共查询到20条相似文献,搜索用时 15 毫秒
1.
Kinetics of soluble glucan production by<Emphasis Type="Italic">Claviceps viridis</Emphasis> 总被引:1,自引:0,他引:1
Among 18 tested strains of Claviceps spp., 7 produced significant amounts of exocellular polysaccharide (EPS). The maximum production of EPS was found in fermentation broth of Claviceps viridis. The kinetics of growth, substrate consumption, and EPS production in the batch, aerobic, submerged culture of this fungus were investigated in detail. The experimental data were processed by a simple mathematical model describing mass balance of growth, substrate consumption, formation of intermediates, and production of EPS. The parameters of the model were estimated from data obtained in cultivation performed in flasks and two laboratory fermentors of different size. Physiological similarity was obtained during process scale-up in volumetric ratio 1:100. The sugar consumption efficiency (52%) and observed EPS productivity (1.9 kg/m3 per d) were comparable with literature data. 相似文献
2.
Non-genetically modified mutants with increased capacities of extracellular lipase production were obtained from Yarrowia lipolytica strain CBS6303 by chemical mutagenesis. Of the 400 mutants isolated, LgX64.81 had the highest potential for the development of an industrial lipase production process. This mutant exhibits lipase production uncoupled from catabolite repression by glucose, and a 10-fold increased productivity upon addition of oleic acid. Using a LIP2- LacZ reporter gene, we demonstrate that the mutant phenotype originates from a trans-acting mutation. The glucose uptake capacity of LgX64.81 is reduced 2.5-fold compared to the wild-type-strain, and it exhibits high lipase production on glucose medium. A trans-acting mutation in a gene involved in glucose transport could thus explain this mutant phenotype. 相似文献
3.
K. Parvathi R. Naresh Kumar R. Nagendran 《World journal of microbiology & biotechnology》2007,23(5):671-676
Summary Biosorption of manganese from its aqueous solution using yeast biomass Saccharomyces cerevisiae and fungal biomass Aspergillus niger was carried out. Manganese biosorption equilibration time for A. niger and S. cerevisiae were found to be 60 and 20 min, with uptakes of 19.34 and 18.95 mg/g, respectively. Biosorption increased with rise in pH,
biomass, and manganese concentration. The biosorption equilibrium data fitted with the Freundlich isotherm model revealed
that A. niger was a better biosorbent of manganese than S. cerevisiae. 相似文献
4.
Svetlana?E?Moskalenko Svetlana?V?Chabelskaya Sergei?G?Inge-Vechtomov Michel?Philippe Galina?A?Zhouravleva
Background
Termination of protein synthesis in eukaryotes involves at least two polypeptide release factors (eRFs) – eRF1 and eRF3. The highly conserved translation termination factor eRF1 in Saccharomyces cerevisiae is encoded by the essential gene SUP45. 相似文献5.
Krasowska A Dziadkowiec D Łukaszewicz M Wojtowicz K Sigler K 《Folia microbiologica》2003,48(6):754-760
S. cerevisiae strain delta sodl lacking Cu,Zn-superoxide dismutase and delta sodl delta sod2 mutant lacking both Cu,Zn-SOD and Mn-superoxide dismutase displayed strongly reduced aerobic growth on glucose, glycerol and lactate; delta sod2 deletion had no effect on aerobic growth on glucose and largely precluded growth on glycerol and lactate. The oxygen-induced growth defects and their alleviation by antioxidants depended on growth conditions, in particular on oxygen supply to cells. Under strong aeration, vitamins A and E had a low effect, 100 mumol/L quercetin alleviated the growth defects of all three mutants while beta-carotene had no growth-restoring effect. The superoxide producer paraquat inhibited the aerobic growth of all three mutants in a concentration-dependent manner. Low concentrations of antioxidants had no effect on paraquat toxicity while higher concentrations supported the toxic effect of the agent. 相似文献
6.
Assembly of DNA into chromatin allows for the formation of a barrier that protects naked DNA from protein and chemical agents
geared to degrade or metabolize DNA. Chromatin assembly occurs whenever a length of DNA becomes exposed to the cellular elements,
whether during DNA synthesis or repair. This report describes tools to study chromatin assembly in the model systemSaccharomyces cerevisiae. Modifications to anin vitro chromatin assembly assay are described that allowed a brute force screen of temperature sensitive (ts) yeast strains in order to identify chromatin assembly defective extracts. This screen yielded mutations in genes encoding
two ubiquitin protein ligases (E3s):RSP5, and a subunit of the Anaphase Promoting Complex (APC),APC5. Additional modifications are described that allow for a rapid analysis and anin vivo characterization of yeast chromatin assembly mutants, as well as any other mutant of interest. Our analysis suggests that
thein vitro andin vivo chromatin assembly assays are responsive to different cellular signals, including cell cycle cues that involve different
molecular networks.
