首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The capacity of staphylococcal enterotoxins to stimulate all T cells bearing certain T cell receptors has recently generated a great deal of interest. These toxins are believed to bind directly both to the TCR:CD4 complex via its V beta domains and to class II MHC molecules on accessory cells prior to T cell activation. Previous studies from this laboratory have demonstrated that staphylococcal enterotoxin B (SEB) is capable of inducing multiple T suppressor cell populations which can inhibit in vitro antibody responses. Additional studies have demonstrated that the suppressive activity of these cells is mediated, at least in part, by an I-J-restricted suppressor factor. Efforts to characterize the inhibitory activity of this factor have demonstrated that the suppressive element is capable of activating both early and late acting suppressor cell populations in vitro. Analysis by both positive and negative selection shows that cells bearing the Lyt1-2+ surface marker phenotype are active early, whereas Lyt1+2+ cells are active both early and late in the antibody response. Additional experiments using various strains of mice as sources of suppressor factor and of naive splenocyte populations have demonstrated that activation of suppressor-effector cells by this suppressor factor is restricted at the I-J, but not Igh, gene locus. These studies suggest that this SEB-induced suppressor factor alone provides the signals necessary for the induction and activation of suppressor-effector cell activity.  相似文献   

2.
The spleens of mice bearing large M-1 fibrosarcomas have been shown to contain several populations of cells which nonspecifically suppress antibody synthesis by cocultured normal spleen cells. It has now been shown that the spleens of tumor-bearing mice also contain inducer cells which secrete soluble factors capable of activating suppressor T cells from unprimed precursor cells. The activated suppressor cells are Thy 1+, Lyt 1+2+ and secrete a soluble suppressive factor. They inhibit the in vitro generation of antibody-forming cells by cocultured normal spleen cells stimulated by T-cell-dependent antigens. They do not, however, suppress the antibody response to T-cell-independent antigens and do not inhibit antibody synthesis by cocultured nude mouse spleen cells cultured with T-cell-dependent antigens and exogenous helper factors. In addition, suppression is blocked if conditioned medium containing T-cell growth factors is added to the suppressor cell assays. These data suggest that cells in the spleens of tumor-bearing mice secrete inducing factors which activate suppressor cells. These activated suppressor cells in turn secrete soluble suppressor factors which inhibit antibody synthesis, possibly by interfering with the synthesis or release of T-cell growth factors.  相似文献   

3.
Induction of suppressor cells in vitro by Candida albicans   总被引:5,自引:0,他引:5  
Normal splenocytes cultured with Formalin-killed Candida albicans were shown to acquire significant suppressor cell activity in a period of 3 days. These cells were found to suppress both the phytohemagglutinin-induced mitogen response as well as the anti-sheep erythrocyte antibody response. Experiments were carried out to determine the nature of the suppressor cell population. Results showed that these cells were not susceptible to treatment with anti-Thy 1 antibody and complement. Panning experiments showed that the suppressor cells were not plastic-adherent or Mac-1 antigen-positive. The suppressor cells were, however, adherent to anti-mouse immunoglobulin (F(ab')2-fragment)-coated dishes. Additional experiments showed that the suppressor cell activity was susceptible to treatment with monoclonal anti-Lyb 2.1 antibody and complement. These results suggest that the suppressor cell induced in vitro by Candida is a member of the B-lymphocyte lineage.  相似文献   

4.
Murine antibody responses to heterologous insulins are controlled by MHC-linked immune response genes. Although nonresponder mice fail to make antibody when injected with nonimmunogenic variants of insulin, we have recently shown that nonimmunogenic variants stimulate radioresistant, Lyt- 1+2- helper T cells that support secondary antibody responses. However, the helper activity can not be detected unless dominant, radiosensitive Lyt-1-2+, I-J+ suppressor T cells are removed. In this paper we report that extracts of primed Lyt-2+ suppressor T cells contain insulin-specific suppressor factors (TsF) that are capable of replacing the activity of suppressor T cells in vitro. The activity of these factors is restricted by MHC-linked genes that map to the I-J region, and immunoadsorption studies indicated that they bind antigen and bear I-J-encoded determinants. Insulin-specific TsF consists of at least two chains, one-bearing I-J and the other the antigen-binding site. Furthermore, mixing of isolated chains from different strains of mice indicates that the antigenic specificity is determined by the antigen-binding chain and the MHC restriction by the H-2 haplotype of the source of the non-antigen-binding, I-J+ chain. Moreover, mixtures containing antigen-binding chain from allogeneic cell donors and I-J+ chain from responder cell donors have activity in cultures containing responder lymphocytes. This suggests that preferential activation of suppressor T cells, rather than differential sensitivity to suppression, results in the nonresponder phenotype to insulin.  相似文献   

