首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Additional microsatellite markers for mouse genome mapping   总被引:16,自引:0,他引:16  
Mouse sequence information from the EMBL and GenBank databases, published sequences and genomic clones have been analyzed for simple repetitive elements or microsatellites. Each microsatellite has been amplified by the polymerase chain reaction (PCR) as a single locus marker. PCR primers were designed from unique sequence flanking each repeat. Size variation of PCR products less than 750 base pairs (bp) between mouse strains has been determined using ethidium bromide-stained acrylamide or agarose gels. A further 74 newly characterized microsatellites are presented in this paper, bringing to 185 the total we have analyzed. Of these, 157/185 (85%) have more than one allele, 143/178 (80%) vary in length between C57BL/6J and Mus spretus, and 82/168 (49%) vary between DBA/2J and C57BL/6J. Microsatellites provide informative single locus probes for linkage analysis in the construction of a genetic map of the mouse genome.  相似文献   

2.
Development and mapping of microsatellite (SSR) markers in wheat   总被引:37,自引:9,他引:37  
Microsatellite DNA markers are consistently found to be more informative than other classes of markers in hexaploid wheat. The objectives of this research were to develop new primers flanking wheat microsatellites and to position the associated loci on the wheat genome map by genetic linkage mapping in the ITMI W7984 × Opata85 recombinant inbred line (RIL) population and/or by physical mapping with cytogenetic stocks. We observed that the efficiency of marker development could be increased in wheat by creating libraries from sheared rather than enzyme-digested DNA fragments for microsatellite screening, by focusing on microsatellites with the [ATT/TAA]n motif, and by adding an untemplated G-C clamp to the 5-end of primers. A total of 540 microsatellite-flanking primer pairs were developed, tested, and annotated from random genomic libraries. Primer pairs and associated loci were assigned identifiers prefixed with BARC (the acronym for the USDA-ARS Beltsville Agricultural Research Center) or Xbarc, respectively. A subset of 315 primer sets was used to map 347 loci. One hundred and twenty-five loci were localized by physical mapping alone. Of the 222 loci mapped with the ITMI population, 126 were also physically mapped. Considering all mapped loci, 126, 125, and 96 mapped to the A, B, and D genomes, respectively. Twenty-three of the new loci were positioned in gaps larger than 10 cM in the map based on pre-existing markers, and 14 mapped to the ends of chromosomes. The length of the linkage map was extended by 80.7 cM. Map positions were consistent for 111 of the 126 loci positioned by both genetic and physical mapping. The majority of the 15 discrepancies between genetic and physical mapping involved chromosome group 5.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

3.
Wheat microsatellites (WMS) were used to estimate the extent of genetic diversity among 40 wheat cultivars and lines, including mainly European elite material. The 23 WMS used were located on 15 different chromosomes, and revealed a total of 142 alleles. The number of alleles ranged from 3 to 16, with an average of 6.2 alleles per WMS. The average dinucleotide repeat number ranged from 13 to 41. The correlation coefficient between the number of alleles and the average number of repeats was only slight (r s = 0.55). Based on percentage difference a dendrogram is presented, calculated by the WMS-derived data. All but two of the wheat cultivars and lines could be distinguished. Some of the resulting groups are strongly related to the pedigrees of the appropriate cultivars. Values for co-ancestry (f) of 179 pairs of cultivars related by their pedigrees (f0.1) averaged 0.29. Genetic similarity (GS) based on WMS of the same pairs averaged 0.44. The rank correlation for these pairs was slight, with r s = 0.55, but highly significant (P<0.001). The results suggest that a relatively small number of microsatellites can be used for the estimation of genetic diversity and cultivar identification in elite material of hexaploid bread wheat.  相似文献   

