, and is found to be a simple function of the polycross (g.c.a.) and inbred progeny means, where the contribution of the inbred progeny varies according to n and s. The implications and use of such a progeny test in the breeding of out-pollinating crops is discussed.  相似文献   

10.
Summary Combining ability studies for grain yield and its primary component traits in diallel crosses involving seven diverse wheat cultivars of bread wheat (Triticum aestivum L.) over generations F1-F5 are reported. The general and specific combining ability variances were significant in all generations for all the traits except specific combining ability variance for number of spikes per plant in the F5. The ratio of general to specific combining ability variances was significant for all the traits except grain yield in all the generations. This indicated an equal role of additive and non-additive gene effects in the inheritance of grain yield, and the predominance of the former for its component traits. The presence of significant specific combining ability variances in even the advanced generations may be the result of an additive x additive type of epistasis or evolutionary divergence among progenies in the same parental array. The relative breeding values of the parental varieties, as indicated by their general combining ability effects, did not vary much over the generations. The cheap and reliable procedure observed for making the choice of parents, selecting hybrids and predicting advanced generation (F5) bulk hybrid performance was the determination of breeding values of the parents on the relative performance of their F2 progeny bulks.  相似文献   

11.
The analysis of reciprocal genetic crosses between resistant Helicoverpa armigera strain (BH-R) (227.9-fold) with susceptible Vadodara (VA-S) strain showed dominance (h) of 0.65-0.89 and degree of dominance (D) of 0.299-0.782 suggesting Cry1Ac resistance as a semi-dominant trait. The D and h values of F1 hybrids of female resistant parent were higher than female susceptible parent, showing maternally enhanced dominance of Cry1Ac resistance. The progeny of F2 crosses, backcrosses of F1 hybrid with resistant BH-R parent did not differ significantly in respect of mortality response with resistant parent except for backcross with female BH-R and male of F1 (BH-R × VA-S) cross, suggesting dominant inheritance of Cry1Ac resistance. Evaluation of some biological attributes showed that larval and pupal periods of progenies of reciprocal F1 crosses, backcrosses and F2 crosses were either at par with resistant parent or lower than susceptible parent on treated diet (0.01 μg/g). The susceptible strain performed better in terms of pupation and adult formation than the resistant strain on untreated diet. In many backcrosses and F2 crosses, Cry1Ac resistance favored emergence of more females than males on untreated diet. The normal larval period and the body weight (normal larval growth) were the dominant traits associated with susceptible strain as contrast to longer larval period and the lower body weight (slow growth) associated with resistance trait. Further, inheritance of larval period in F2 and backcross progeny suggested existence of a major resistant gene or a set of tightly linked loci associated with Cry1Ac sensitivity.  相似文献   

12.
Since a pre-zygotic isolating mechanism has been shown to be functioning completely between Group II-B plus and Group II-A minus (Watanabe and Ichimura, 1978b), the reciprocal cross was investigated in order to clarify the presence of a postzygotic isolating mechanism between the two sympatric closely related groups of theClosterium peracerosum-strigosum-littorale complex. Viabilities and fertilities of F1, F2 and backcross progenies of crosses within and between the two groups were studied using two representative pairs, IB-4-2 and IB-4-9 of Group II-A and KAS-4-30 and KAS-4-29 of Group II-B. Viability was estimated by % survival of isolated gones. Viability of F1 progeny was 31.7% in the intergroup cross, while it was 70.0 and 46.0% in the intragroup cross of Group II-A and that of Group II-B, respectively. Viabilities of intragroup F2 and backcross progenies were shown to be in the range of 32.0–76.0%. In contrast with this, those of F2 and backcross progenies of the hybrids obtained in the intergroup cross were shown to be markedly reduced to the range of 0.0–2.5%. Viable clones obtained in these intra-and intergroup crosses were almost all fertile, but one sterile clone was fonnd among F1 progeny of Group II-B. It was concluded that the so-called hybrid breakdown is also at work as, an isolating mechanism between the two groups of this complex. This study was supported by the Grants in Aid. Nos. 00554220 and 56122019, from the Scientific Research Found of the Ministry of Education, Science and Culture, Japan.  相似文献   