5.
Ly-2+ effectors of T cell-mediated suppression require inducing signals from antigen and a helper cell bearing the Ly-1+:Qa1+ surface phenotype. In this report, we have further examined the helper cell requirements for suppressor cell induction of antibody production in mice. By using the T cell subset education procedure in vitro, we have activated T cells to sheep red blood cells (SRBC) antigens and then purified Ly-2 cells before testing for suppressor activity in assay cultures of defined T and B cell subsets. We have confirmed our previous observations that Ly-1+:Qa1+ cells are required for activation of T suppressors, but have found that under the appropriate conditions, there is not a strict requirement for the Ly-123 subset of T cells. Furthermore, if Ly-23 cells are stimulated in the presence of Ly-1+:Qa1- T cells, effective suppressors can be obtained only if a source of Ly-1:Qa1+ inducers is added to the assay culture. If Ly-23 cells are activated by antigen in the absence of Ly-1 cells, subsequent exposure to the Ly-1+:Qa1+ subset under the conditions tested here is not sufficient to activate suppressors. These results show that effectors of suppression, like B cells and cytotoxic T lymphocytes, may respond to two helper cells.  相似文献   

6.
Previous experiments have demonstrated that feedback suppression of murine antibody responses occurs in vitro after exposure of unprimed T-cell subsets to suppression-inducing signals from primed cells, resulting in suppression of primary and secondary IgM as well as IgG anti-SRBC responses. However, following priming with antigen when cells appear which are capable of inducing feedback suppression, the ability of unfractionated splenic T-cell populations to mediate detectable feedback suppression in vitro rapidly disappears, suggesting that priming alters the expression of feedback suppression at the same time as providing for its induction. In the present study, we have succeeded in isolating active feedback suppressor T-cell precursors (preTs) in the Ly 1+2+ and L3T4- T-cell populations from SRBC-primed as well as from unprimed mice, demonstrating that preTs are not lost after priming. The preTs isolated from primed mice resemble those isolated from unprimed mice in Ly and L3T4 phenotype, cell dose requirements, kinetics, level of suppression, and requirement for in vitro activation by primed cells. These results imply that antigen priming neither significantly depresses nor enhances the ability of Ly 1+2+ preTs to participate in feedback suppression and that activated suppressor effector cells are not detectable in the Ly 1+2+ splenic T-cell subset. Priming does, however, induce an enhancing activity in Ly 2-, L3T4+ T cells which appears to compete with feedback suppression and thus may account for the absence of detectable feedback suppression when unfractionated T cells from primed mice are the only source of preTs.  相似文献   

7.
Our previous results have shown that staphylococcal enterotoxin B (SEB) induces a population(s) of T cells which has the capacity to suppress the antibody response of splenocytes in vitro. In the present report we have attempted to investigate the effect of SEB-primed cells on the secretion of antibody by the plasmacytoma cell line MOPC-315. We have found that the secretion of antibody by MOPC-315 is significantly reduced in as little as 24 hr of coculture with the suppressor cells. The suppressive activity is not antigen- or isotype-specific, since the antibody secretion by both MPC-11 and HOPC1 plasmacytomas are also inhibited by the SEB-primed cells. In addition, we have found that the SEB-primed cell population which inhibits the antibody production by the MOPC-315 cell line expresses the Lyt-1+,2- and Thy-1+ cell surface markers. The apparent relationship between the SEB-primed suppressor cell population and the population which inhibits a conventional antibody response is discussed.  相似文献   