4.
Genetic variation present in 64 durum wheat accessions was investigated by using three sources of microsatellite (SSR) markers: EST-derived SSRs (EST-SSRs) and two sources of SSRs isolated from total genomic DNA. Out of 245 SSR primer pairs screened, 22 EST-SSRs and 20 genomic-derived SSRs were polymorphic and used for genotyping. The EST-SSR primers produced high quality markers, but had the lowest level of polymorphism (25%) compared to the other two sources of genomic SSR markers (53%). The 42 SSR markers detected 189 polymorphic alleles with an average number of 4.5 alleles per locus. The coefficient of similarity ranged from 0.28 to 0.70 and the estimates of similarity varied when different sources of SSR markers were used to genotype the accessions. This study showed that EST-derived SSR markers developed in bread wheat are polymorphic in durum wheat when assaying loci of the A and B genomes. A minumum of ten EST-SSRs generated a very low probability of identity (0.36×10−12) indicating that these SSRs have a very high discriminatory power. EST-SSR markers directly sample variation in transcribed regions of the genome, which may enhance their value in marker-assisted selection, comparative genetic analysis and for exploiting wheat genetic resources by providing a more-direct estimate of functional diversity. Received: 19 December 2000 / Accepted: 17 April 2001  相似文献   

5.
Genetic mapping of 66 new microsatellite (SSR) loci in bread wheat   总被引:27,自引:12,他引:27  
In hexaploid bread wheat ( Triticum aestivum L. em. Thell), ten members of the IWMMN ( International Wheat Microsatellites Mapping Network) collaborated in extending the microsatellite (SSR = simple sequence repeat) genetic map. Among a much larger number of microsatellite primer pairs developed as a part of the WMC ( Wheat Microsatellite Consortium), 58 out of 176 primer pairs tested were found to be polymorphic between the parents of the ITMI ( International Triticeae Mapping Initiative) mapping population W7984 x Opata 85 (ITMI pop). This population was used earlier for the construction of RFLP ( Restriction Fragment Length Polymorphism) maps in bread wheat (ITMI map). Using the ITMI pop and a framework map (having 266 anchor markers) prepared for this purpose, a total of 66 microsatellite loci were mapped, which were distributed on 20 of the 21 chromosomes (no marker on chromosome 6D). These 66 mapped microsatellite (SSR) loci add to the existing 384 microsatellite loci earlier mapped in bread wheat.  相似文献   

6.
Microsatellites were isolated from a Aegilops tauschii (the D-genome donor of bread wheat) library enriched for various motifs. Primers generated from the flanking region of the microsatellites were used successfully to amplify the corresponding loci in the D genome of bread wheat. Additional amplification sometimes also occurred from the A and B genomes. The majority of the microsatellites contained (GA)(n) and (GT)(n) motifs. GA and GT repeats appeared to be both more abundant in this library and more polymorphic than other types of repeats. The allele number for both types of dinucleotide repeats fitted a Poisson distribution. Deviance analysis showed that GA and GT were more polymorphic than other motifs in bread wheat. Within each motif type (di-, tri- and tetra-nucleotide repeats), repeat number has no influence on polymorphism. The microsatellites were mapped using the Triticum aestivum Courtot x Chinese Spring mapping population. A total of 100 markers was developed on this intraspecific map, mainly on the D genome. For polyploid species, isolation of microsatellites from an ancestral diploid donor seems to be an efficient way of developing markers for the corresponding genome in the polyploid plant.  相似文献   

7.
Microsatellites, or simple sequence repeats (SSRs), have become the markers of choice for genetic studies with many crop species including wheat. Currently an international effort is underway to enrich the repertoire of available sequence tagged microsatellite site (STMS) markers in wheat. As a part of this effort, we have sequenced 43 clones obtained from a microsatellite-enriched wheat genomic library; 34 clones contained 41 different microsatellites. These microsatellites (mono-, di-, tri- nucleotide repeats) were classified as 19 simple perfect, 18 simple imperfect and 4 compound imperfect types. Dinucleotide repeats were the most abundant (70%). Primer pairs for only 16 microsatellites could be designed, since the flanking sequences of the others were either too short or were otherwise not suitable for designing the microsatellite specific primers. Microsatellite loci of the expected size and polymorphism were successfully amplified from 15 of these 16 primer pairs using three wheat varieties. 14 loci detected by 12 out of the 15 functional primer pairs were assigned to 11 specific chromosomes. An erratum to this article is available at .  相似文献   

