首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This research investigates the synthesis and inhibitory potency of a series of novel dipeptidyl allyl sulfones as clan CA cysteine protease inhibitors. The structure of the inhibitors consists of a R1-Phe-R2-AS-Ph scaffold (AS?=?allyl sulfone). R1 was varied with benzyloxycarbonyl, morpholinocarbonyl, or N-methylpiperazinocarbonyl substituents. R2 was varied with either Phe of Hfe residues. Synthesis involved preparation of vinyl sulfone analogues followed by isomerization to allyl sulfones using n-butyl lithium and t-butyl hydroperoxide. Sterics, temperature and base strength were all factors that affected the formation and stereochemistry of the allyl sulfone moiety. The inhibitors were assayed with three clan CA cysteine proteases (cruzain, cathepsin B and calpain I) as well as one serine protease (trypsin). The most potent inhibitor, (E)-Mu-Phe-Hfe-AS-Ph, displayed at least 10-fold selectivity for cruzain over clan CA cysteine proteases cathepsin B and calpain I with a kobs/[I] of 6080?±?1390?M?1s?1.  相似文献   

2.
Cathepsin K (EC 3.4.22.38) is a cysteine protease of the papain superfamily which is selectively expressed within the osteoclast. Several lines of evidence have pointed to the fact that this protease may play an important role in the degradation of the bone matrix. Potent and selective inhibitors of cathepsin K could be important therapeutic agents for the control of excessive bone resorption. Recently a series of peptide aldehydes have been shown to be potent inhibitors of cathepsin K. In an effort to design more selective and metabolically stable inhibitors of cathepsin K, a series of electronically attenuated alkoxymethylketones and thiomethylketones inhibitors have been synthesized. The X-ray co-crystal structure of one of these analogues in complex with cathepsin K shows the inhibitor binding in the primed side of the enzyme active site with a covalent interaction between the active site cysteine 25 and the carbonyl carbon of the inhibitor.  相似文献   

3.
Proteolytic activity in the digestive system of the pistachio green stink bug, Brachynema germari, was investigated. The maximum total proteolytic activity in the midgut extract was observed at pH 5, suggesting the presence of cysteine proteases. Hydrolyzing the specific substrates for cysteine proteases revealed the presence of cathepsin B and cathepsin L activities in the midgut extract. The presence of cysteine proteases was confirmed by their noticeable inhibition and activation due to specific inhibitors and activators, respectively. The significant inhibition of chymotryptic activity by the inhibitors showed the presence of chymotrypsin in the midgut. No considerable tryptic activity was observed in the midgut extract. There was no detectable total proteolytic activity in the salivary gland extract. Tryptic activity of the salivary gland extract was also inhibited by the specific inhibitors. The substrates for cysteine proteases were also slightly hydrolyzed by the salivary gland extract. Zymogram analysis showed at least one distinct band due to cysteine protease activity in the midgut extract, and the cysteine protease inhibitor caused almost complete disappearance of the band. Cathepsin B and L activities were mainly detected in midgut divisions m1 and m3, respectively, and maximum chymotrypsin and trypsin activities were observed in m3. In general, the results revealed the significant presence of cathepsin B, cathepsin L, and chymotrypsin proteases in the midgut extract. The major proteolytic activity in the salivary glands seems to be conducted by trypsin-like proteases.  相似文献   

4.
Cathepsin K (CatK) is a cysteine protease known for its potent collagenolytic activity, being recognized as an important target to the development of therapies for the treatment of bone disorders. Epoxypeptidomimetics have been reported as potent inhibitors of cathepsins, thus in this work we present a green synthesis of new peptidomimetics by using a one-pot asymmetric epoxidation/Ugi multicomponent reaction. The compounds were evaluated against CatK showing selectivity when compared with cathepsin L, with an inhibition profile in the low micromolar IC50 range. Investigation of the mechanism of action carried out for compounds LSPN428 and LSPN694 suggested a mixed inhibition mode and docking studies allowed a better understanding about interactions of inhibitors with the enzyme.  相似文献   