8.
In the setting of autoimmunity, one of the goals of successful therapeutic immune modulation is the induction of peripheral tolerance, a large part of which is mediated by regulatory/suppressor T cells. In this report, we demonstrate a novel immunomodulatory mechanism by an FDA-approved, exogenous peptide-based therapy that incites an HLA class I-restricted, cytotoxic suppressor CD8+ T cell response. We have shown previously that treatment of multiple sclerosis (MS) with glatiramer acetate (GA; Copaxone) induces differential up-regulation of GA-reactive CD8+ T cell responses. We now show that these GA-induced CD8+ T cells are regulatory/suppressor in nature. Untreated patients show overall deficit in CD8+ T cell-mediated suppression, compared with healthy subjects. GA therapy significantly enhances this suppressive ability, which is mediated by cell contact-dependent mechanisms. CD8+ T cells from GA-treated patients and healthy subjects, but not those from untreated patients with MS, exhibit potent, HLA class I-restricted, GA-specific cytotoxicity. We further show that these GA-induced cytotoxic CD8+ T cells can directly kill CD4+ T cells in a GA-specific manner. Killing is enhanced by preactivation of target CD4+ T cells and may depend on presentation of GA through HLA-E. Thus, we demonstrate that GA therapy induces a suppressor/cytotoxic CD8+ T cell response, which is capable of modulating in vivo immune responses during ongoing therapy. These studies not only explain several prior observations relating to the mechanism of this drug but also provide important insights into the natural immune interplay underlying this human immune-mediated disease.  相似文献   

9.
T cell antigen-specific suppressor factors (TsF) consist of two distinct polypeptide chains: one that binds antigen (ABM) and one that bears I-J region markers (I-J+ chain). We studied the functional role of these two molecules in delivering the biologic message of suppression to its appropriate target cell. Two different biologically active TsF were used in these studies: TsiF, a T suppressor-inducer factor consisting of an ABM secreted by Ly-1 T cells (Ti-ABM) and an I-J+ subfactor secreted by Ly-1 T cells (I-Ji), which initiates the suppressor circuit by inducing an Ly-1,2 T cell; and TseF, a T suppressor-effector factor consisting of an ABM secreted by Ly-2 T cells (Te-ABM) and an I-J+ subfactor secreted by Ly-1 T cells (I-Je), which delivers the biologic message of suppression to the T helper (TH) cell. In both TsF, the ABM and I-J+ chain are noncovalently associated and can be easily separated. Both molecules must be present, however, for biologic activity of the TsF to be manifest. We studied the role of each chain in delivering these biologically active messages by constructing "hybrid" factors made from mixing the ABM from TsiF with I-J+ chains from either TsiF or TseF and determined which of these chains could reconstitute functional TsiF activity. Likewise, we mixed the AMB from TseF with I-J+ chains of TsiF or TseF to determine which I-J+ chain could reconstitute TseF activity. We found that I-J+ chain from TsiF (I-Ji) can reconstitute ABM from TsiF to form a functional TsiF capable of inducing suppression but cannot reconstitute ABM from TseF to form a functional TsiF capable of suppressing the activity of TH cells. Likewise, the addition of I-J+ chain from TseF to ABM from TseF can reconstitute its ability to suppress TH responses, but I-J+ chain from TsiF plus ABM from TseF has no effect on these TH cell responses. We did find, however, that this hybrid TsF composed of the ABM from TseF and the I-J+ chain from TsiF is capable of suppressing the Ly-1,2 Ttrans cell, the cell normally induced by the ABM + I-J+ suppressor inducer complex from T suppressor-inducer cells (TsiF).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Two major proteoglycan constituents (designated F1 and F2) of the cell wall of Candida albicans were separated by ion-exchange chromatography from a crude carbohydrate-rich extract (GMP), and investigated for their chemical and molecular composition, antigenicity and immunomodulatory properties in cultures of human peripheral blood mononuclear cells (PBMC). Both fractions consisted predominantly of Periodic acid-Schiff (PAS) and concanavalin A (Con A)-reactive material consisting of greater than 90% mannose, 3-5% protein and small amounts of phosphorus; each was recognized by an anti-Candida rabbit serum as well as by a monoclonal antibody (mAb AF1) directed against an oligosaccharide epitope present on the fungal cell surface. When F1 and F2 were subjected to SDS-PAGE, transblotted and stained with enzyme-conjugated mAb AF1 or Con A, most of the antibody or lectin bound to high molecular mass (greater than 200 kDa) polydisperse material, some of which was present in F2 (as in the starting GMP extract) but absent in F1. This difference was also observed in PAS-stained gels of the two fractions. The F2, but not the F1, constituent was as active as the unfractionated GMP extract in inducing lymphoproliferation, production of the cytokines interleukin-2 and interferon-gamma, and generation of cytotoxicity against a natural-killer-sensitive target cell line (K562). These immunomodulatory properties were, like those possessed by GMP, protease-sensitive and heat-stable. Treatment of PMBC cultures with a modulatory anti-T-cell receptor antibody abolished the lymphoproliferation induced by GMP and F2 but not that induced by phytohaemagglutinin, showing that the mannoprotein materials of C. albicans acted through interaction with the antigen receptor complex.  相似文献   