8.
9.
10.
11.
Microsatellite or simple sequence repeat (SSR) markers are routinely used for tagging genes and assessing genetic diversity. In spite of their importance, there are limited numbers of SSR markers available for Brassica crops. A total of 627 new SSR markers (designated BnGMS) were developed based on publicly available genome survey sequences and used to survey polymorphisms among six B. napus cultivars that serve as parents for established populations. Among these SSR markers, 591 (94.3%) successfully amplified at least one fragment and 434 (73.4%) detected polymorphism among the six B. napus cultivars. No correlation was observed between SSR motifs, repeat number or repeat length with polymorphism levels. A linkage map was constructed using 163 newly developed BnGMS marker loci and anchored with 164 public SSRs in a doubled haploid population. These new markers are evenly distributed over all linkage groups (LGs). Given that the majority of these SSRs are derived from bacterial artificial chromosome (BAC) end sequences, they will be useful in the assignment of their cognate BACs to LGs and facilitate the integration of physical maps with genetic maps for genome sequencing in B. napus. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
Microsatellite markers are widely used in linkage mapping, parentage testing, population genetic studies, and molecular evolution studies in many agricultural species, while only a limited number of ostrich (Struthio camelus) microsatellites have been isolated. Thus, we constructed a random small-insert genomic library and a microsatellite-enriched library containing CA repeats. Fourteen clones containing CA repeats were isolated from 3462 clones in the non-enriched library by radioactive screening and 248 positive clones were isolated from 300 sequenced clones from the enriched library by PCR screening. After the enrichment procedures, the proportion of clones containing CA repeats was raised to 78.8%, compared with 0.4% in the non-enriched libraries, indicating that the enrichment value approaches 200 fold, which decreased the time and cost of cloning. The number of complete simple CA repeats in these positive clones ranged from 5 to 29. The primers for 94 of these microsatellites were developed and used to detect polymorphisms, of which 61 loci exhibited length polymorphisms in 17 unrelated ostrich individuals. The new polymorphic microsatellite markers we have identified and characterized will contribute to the ostrich genetic map, parentage testing, and comparative genomics between avian species.  相似文献   

13.

Background

Mapping and map-based cloning of genes that control agriculturally and economically important traits remain great challenges for plants with complex highly repetitive genomes such as those within the grass tribe, Triticeae. Mapping limitations in the Triticeae are primarily due to low frequencies of polymorphic gene markers and poor genetic recombination in certain genetic regions. Although the abundance of repetitive sequence may pose common problems in genome analysis and sequence assembly of large and complex genomes, they provide repeat junction markers with random and unbiased distribution throughout chromosomes. Hence, development of a high-throughput mapping technology that combine both gene-based and repeat junction-based markers is needed to generate maps that have better coverage of the entire genome.

Results

In this study, the available genomics resource of the diploid Aegilop tauschii, the D genome donor of bread wheat, were used to develop genome specific markers that can be applied for mapping in modern hexaploid wheat. A NimbleGen array containing both gene-based and repeat junction probe sequences derived from Ae. tauschii was developed and used to map the Chinese Spring nullisomic-tetrasomic lines and deletion bin lines of the D genome chromosomes. Based on these mapping data, we have now anchored 5,171 repeat junction probes and 10,892 gene probes, corresponding to 5,070 gene markers, to the delineated deletion bins of the D genome. The order of the gene-based markers within the deletion bins of the Chinese Spring can be inferred based on their positions on the Ae. tauschii genetic map. Analysis of the probe sequences against the Chinese Spring chromosome sequence assembly database facilitated mapping of the NimbleGen probes to the sequence contigs and allowed assignment or ordering of these sequence contigs within the deletion bins. The accumulated length of anchored sequence contigs is about 155 Mb, representing ~ 3.2 % of the D genome. A specific database was developed to allow user to search or BLAST against the probe sequence information and to directly download PCR primers for mapping specific genetic loci.

Conclusions

In bread wheat, aneuploid stocks have been extensively used to assign markers linked with genes/traits to chromosomes, chromosome arms, and their specific bins. Through this study, we added thousands of markers to the existing wheat chromosome bin map, representing a significant step forward in providing a resource to navigate the wheat genome. The database website (http://probes.pw.usda.gov/ATRJM/) provides easy access and efficient utilization of the data. The resources developed herein can aid map-based cloning of traits of interest and the sequencing of the D genome of hexaploid wheat.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1852-2) contains supplementary material, which is available to authorized users.Keyword: Wheat deletion bins, Molecular markers, Repeat junction markers, NimbleGen array, Recombination, Genetic map  相似文献   