5.
Cysteine proteases of the papain superfamily are present in nearly all eukaryotes. They play pivotal roles in the biology of parasites and inhibition of cysteine proteases is emerging as an important strategy to combat parasitic diseases such as sleeping sickness, Chagas’ disease and leishmaniasis. Homology modeling of the mature Leishmania mexicana cysteine protease CPB2.8 suggested that it differs significantly from bovine cathepsin B and thus could be a good drug target. High throughput screening of a compound library against this enzyme and bovine cathepsin B in a counter assay identified four novel inhibitors, containing the warhead-types semicarbazone, thiosemicarbazone and triazine nitrile, that can be used as leads for antiparasite drug design. Covalent docking experiments confirmed the SARs of these lead compounds in an effort to understand the structural elements required for specific inhibition of CPB2.8. This study has provided starting points for the design of selective and highly potent inhibitors of L. mexicana cysteine protease CPB that may also have useful efficacy against other important cysteine proteases.  相似文献   

6.
7.
Selective proteinase inhibitors have demonstrated utility in the investigation of cartilage degeneration mechanisms and may have clinical use in the management of osteoarthritis. The cysteine protease cathepsin K (CatK) is an attractive target for arthritis therapy. Here we report the synthesis of two cathepsin K inhibitors (CKIs): racemic azanitrile derivatives CKI-E and CKI-F, which have better inhibition properties on CatK than the commercial inhibitor odanacatib (ODN). Their IC50 values and inhibition constants (Ki) have been determined in vitro. Inhibitors demonstrate differential selectivity for CatK over cathepsin B, L and S in vitro, with Ki amounting to 1.14 and 7.21?nM respectively. We analyzed the effect of these racemic inhibitors on viability in different cell types. The human osteoblast-like cell line MG63, MOVAS cells (a murine vascular smooth muscle cell line) or murine primary chondrocytes, were treated either with CKI-E or with CKI-F, which were not toxic at doses of up to 5?µM. Primary chondrocytes subjected to several passages were used as a model of phenotypic loss of articular chondrocytes, occurring in osteoarthritic cartilage. The efficiency of CKIs regarding CatK inhibition and their specificity over other proteases were validated in primary chondrocytes subjected to several passages. Racemic CKI-E and CKI-F at 0.1 and 1?µM significantly inhibited CatK activity in dedifferentiated chondrocytes, even better than the commercial CatK inhibitor ODN. The enzymatic activity of other proteases such as matrix metalloproteinases or aggrecanases were not affected. Taken together, these findings support the possibility to design CatK inhibitors for preventing cartilage degradation in different pathologies.  相似文献   

8.
Motivated by the recent implication of cysteine protease cathepsin L as a potential target for anti-cancer drug development, we used a conditional MycERTAM;Bcl-xL model of pancreatic neuroendocrine tumorigenesis (PNET) to assess the role of cathepsin L in Myc-induced tumor progression. By employing a cysteine cathepsin activity probe in vivo and in vitro, we first established that cathepsin activity increases during the initial stages of MycERTAM;Bcl-xL tumor development. Among the cathepsin family members investigated, only cathepsin L was predominately produced by beta-tumor cells in neoplastic pancreata and, consistent with this, cathepsin L mRNA expression was rapidly upregulated following Myc activation in the beta cell compartment. By contrast, cathepsins B, S and C were highly enriched in tumor-infiltrating leukocytes. Genetic deletion of cathepsin L had no discernible effect on the initiation of neoplastic growth or concordant angiogenesis. However, the tumors that developed in the cathepsin L-deficient background were markedly reduced in size relative to their typical wild-type counterparts, indicative of a role for cathepsin L in enabling expansive tumor growth. Thus, genetic blockade of cathepsin L activity is inferred to retard Myc-driven tumor growth, encouraging the potential utility of pharmacological inhibitors of cysteine cathepsins in treating late stage tumors.  相似文献   