11.
We describe herein functional attributes and generation of immunologic suppressor activity elaborated in response to oncogenic virus infection. Malignant rabbit fibroma virus-induced immunologic suppressor factor (VISF) is a T cell product produced in peak quantities by spleen cells taken from infected rabbits 7 days after infection in vivo. Its production does not appear to require macrophage participation. VISF is highly labile, 3.5 to 12 kDa, and capable of suppressing both B and T lymphocytic responses. Indomethacin and the cyclic nucleotides cAMP and cGMP inhibit its generation. VISF activity is neither antigen nor species specific. It suppresses murine and leporine immune responses to antigens unrelated to the inducing virus. Comparable suppressor activity may be induced by infecting an apparently non-functional rabbit T lymphoma line, RL-5, with malignant rabbit fibroma virus. VISF is principally a suppressor-inducer factor: in vitro, lymphocytes exposed to VISF do not show decreased immunologic responsiveness until 4 days of culture. VISF induces T suppressor cell activity when normal spleen cells are exposed briefly to VISF. Thus, immunosuppressive consequences of malignant fibroma virus infection are partially mediated by a small, non-specific T cell-derived suppressor lymphokine with unique functional characteristics. Non-specific immunologic dysfunction that often attends virus infections may reflect the activity of such factors in humans as well.  相似文献   

12.
The HNK-1 (Leu 7) differentiation antigen defines a subpopulation of human granular lymphocytes with natural killer (NK) and K cell function. In this study, we investigated whether HNK-1+ cells, identified with the monoclonal antibody and purified with a fluorescence-activated cell sorter (FACS), could function as suppressor cells. The results demonstrated that purified HNK-1+ cells efficiently suppressed both PWM-induced IgG production by B cells and T cell proliferation in mixed lymphocyte reactions (MLR). Manifestation of this suppressor cell activity required immune complex activation and was partially sensitive to 2000 rad irradiation. This suppressor cell activity was predominantly mediated by a subset of HNK-1+ cells that have previously been shown to have maximum NK function and lack expression of the E rosette (ER) receptor and T cell antigens (e.g., T3 and T8). Thus, HNK-1+ER- cells suppressed a MLR by an average 52%; HNK-1+ER+ were one-half as efficient, causing an average 23% suppression. For comparison, we also examined the characteristics of Leu 2a+ suppressor T lymphocytes. In contrast to HNK-1+ cells, unactivated Leu 2a+ cells suppressed both B and T cell responses. This suppressor activity was not augmented by immune complex activation and was absolutely radio-sensitive in PWM assays. HNK-1+ cells, especially the HNK+ER- subset, can therefore mediate suppressor cell function in addition to their spontaneous cytotoxic function. Furthermore, some of their suppressor cell properties are distinct from those attributed to other types of suppressor lymphocytes.  相似文献   