Published: July 3, 2003 相似文献
7.
Background
Since about three decades, Saccharomyces cerevisiae can be engineered to efficiently produce proteins and metabolites. Even recognizing that in baker's yeast one determining step for the glucose consumption rate is the sugar uptake, this fact has never been conceived to improve the metabolite(s) productivity. 相似文献8.
At least six DNA helicases have been identified during fractionation of extracts from the yeastSaccharomyces cerevisiae. Three of those, DNA helicases B, C, and D, have been further purified and characterized. DNA helicases B and C co-purified with DNA polymerse δ through several chromatographic steps, but were separated from the polymerase by hydrophobic chromatography. DNA helicase D co-purified with Replication Factor C over seven chromatographic steps, and was only separated from it by glycerol gradient centrifugation in the presence of 0.2 M NaCl. All three helicases are DNA dependent ATPases with Km values for ATP of 190 μM, 325 μM, and 60 μM for DNA helicases B, C, and D, respectively. Their DNA helicase activities are comparable. They are 5′–3′ helicases and have pH optima of 6.5–7 and Mg2+ optima of 1–2 mM. However, they differ in the nucleotide requirement for helicase action. Whereas all three helicases preferred ATP, dATP, UTP, CTP, and dCTP as cofactors, DNA helicase C also used GTP, but not dTTP. On the other hand, DNA helicase D used dTTP, but not GTP, and DNA helicase B used neither nucleotide as cofactor. These studies allowed us to conclude that DNA helicases B, C, and D are not only distinct enzymes, but also different from two previously identified yeast DNA helicases, the RAD3 protein and ATPase III. 相似文献
9.
In this paper we present a new method for detecting block duplications in a genome. It is more stringent than previous ones in that it requires a more rigorous definition of paralogous genes and that it requires the paralogous proteins on the two blocks to be contiguous. In addition, it provides three criterion choices: (1) the same composition (i.e., having the same paralogues in the two windows), (2) the same composition and gene order, and (3) the same composition, gene order, and gene orientation. The method is completely automated, requiring no visual inspection as in previous methods. We applied it to analyze the complete genomes of S. cerevisiae and C. elegans. In yeast we detected fewer duplicated blocks than previously reported. In C. elegans, however, we detected more block duplications than previously reported, indicating that although our method has a more stringent definition of block duplication than previous ones, it may be more sensitive in detection because it considers every possible window rather than only fixed nonoverlapping windows. Our results show that block duplication is a common phenomenon in both organisms. The patterns of block duplication in the two species are, however, markedly different. The yeast shows much more extensive block duplication than the nematode, with some chromosomes having more than 40% of the duplications derived from block duplications. Moreover, in the yeast the majority of block duplications occurred between chromosomes, while in the nematode most block duplications occurred within chromosomes. 相似文献
10.
Nehme N Mathieu F Taillandier P 《Journal of industrial microbiology & biotechnology》2008,35(7):685-693
This study examines the interactions that occur between Saccharomyces cerevisiae and Oenococcus oeni strains during the process of winemaking. Various yeast/bacteria pairs were studied by applying a sequential fermentation strategy which simulated the natural winemaking process. First, four yeast strains were tested in the presence of one bacterial strain leading to the inhibition of the bacterial component. The extent of inhibition varied widely from one pair to another and closely depended on the specific yeast strain chosen. Inhibition was correlated to weak bacterial growth rather than a reduction in the bacterial malolactic activity. Three of the four yeast strains were then grown with another bacteria strain. Contrary to the first results, this led to the bacterial stimulation, thus highlighting the importance of the bacteria strain. The biochemical profile of the four yeast fermented media exhibited slight variations in ethanol, SO(2) and fatty acids produced as well as assimilable consumed nitrogen. These parameters were not the only factors responsible for the malolactic fermentation inhibition observed with the first bacteria strain. The stimulation of the second has not been reported before in such conditions and remains unexplained. 相似文献
11.
12.