9.
Cathepsin L is a cysteine protease which degrades connective tissue proteins including collagen, elastin, and fibronectin. In this study, five well-characterized cathepsin L proteins from different arthropods were used as query sequences for the Drosophila genome database. The search yielded 10 cathepsin L-like sequences, of which eight putatively represent novel cathepsin L-like proteins. To understand the phylogenetic relationship among these cathepsin L-like proteins, a phylogenetic tree was constructed based on their sequences. In addition, models of the tertiary structures of cathepsin L were constructed using homology modeling methods and subjected to molecular dynamics simulations to obtain reasonable structure to understand its dynamical behavior. Our findings demonstrate that all of the potential Drosophila cathepsin L-like proteins contain at least one cathepsin propeptide inhibitor domain. Multiple sequence alignment and homology models clearly highlight the conservation of active site residues, disulfide bonds, and amino acid residues critical for inhibitor binding. Furthermore, comparative modeling indicates that the sequence/structure/function profiles and active site architectures are conserved.  相似文献   

10.
A synthetic codon-optimized gene encoding human procathepsin K has been cloned in Escherichia coli using pET28a+ vector. The recombinant His-tagged fusion protein was expressed as inclusion body, solubilized in urea and purified by metal affinity chromatography. The purified protein was refolded by dilution technique, concentrated and finally purified by gel-filtration chromatography. The expressed protein was confirmed by Western blot analysis with human cathepsin K specific antibody. We have obtained 140 mg purified and refolded protein from 1 L bacterial culture which is the highest (nearly three times higher) yield reported so far for a recombinant human procathepsin K. The protease could be autocatalytically activated to mature protease at lower pH in presence of cysteine protease specific activators. The recombinant protease showed gelatinolytic and collagenolytic activities as well as activity against synthetic substrate Z-FR-AMC with a Km value of 5 ± 2.7 μM and the proteolytic activity of the enzyme could be blocked by cysteine protease inhibitors E-64, leupeptin and MMTS.  相似文献   

11.
A direct correlation between cathepsin expression–cancer progression and elevated levels of cathepsins due to an imbalance in cellular inhibitors-cathepsins ratio in inflammatory diseases necessitates the work on the identification of potential inhibitors to cathepsins. In the present work we report the synthesis of some 2,3-dihydroquinazolin-4(1H)-ones followed by their evaluation as cysteine protease inhibitors in general and cathepsin B and cathepsin H inhibitors in particular. 2,3-Dihydroquinazolin-4(1H)-ones, synthesized by the condensation of anthranilamide and carbonyl compound in presence of PPA-SiO2 catalyst, were characterized by spectral analysis. The designed compounds were screened as inhibitors to proteolysis on endogenous protein substrates. Further, a distinct differential pattern of inhibition was obtained for cathepsins B and H. The inhibition was more to cathepsin B with Ki values in nanomolar range. However, cathepsin H was inhibited at micromolar concentration. Maximum inhibition was shown by compounds, 1e and 1f for cathepsin B and compounds 1c and 1f for cathepsin H. The synthesized compounds were established as reversible inhibitors of cathepsins B and H. The results were also compared with the energy of interaction between enzyme active site and compounds using iGemdock software.  相似文献   

12.

Background

Trypanosoma brucei is the etiological agent of Human African Trypanosomiasis, an endemic parasitic disease of sub-Saharan Africa. TbCatB and rhodesain are the sole Clan CA papain-like cysteine proteases produced by the parasite during infection of the mammalian host and are implicated in the progression of disease. Of considerable interest is the exploration of these two enzymes as targets for cysteine protease inhibitors that are effective against T. brucei.

Methods and Findings

We have determined, by X-ray crystallography, the first reported structure of TbCatB in complex with the cathepsin B selective inhibitor CA074. In addition we report the structure of rhodesain in complex with the vinyl-sulfone K11002.