13.
Summary The relationship between heterozygosity and the expression of heterosis at two different nutrition levels was investigated using Drosophila melanogaster. Average daily egg production and egg hatchability were measured in two parental strains and in F1, F2 and reciprocal backcross generations. Heterosis was more pronounced in the poor nutritional conditions. Two electrophoretic markers used to estimate the level of heterozygosity in F2 and backcrosses revealed an excess of heterozygous genotypes. Quantitative genetic effects (an additive line effect and individual and maternal heterosis) were estimated for both traits in the two environments. Although this model gave a reasonable fit in most cases, some epistatic interaction would have to be invoked in order to explain fully the results.  相似文献   

14.
Summary Procedures are described for efficient selection of: (1) homozygous and heterozygous S-allele genotypes; (2) homozygous inbreds with the strong self- and sib-incompatibility required for effective seed production of single-cross F1 hybrids; (3) heterozygous genotypes with the high self- and sib-incompatibility required for effective seed production of 3- and 4-way hybrids.From reciprocal crosses between two first generation inbred (I1) plants there are three potential results: both crosses are incompatible; one is incompatible and the other compatible; and both are compatible. Incompatibility of both crosses is useful information only when combined with data from other reciprocal crosses. Each compatible cross, depending on whether its reciprocal is incompatible or compatible, dictates alternative reasoning and additional reciprocal crosses for efficiently and simultaneously identifying: (A) the S-allele genotype of all individual I1 plants, and (B) the expressions of dominance or codominance in pollen and stigma (sexual organs) of an S-allele heterozygous genotype. Reciprocal crosses provide the only efficient means of identifying S-allele genotypes and also the sexual-organ x S-allele-interaction types.Fluorescent microscope assay of pollen tube penetration into the style facilitates quantitation within 24–48 hours of incompatibility and compatibility of the reciprocal crosses. A procedure for quantitating the reciprocal difference is described that maximizes informational content of the data about interactions between S alleles in pollen and stigma of the S-allele-heterozygous genotype.Use of the non-inbred Io generation parent as a known heterozygous S-allele genotype in crosses with its first generation selfed (I1) progeny usually reduces at least 7 fold the effort required for achieving objectives 1, 2, and 3, compared to the method of making reciprocal crosses only among I1 plants.Identifying the heterozygous and both homozygous S-allele genotypes during the I1 generation facilitates, during subsequent inbred generations, strong selection for or against modifier genes that influence the intensity of self- and sib-incompatibility. Selection for strong self and sib incompatibility can be effective for both homozygous inbreds and also for the S-allele heterozygote, thus facilitating production of single-cross F1 hybrids and also of 3-and 4-way hybrids.Department of Plant Breeding and Biometry paper No. 690  相似文献   

15.
Allelic segregation in reciprocal backcrosses involving the largemouth bass (Micropterus salmoides) and the F1 hybrid (largemouth bass × smallmouth bass, M. dolomieui) was investigated to determine the extent of euheterosis and luxuriance. The frequencies of allelic isozymes encoded in the lactate dehydrogenase E, malate dehydrogenase B, and isocitrate dehydrogenase loci were determined for reciprocal backcross progeny subjected to different selection pressures. The progeny of the backcross (male F1 × female largemouth bass) underwent a rapid loss of heterozygous individuals in a natural pond environment. When the offspring of this same mating were placed in artificial pools, where cannibalism is the main source of mortality, heterozygosity was advantageous. There was a marked correlation of increased heterozygosity at these enzyme loci with an increased growth rate. None of the above responses to selection was observed when the F1 hybrid served as the maternal parent in the reciprocal backcross. A maternal factor in the egg cytoplasm may influence the expression of heterosis.  相似文献   

16.
Quantitative ovule sterility in Medicago sativa   总被引:2,自引:0,他引:2  
 Ovule sterility was found to be associated with callose deposition in B17, a plant with low fertility from the alfalfa cv Blazer XL. The site of callose deposition, which began during embryo-sac development and affected 81% of the ovules in mature florets, at random positions in the ovary, appeared to be the embryo-sac wall or the integumentary tapetum. The fertile ovules of B17 transmitted the ovule-sterility trait to the progenies, thereby demonstrating a sporophytic genetic control. B17 was crossed with P13, a Peruvian plant with 5% callosized ovules, to generate reciprocal F1 populations, and an F1 plant (91% callosized ovules) was used to obtain the backcross populations. B17 was also crossed to unrelated, highly fertile, plants. S1 progenies from B17 and P13 were also studied. All the progeny populations displayed continuous variation for the percentage of sterile ovules, supporting a polygenic control. Narrow-sense heritability estimated by offspring-midparent regression was 0.85. Reduced transmission of the sterility trait through the pollen is hypothesized to explain the difference between reciprocal crosses. Six progeny plants showing 100% callosized ovules proved to be female-sterile. Ovule sterility could be an important component of the generally observed low realized seed potential in alfalfa. Received: 2 March 1998 / Accepted: 28 May 1998  相似文献   