13.
Phosphorylcholine-(PC) specific suppressor T lymphocytes, induced by immunization with PC-coupled syngeneic spleen cells and capable of suppressing antibody production in an in vitro system, were successfully obtained by removal of a PC-nonspecific, i.e., diazo-phenylstructure-directed, suppressor cell population using an immunoadsorbent column coupling an unrelated hapten with a diazo phenyl structure such as azobenzene arsonate (ABA). Column-purified PC-specific suppressor T cell activity was completely abrogated by treatment of the cells with anti-TEPC-15 (T-15) anti-idiotypic antibody and complement, or by the continuous presence of that antibody in the culture, whereas nonpurified suppressor cell activity was resistant to such treatment. Thus, the column-purified PC-specific suppressor T lymphocytes in BALB/c mice have a very homogeneous T-15 idiotypic determinant(s) on their functional receptors for antigen similar to those present on PC-specific antibody and/or B lymphocytes. Because of these results, we envision the growing importance of analysis of the fine specificity of the idiotype repertoire of T lymphocytes after purification of a hapten-specific population.  相似文献   

14.
Lymphocytes taken from the cord blood of newborns have active suppressor activity. Using in vitro PWM-stimulated cocultures, unfractionated T cells from newborns potently suppressed the expected immunoglobulin G (IgG) synthesis of their mothers' peripheral blood lymphocytes (PBL). Using positive and negative selection techniques, we characterized the active suppressor cell as expressing the OKT4+T8- phenotype. This cord blood lymphocyte subset suppressed maternal IgG synthesis after depletion of maternal suppressor cells, implicating the ability of newborn T cells to suppress directly rather than by inducing adult suppressor activity. Sublethal amounts (1500 rad) of gamma-irradiation fully abrogated the suppressor activity of cord blood T lymphocytes. Radioresistant cord T cells provided T cell help. Irradiation of cord OKT4+ and OKT8+ populations and their subsequent culture with maternal B cells determined that helper activity was a radioresistant subpopulation of the OKT4+ subset. These results indicate significant differences in the functional properties of T cell subsets from adults and newborns. Population studies determined that cord blood lymphocytes had a greater proportion of OKT4+ cells and lower proportion of OKT8+ cells than PBL from unrelated adults. The mothers tested had similar proportions of OKT4+ cells as their babies, and these levels are significantly higher than those of unrelated adults.  相似文献   

15.
Two new monoclonal antibodies (termed 2D2 and D12) have been used to identify and to analyze phenotypically distinct subpopulations of human T cells. The 2D2 antibody recognized an antigenic determinant closely related, if not identical, to that reactive with the anti-Leu-2 monoclonal antibody. The D12 antibody reacted with a variety of cell types, which included a subpopulation of Leu-2+ (2D2+) T cells. These antibodies were used to isolate four phenotypically distinct T cell populations by sequential cell sorter techniques. Functional analyses demonstrated that the 2D2+D12+ subset was unique in its ability to suppress the antigen-induced proliferation of T cells. These cells also suppressed the proliferative responses of other T cell subsets stimulated with mitogens. Pretreatment of 2D2+D12+ T cells with mitomycin C before culture abrogated the suppressor cell activity of these cells. We propose that the cells within the Leu-2+ cytotoxic/suppressor T cell subpopulation that suppress T cell proliferation are phenotypically distinct and express the 2D2+D12+ membrane antigenic phenotype.  相似文献   

16.
The nature and function of suppressor factor(s) elaborated by suppressor T cells in response to certain chemically induced tumors have been further defined. Thus, suppressor factor(s) specific for the S1509a methylchol-anthrene-induced fibrosarcoma have been shown to bear determinants encoded by the I-J subregion of the murine MHC since suppressive activity is removed by passage of the factor through an immunoadsorbent composed of anti-I-Jk coupled to Sepharose. No loss of activity was observed after passage of factor through control columns composed of normal mouse globulin. Furthermore, activity could be recovered from the relevant immunoadsorbent by elution with high salt. The administration of crude suppressor factor(s) to normal animals for 4 days resulted in the development of a population of suppressor cells that act in a manner analogous to the suppressor cell population used for production of factor. These factor-induced suppressor cells are T cells and exhibit an antigen specificity similar to that displayed by the tumor-induced suppressor cells. Thus, tumor-specific suppressor factor(s) bear I-J determinants and are capable of inducing the appearance of suppressor T cells in the nontumor-bearing host, which may then act in a specific manner to limit host responsiveness to tumor antigen.  相似文献   