Conclusions

The mature domain of our TbCat•CA074 structure contains unique features for a cathepsin B-like enzyme including an elongated N-terminus extending 16 residues past the predicted maturation cleavage site. N-terminal Edman sequencing reveals an even longer extension than is observed amongst the ordered portions of the crystal structure. The TbCat•CA074 structure confirms that the occluding loop, which is an essential part of the substrate-binding site, creates a larger prime side pocket in the active site cleft than is found in mammalian cathepsin B-small molecule structures. Our data further highlight enhanced flexibility in the occluding loop main chain and structural deviations from mammalian cathepsin B enzymes that may affect activity and inhibitor design. Comparisons with the rhodesain•K11002 structure highlight key differences that may impact the design of cysteine protease inhibitors as anti-trypanosomal drugs.  相似文献   

13.
Cathepsin L is a cysteine protease that is upregulated in a variety of malignant tumors and plays a significant role in cancer cell invasion and migration. It is an attractive target for the development of small-molecule inhibitors, which may prove beneficial as treatment agents to limit or arrest cancer metastasis. We have previously identified a structurally diverse series of thiosemicarbazone-based inhibitors that incorporate the benzophenone and thiochromanone molecular scaffolds. Herein we report an important extension of this work designed to explore fused aryl–alkyl ring molecular systems that feature nitrogen atom incorporation (dihydroquinoline-based) and carbon atom exclusivity (tetrahydronaphthalene-based). In addition, analogues that contain oxygen (chromanone-based), sulfur (thiochroman-based), sulfoxide, and sulfone functionalization have been prepared in order to further investigate the structure–activity relationship aspects associated with these compounds and their ability to inhibit cathepsins L and B. From this small-library of 30 compounds, five were found to be strongly inhibitory (IC50 <500 nM) against cathepsin L with the most active compound (7-bromodihydroquinoline thiosemicarbazone 48) demonstrating an IC50 = 164 nM. All of the compounds evaluated were inactive (IC50 >10,000 nM) as inhibitors of cathepsin B, thus establishing a high degree (>20-fold) of selectivity (cathepsin L vs. cathepsin B) for the most active cathepsin L inhibitors in this series.  相似文献   

14.
Peptide segments derived from consensus sequences of the inhibitory site of cystatins, the natural inhibitors of cysteine proteinases, were used to develop new substrates and inhibitors of papain and rat liver cathepsins B, H, and L. Papain hydrolyzedAbz-QVVAGA-EDDnp andAbz-LVGGA-EDDnp at about the same rate, with specificity constants in the 107M–1 sec–1 range; cathepsin L also hydrolyzes both substrates with specificity constants in the 105 M–1 sec–1 range due to lowerk cat values, with theK m 's being identical to those with papain. OnlyAbz-LVGGA-EDDnp was rapidly hydrolyzed by cathepsin B, and to a lesser extent by cathepsin H. Peptide substrates that alternate these two building blocks (LVGGQVVAGAPWK and QVVAGALVGGAPWK) discriminate the activities of cathepsins B and L and papain. Cathepsin L was highly selective for cleavage at the G-G bond of the LVGG fragment in both peptides. Papain and cathepsin B cleaved either the LVGG fragment or the QVVAG fragment, depending on their position within the peptide. While papain was more specific for the segment located C-terminally, cathepsin B was specific for that in N-terminal position. Peptidyl diazomethylketone inhibitors based on these two sequences also reacted differently with papain and cathepsins. GlcA-QVVA-CHN2 was a potent inhibitor of papain and reacted with papain 60 times more rapidly (k +0= 1,100,000 M–1 sec–1) than with cathepsin L, and 220 times more rapidly than with cathepsin B. Cathepsins B and L were preferentially inhibited by Z-RLVG-CHN2. Thus cystatin-derived peptides provide a valuable framework for designing sensitive, selective substrates and inhibitors of cysteine proteinases.  相似文献   