17.
Summary Restoration of fertility in cytoplasmic male sterile Phaseolus vulgaris by line R-351 was controlled by a single gene. The restorer gene (Fr) displayed incomplete dominance leading to partial restoration of fertility in F1 generations; full restoration was not achieved until the F2 generation. Once full restoration of fertility was produced in the F2 generation, no segregation for sterility was observed in subsequent generations derived from heterozygotes Frfr, either by testcrossing (restored × maintainer) or in F3 progenies. Implications of the irreversible nature of this restoration are discussed.Florida Agr. Exp. Sta. Journal Series No. 7733  相似文献   

18.
The investigation of the substrate specificity of the anionic peroxidase isoenzymes, isolated from the zone of differentiation of the primary roots ofZea mays, for some representatives of phenolic compounds and aromatic amines, as hydrogen donors, is reported. The investigation was carried out electrophoretically with peroxidase isoenzymes partially purified by a combination of gel filtration by Sephadex G-25 and Sephadex G-100. A difference in the substrate specificity of the individual isoenzymes is observed. It was established that the anionic peroxidase isoenzymes showed a similarity in total number and relative activity on staining with bivalent phenols and difference on staining with trivalent phenols, as hydrogen donors. A greater number of isoenzymes was stained with benzidine ando-dianisidine and a lesser number witho- andp-phenylendiamine. The substrate specificity of the peroxidase isoenzymes was compared for guaiacol and benzidine. The substrate specificity of peroxidase soenzymes was discussed as regards their diverse role in the plant metabolism.  相似文献   

19.
S Volis  I Shulgina  M Zaretsky  O Koren 《Heredity》2011,106(2):300-309
Populations of predominantly selfing plant species often show spatial genetic structure but little is known whether epistatic gene interactions are spatially structured. To detect a possible epistatic effect and a spatial scale at which it operates, we created artificial crosses between plants spanning a range of fixed distances from 1 to 400 m in three populations of wild barley. The self-pollinated and crossed progeny (F1) and two generations of segregated progeny (F2 and F3) were tested in experimentally simulated population environments for relative performance (RP). The measured fitness traits included number of seeds, total seed weight and seed germination. For any of these traits, there was no association between RP of F1, F2 and F3 plants and either pairwise kinship coefficients or crossing distance. In contrast, in all three populations, we found lower seed viability of outcrossed as compared with self-pollinated genotypes in the first generation of segregation. However, in the F3 generation this outbreeding effect disappeared in the two populations and greatly decreased in the third population. For seed production, heterosis in F1 and outbreeding depression in F2 were observed only in the population with unusually high number of heterozygotes. Our findings support the view that in selfing species a spatial mosaic of various locally abundant genotypes represents not randomly fixed combinations of alleles but the co-adapted gene complexes that were sieved by selection, while heterozygotes are characteristic for the transient phase of this process, when segregation and purging of maladaptive genotypes have not yet occurred.  相似文献   

20.
A field strain of Spodoptera littoralis Biosduval was selected against Cry1C toxin derived from Bacillus thuringiensis entomocidus for 10 subsequent generations under laboratory conditions. Selection pressure resulted in a 29‐fold resistance ratio compared with the susceptible strain. Inheritance of Cry1C resistance was partially dominant and autosomal on the basis of bioassay response to Cry1C toxin in a reciprocal cross between male and/or female F1. Consistent with earlier findings, resistance was recessive at high concentrations of Cry1C toxin. However, the dominance of resistance increased as the concentration of Cry1C decreased. Analysis of survival and growth of progeny from a backcross (F1 × resistance strain) suggested that resistance was controlled by either a single or a few loci in cotton leafworm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号