A peptide antibiotic, gramicidin A, was covalently bound to cystamine self-assembled monolayers on gold surfaces. Each step
of the surface functionalization was characterized by polarization modulation infrared reflection absorption spectroscopy
and X-ray photoelectron spectroscopy. The antimicrobial activity of the anchored gramicidin was tested against three Gram-positive
bacteria (Listeria ivanovii, Enterococcus faecalis, and Staphylococcus aureus), the Gram-negative bacterium Escherichia coli and the yeast Candida albicans. The results revealed that the adsorbed gramicidin reduced, from 60% for E. coli to 90% for C. albicans, the number of culturable microorganisms attached to the surface. The activity was proven to be persistent overtime, up to
6 months after the first use. The bacteria attached to the functionalized surfaces were permeabilized as shown by confocal
microscopy. Taken together, these results indicate a bacteriostatic mode of action of the immobilized peptide. Finally, using
green fluorescent protein-expressing bacteria, it was shown that the development of a bacterial biofilm was delayed on peptide-grafted
surfaces for at least 24 h. 相似文献
13.
Cross-resistance to strobilurin fungicides in mitochondrial and nuclear mutants of<Emphasis Type="Italic">Saccharomyces cerevisiae</Emphasis> 总被引:1,自引:0,他引:1
In yeast the resistance to kresoxim-methyl and azoxystrobin, like the resistance to strobilurin A (mucidin) is under the control of both mitochondrial cob gene and the PDR network of nuclear genes involved in multidrug resistance. The mucidin-resistant mucl (G137R) and muc2 (L275S) mutants of Saccharomyces cerevisiae containing point mutations in mtDNA were found to be cross-resistant to kresoxim-methyl and azoxystrobin. Cross-resistance to all three strobilurin fungicides was also observed in yeast transformants containing gain-of-function mutations in the nuclear PDR3 gene. On the other hand, nuclear mutants containing disrupted chromosomal copies of the PDR1 and PDR3 genes or the PDR5 gene alone were hypersensitive to kresoxim-methyl, azoxystrobin and strobilurin A. The frequencies of spontaneous mutants selected for resistance either to kresoxim-methyl, azoxystrobin or strobilurin A were similar and resulted from mutations both in mitochondrial and nuclear genes. The results indicate that resistance to strobilurin fungicides, differing in chemical structure and specific activity, can be caused by the same molecular mechanism involving changes in the structure of apocytochrome b and/or increased efflux of strobilurins from fungal cells. 相似文献
14.
Ethanol production by Clostridium thermocellum ATCC 35609 and Saccharomyces cerevisiae ATCC 26603 was improved in an electrochemical bioreactor system. It was increased by 61% with Cl. thermocellum and 12% with S. cerevisiae in the presence of -1.5 V of electric potential. These increases were attributed to high production rates due to regeneration and availability of increased reduced equivalents in the presence of electric potential. The electric current caused considerable shift in the metabolite concentrations on a molar basis in Cl. thermocellum fermentation but less in S. cerevisiae fermentation. Increasing electric potential in Cl. thermocellum fermentation resulted in less acetate and more lactate production. Acetate production was also reduced with increased electric potential in S. cerevisiae fermentation. The high electric potential of -5 V adversely affected the Cl. thermocellum fermentation, but not the S. cerevisiae fermentation even at a high electric potential of -10 V. 相似文献
15.
16.
17.
18.
Jin Zhou Ju Chu Yong-Hong Wang Si-Liang Zhang Ying-Ping Zhuang Zhong-Yi Yuan 《World journal of microbiology & biotechnology》2008,24(6):789-796
An intracellular S-adenosylmethionine synthetase (SAM-s) was purified from the fermentation broth of Pichia pastoris GS115 by a sequence chromatography column. It was purified to apparent homogeneity by (NH4)2SO4 fractionation (30–60%), anion exchange, hydrophobic interaction, anion exchange and gel filtration chromatography. HPLC showed
the purity of purified SAM-s was 91.2%. The enzyme was purified up to 49.5-fold with a final yield of 20.3%. The molecular
weight of the homogeneous enzyme was 43.6 KDa, as determined by electro-spray ionization mass spectrometry (ESI-MS). Its isoelectric
point was approximately 4.7, indicating an acidic character. The optimum pH and temperature for the enzyme reaction were 8.5
and 35 °C, respectively. The enzyme was stable at pH 7.0–9.0 and was easy to inactivate in acid solution (pH ≤ 5.0). The temperature
stability was up to 45 °C. Metal ions, such as, Mn2+ and K+ at the concentration of 5 mM had a slight activation effect on the enzyme activity and the Mg2+ activated the enzyme significantly. The enzyme activity was strongly inhibited by heavy metal ions (Cu2+ and Ag2+) and EDTA. The purified enzyme from the transformed Pichia pastoris synthesized S-adenosylmethionine (SAM) from ATP and l-methionine in vitro with a K
m of 120 and 330 μM and V
max of 8.1 and 23.2 μmol/mg/min for l-methionine and ATP, respectively. 相似文献
19.