15.
Previous studies have indicated that most trypsin inhibitor-like cysteine-rich domain (TIL)-type protease inhibitors, which contain a single TIL domain with ten conserved cysteines, inhibit cathepsin, trypsin, chymotrypsin, or elastase. Our recent findings suggest that Cys2nd and Cys6th were lost from the TIL domain of the fungal-resistance factors in Bombyx mori, BmSPI38 and BmSPI39, which inhibit microbial proteases and the germination of Beauveria bassiana conidia. To reveal the significance of these two missing cysteines in relation to the structure and function of TIL-type protease inhibitors in B. mori, cysteines were introduced at these two positions (D36 and L56 in BmSPI38, D38 and L58 in BmSPI39) by site-directed mutagenesis. The homology structure model of TIL domain of the wild-type and mutated form of BmSPI39 showed that two cysteine mutations may cause incorrect disulfide bond formation of B. mori TIL-type protease inhibitors. The results of Far-UV circular dichroism (CD) spectra indicated that both the wild-type and mutated form of BmSPI39 harbored predominantly random coil structures, and had slightly different secondary structure compositions. SDS-PAGE and Western blotting analysis showed that cysteine mutations affected the multimerization states and electrophoretic mobility of BmSPI38 and BmSPI39. Activity staining and protease inhibition assays showed that the introduction of cysteine mutations dramaticly reduced the activity of inhibitors against microbial proteases, such as subtilisin A from Bacillus licheniformis, protease K from Engyodontium album, protease from Aspergillus melleus. We also systematically analyzed the key residue sites, which may greatly influence the specificity and potency of TIL-type protease inhibitors. We found that the two missing cysteines in B. mori TIL-type protease inhibitors might be crucial for their inhibitory activities against microbial proteases. The genetic engineering of TIL-type protease inhibitors may be applied in both health care and agricultural industries, and could lead to new methods for breeding fungus-resistant transgenic crops and antifungal transgenic silkworm strains.  相似文献   

16.
A novel series of 3,4-disubstituted azetidinones based inhibitors of the cysteine protease cathepsin K (Cat K) has been identified. Although not optimized, some of these compounds show at least 100-fold selectivity against other cathepsins. The use of cyclic moieties as P2 elements has proven to be crucial to achieve a high degree of selectivity.  相似文献   

17.
The activity of osteoclast-specific cysteine protease, cathepsin K, and matrix metalloproteases (MMPs) has been investigated in bone tissue of senescence-accelerated OXYS rats and in Wistar rats. At the age of 3 month (the period preceding manifestation of osteoporosis in OXYS rats) cathepsin K activity was higher whereas MMP activity was lower in Wistar rats. At the age of 14 months Wistar rats cathepsin K activity increased and MMP activity decreased. The age-related changes in bone cathepsin K and MMP activity of OXYS rats had opposite direction. Thus, despite of marked manifestations of osteoporosis previously found by us in OXYS rats (the decrease in mineralization density of the bone tissue and its resorption) no interstrain differences in cathepsin K and MMPs were found between Wistar and OXYS rats. Activity of a universal protease inhibitor, α2-macroglobulin, was higher in serum of 14-month old OXYS rats than in Wistar rats of the same age. The role of cathepsin K activation in resorption of bone tissue in the development of osteoporosis in senescence-accelerated OXYS rats is discussed.  相似文献   