14.
As part of the University of Minnesota's initiative to map the turkey genome, we are currently evaluating chicken microsatellite loci for use in mapping the turkey genome. To date, 141 primer pairs have been tested for amplification at six different combinations of temperature and MgCl2 concentration. Microsatellite primer pairs from the Chicken Comprehensive Mapping Kit #2, and additional unpublished chromosome 1 and 2 primers were screened. Analyzable PCR products were produced from 78 of the 141 (55%) primer combinations. In the majority of cases (68%), PCR fragments obtained from the turkey were similar in size to respective chicken loci. The presence of dinucleotide repeats (CA/TG repeats) was determined by Southern hybridization with a (TG)15, oligonucleotide probe. Five of 12 (41.63%) turkey fragments hybridized under low stringency conditions. The length of the dinucleotide repeats in the turkey, relative to the chicken sequences, were found to correspond directly with hybridization intensity. Amplification of homologous loci was confirmed by direct sequencing and subsequent alignment of the turkey and chicken sequences. The results of this study indicate that the use of chicken-specific microsatellite primers will rapidly and significantly enhance construction of a genetic map for the turkey.  相似文献   

15.
Euphrasia species in Britain attract a large amount of conservation attention due to the recognition of numerous endemic taxa in what is essentially a species‐poor flora. To develop a set of research tools to investigate the evolutionary processes underlying this diversification, a membrane enrichment procedure has been used to isolate five polymorphic microsatellite loci from Euphrasia nemorosa (Pers.) Wallr. These loci amplify polymorphic products in several other British Euphrasia species.  相似文献   

16.
17.
The rye genomic library, which consists of DNA fragments in the range of 0.5–1.1 kb, was screened for the presence of tri-and tetranucleotide and compound microsatellites. Of the 1,600,000 clones analysed, 102 clones were positive and 41 were suitable for SSR primer pair design. Twenty-six primer pairs amplified specific products, and six of them were capable of detecting polymorphism among 30 rye accessions of different genetic backgrounds. Using a set of Chinese Spring-Imperial wheat-rye addition lines, it was possible to locate 3 newly identified microsatellites on chromosomes 3R, 4R and 7R.  相似文献   

18.
G L Sun  B Salomon  R Bothmer 《Génome》1997,40(6):806-814
An analysis of Amplification fragment polymorphism of DNA from 27 accessions of 19 tetraploid Elymus species was carried out using 18 wheat microsatellite (WMS) primer pairs and 10 decamer primers. Ten WMS primer pairs produced multiple polymorphism on all accessions tested. Two independent phenograms, one based on WMS-PCR and one on RAPDs, separated the 19 tetraploid species into two main groups, viz., the SH genome species group and the SY genome species group. The results coincide with the genomic classification of these species and hence support previous studies showing that Elymus is not a monophyletic genus. The assays indicated that accessions within a species cluster together, which concurs with the morphological classification. Interspecific and intraspecific polymorphisms were detected by the WMS-PCR and RAPD analyses. Variation was observed among accessions of Elymus caninus. The WMS-PCR detected a much higher level of polymorphism than the RAPD analysis. WMSs seem to be more efficient markers than RAPD markers for studying the population diversity of Elymus species. The potential of cross-species amplification of microsatellite markers as an additional source for genetic analysis and applications in Elymus is discussed in the context of these results.  相似文献   

19.
Twelve single-locus trinucleotide microsatellite markers were developed to characterize the Asian river catfish, Mystus nemurus, an important food fish in Southeast Asia. They were obtained by using a rapid method, namely, the 5′ anchored PCR enrichment protocol. The specific primers were designed to flank the repeat sequences and these were subsequently used to characterize 90 unrelated fish from Malaysia. The number of alleles per locus ranged from 2 (MnVj2-281) to 12 (MnBp8-4-43b) while the levels of heterozygosity ranged from 0.0444 (MnVj2-1-19) to 0.7458 (MnVj2-291). The text was submitted by the authors in English.  相似文献   

20.
Seven polymorphic microsatellite loci have been characterized for investigating population structure in the patchily distributed herb Begonia sutherlandii. Two loci (BSU3 and BSU4) exhibited population specific null alleles; primer redesign and allele sequencing for one of these loci showed two transition mutations in the original primer site. Two loci exhibited imperfect repeat polymorphisms due to single base pair indels in the flanking region (locus BSU6) and in the microsatellite region itself (BSU7). Transversion mutations were also found in the microsatellite region of locus BSU7. The remaining three loci amplified in all individuals tested and appeared to conform to a simple stepwise mutation pattern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号