17.
18.
We have previously described a T cell hybridoma, A.1.1, that responds to specific Ag (P18, a synthetic polypeptide of defined sequence) in the context of I-Ad by producing lymphokines. Herein we report that this cell also releases, into culture supernatants and ascites fluid, an Ag-specific activity that functions in the induction of suppression of anti-SRBC PFC responses. This suppressive activity requires a) Ag-non-specific accessory molecules from a T suppressor inducer factor, b) Ly-2+ T cells in the assay cultures, and c) the specific Ag (P18) conjugated to the SRBC in the assay cultures. The specificity of the A.1.1-derived activity was demonstrated by the absence of suppression in cultures containing SRBC, BSA-SRBC, or conalbumin-SRBC rather than P18-SRBC. Further, the A.1.1-derived activity bound to, and could be eluted from, P18 but not conalbumin. Using a panel of synthetic variant peptides, we have mapped the critical residues in P18 required for Ag/I-Ad induced activation of A.1.1. These peptides were tested for their ability to act as targets for the A.1.1-derived suppressive activity when conjugated to SRBC and added to assay cultures. All peptides capable of stimulating the A.1.1 T cells to release lymphokines were similarly effective in the suppressor assay. Thus, the recognition of Ag by the T cells and by the T cell-derived activity appeared to be identical. The A.1.1-derived molecule was found to be capable of inducing L3T4- T cells to act as suppressor T cells following culture. These suppressor cells were active in inhibiting anti-SRBC responses in the absence of P18 and bore the Ly-2 surface marker. Thus, it is likely that the function of this Ag-specific molecule is to induce Ly-2+ suppressor T cells and thereby cause the inhibition of the response. This function is distinct from that normally associated with helper T cells and may shed new light on the possible relationship between the cell surface T cell receptor for Ag and Ag-specific T suppressor inducer molecules.  相似文献   

19.
The random synthetic copolymer of L-glutamic acid50-L-tyrosine50 (GT) fails to elicit a GT-specific antibody response in all inbred strains of mice tested. Preimmunization with GT specifically inhibits a GT-MBSA response in certain H2d,k,s, but not other, H-2a,b,q, nonresponder mice. This unresponsiveness is mediated by GT-specific suppressor T cells. Extracts prepared from lymphoid cells of GT-primed suppressor haplotype mice inhibit the development of primary GT-specific antibody responses to GT-MBSA in normal syngeneic mice. Nonsuppressor haplotype mice do not produce GT-specific suppressor factor. The GT-suppressive extract has affinity for antigen and a m.w. of less than 50,000 daltons, thus, resembling antigen-specific immunosuppressive factors already described. However, the GT-suppressive extract does not appear to have H-2 restrictions since it works across allogeneic barriers. Evidence is presented that two genes are required for factor-mediated suppression.  相似文献   

20.
Previous studies on the basis for the immunosuppressive potential of adrenal corticosteroids have stressed that the effects of these agents on immune functions depend on the animal species being considered, as well as the subpopulations of lymphocytes involved in the expression of immune functions examined. In the present work, we have evaluated the effect of a single dose of hydrocortisone on three different immunoregulatory functions that can influence the magnitude of an antibody response to Type III pneumococcal polysaccharide (SSS-III) in mice; these functions include suppressor, amplifier, and helper activity that are dependent upon the presence of distinct subpopulations of thymus-derived (T) cells. The results obtained show that a single injection of a relatively large dose of hydrocortisone, when given at the time of priming with carrier, eliminated all evidence of carrier-specific helper T cell activity; hydrocortisone was also found to eliminate a significant amount of helper T cell activity when given after such activity had been generated. But, under the same experimental conditions, suppressor and amplifier T cell activities were unaffected, even in this steroid-sensitive species. Such selective sensitivity may account for some of the immunosuppressive potency of steroids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号