18.
Multiple proteases in a system hydrolyze target substrates, but recent evidence indicates that some proteases will degrade other proteases as well. Cathepsin S hydrolysis of cathepsin K is one such example. These interactions may be uni‐ or bi‐directional and change the expected kinetics. To explore potential protease‐on‐protease interactions in silico, a program was developed for users to input two proteases: (1) the protease‐ase that hydrolyzes (2) the substrate, protease. This program identifies putative sites on the substrate protease highly susceptible to cleavage by the protease‐ase, using a sliding‐window approach that scores amino acid sequences by their preference in the protease‐ase active site, culled from MEROPS database. We call this PACMANS, Protease‐Ase Cleavage from MEROPS ANalyzed Specificities, and test and validate this algorithm with cathepsins S and K. PACMANS cumulative likelihood scoring identified L253 and V171 as sites on cathepsin K subject to cathepsin S hydrolysis. Mutations made at these locations were tested to block hydrolysis and validate PACMANS predictions. L253A and L253V cathepsin K mutants significantly reduced cathepsin S hydrolysis, validating PACMANS unbiased identification of these sites. Interfamilial protease interactions between cathepsin S and MMP‐2 or MMP‐9 were tested after predictions by PACMANS, confirming its utility for these systems as well. PACMANS is unique compared to other putative site cleavage programs by allowing users to define the proteases of interest and target, and can also be employed for non‐protease substrate proteins, as well as short peptide sequences.  相似文献   

19.
Kininogens, the major plasma cystatin-like inhibitors of cysteine cathepsins, are degraded at sites of inflammation, and cathepsin B has been identified as a prominent mediator of this process. Cathepsin B, in contrast to cathepsins L and S, is poorly inhibited by kininogens. This led us to delineate the molecular interactions between this protease and kininogens (high molecular weight kininogen and low molecular weight kininogen) and to elucidate the dual role of the occluding loop in this weak inhibition. Cathepsin B cleaves high molecular weight kininogen within the N-terminal region of the D2 and D3 cystatin-like domains and close to the consensus QVVAG inhibitory pentapeptide of the D3 domain. The His110Ala mutant, unlike His111Ala cathepsin B, fails to hydrolyze kininogens, but rather forms a tight-binding complex as observed by gel-filtration analysis. Ki values (picomolar range) as well as association rate constants for the His110Ala cathepsin B variant compare to those reported for cathepsin L for both kininogens. Homology modeling of isolated inhibitory (D2 and D3) domains and molecular dynamics simulations of the D2 domain complexed with wild-type cathepsin B and its mutants indicate that additional weak interactions, due to the lack of the salt bridge (Asp22-His110) and the subsequent open position of the occluding loop, increase the inhibitory potential of kininogens on His110Ala cathepsin B.  相似文献   

20.
We have localized cathepsin K in rat osteoclasts and within exposed resorption pits by immuno-fluorescence microscopy. Intracellular staining using an antibody raised against recombinant mouse cathepsin K was vesicular and uniformly distributed throughout the cell. Confocal microscopy analysis did not reveal an accumulation of cathepsin K containing vesicles opposing the ruffled border and the resorption lacuna. Exposed resorption pits exhibited a uniform distribution of cathepsin K, and no differences were observed between the edges and the centers of the pits. The immunostaining of resorption pits with anti-cathepsin K antibodies demonstrates that the protease is secreted into the sub-osteoclastic compartment. Cathepsin K-specific inhibition using peptidyl vinyl sulfones as selective cysteine protease inactivators reduced bone resorption by 80% in a dose-dependent manner at sub-micromolar concentrations. No reduction of bone resorption was observed at those low concentrations using a potent cathepsin L, S, B-specific inhibitor. That the inhibition of bone resorption can be attributed to cathepsin K-like protease inhibition was corroborated by the selective inhibition of the osteoclastic Z-Gly-Pro-Arg-MbetaNA hydrolyzing activity by the cathepsin K, L, S, B-inhibitor, but not by the cathepsin L, B, and S inhibitor. Z-Gly-Pro-Arg-MbetaNA is efficiently hydrolyzed by cathepsin K but only poorly by cathepsins L, S, and B. On the contrary, the intracellular hydrolysis of the cathepsin B-specific substrate, Z-Arg-Arg-MbetaNA, was prevented by both types of inhibitors. The identification of cathepsin K in resorption pits and the inhibition of bone resorption and intracellular cathepsin K activity by selective vinyl sulfone inhibitors indicate the critical role of the protease in osteoclastic bone resorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号