首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aggregates formed at equilibrium by purified protein from cowpea chlorotic mottle virus have been characterized on the basis of their sedimentation behaviour and appearance in the electron microscope. Between pH 3.5 and 7.5, at ionic strengths greater than 0.2, most of the protein is found in aggregates sedimenting at either 3 S or 50 S. The 50 S aggregate is identified as the reassembled capsid of cowpea ehlorotic mottle virus. Decreasing the ionic strength favours the formation of multi-shelled particles. Below pH 5.5 single- and multishelled particles predominate, while above this pH most of the protein sediments at 3 S.Varying the temperature from 5 °C to 20 °C has little effect on the equilibrium proportions of aggregates although some real differences can be detected. Ionic strength is not as important a variable as pH in determining which protein forms are present (but increasing ionic strength does result in a steady decrease in the proportion of protein in the multi-layer aggregates). The dependence of the equilibrium upon protein concentration shows that capsid formation is a quasi-crystallization: beyond a certain total protein concentration the concentration of 3 S aggregate remains at this “critical” concentration and all further protein goes into 50 S capsid. In addition to shells and variations upon shells, tubes and hexagonal nets of protein subunits have occasionally been seen with the electron microscope.  相似文献   

2.
Electrostatic properties of cowpea chlorotic mottle virus (CCMV) and cucumber mosaic virus (CMV) were investigated using numerical solutions to the Poisson-Boltzmann equation. Experimentally, it has been shown that CCMV particles swell in the absence of divalent cations when the pH is raised from 5 to 7. CMV, although structurally homologous, does not undergo this transition. An analysis of the calculated electrostatic potential confirms that a strong electrostatic repulsion at the calcium-binding sites in the CCMV capsid is most likely the driving force for the capsid swelling process during the release of calcium. The binding interaction between the encapsulated genome material (RNA) inside of the capsid and the inner capsid shell is weakened during the swelling transition. This probably aids in the RNA release process, but it is unlikely that the RNA is released through capsid openings due to unfavorable electrostatic interaction between the RNA and capsid inner shell residues at these openings. Calculations of the calcium binding energies show that Ca(2+) can bind both to the native and swollen forms of the CCMV virion. Favorable binding to the swollen form suggests that Ca(2+) ions can induce the capsid contraction and stabilize the native form.  相似文献   

3.
Cowpea chlorotic mottle virus (CCMV) forms highly elastic icosahedral protein capsids that undergo a characteristic swelling transition when the pH is raised from 5 to 7. Here, we performed nano-indentation experiments using an atomic force microscope to track capsid swelling and measure the shells’ Young’s modulus at the same time. When we chelated Ca2+ ions and raised the pH, we observed a gradual swelling of the RNA-filled capsids accompanied by a softening of the shell. Control experiments with empty wild-type virus and a salt-stable mutant revealed that the softening was not strictly coupled to the swelling of the protein shells. Our data suggest that a pH increase and Ca2+ chelation lead primarily to a loosening of contacts within the protein shell, resulting in a softening of the capsid. This appears to render the shell metastable and make swelling possible when repulsive forces among the capsid proteins become large enough, which is known to be followed by capsid disassembly at even higher pH. Thus, softening and swelling are likely to play a role during inoculation.  相似文献   

4.
Hepatitis B virus morphogenesis is accompanied by the production and release of non‐enveloped capsids/nucleocapsids. Capsid particles are formed inside the cell cytosol by multimerization of core protein subunits and ultimately exported in an uncommon coatless state. Here, we investigated potential roles of Rab GTPases in capsid formation and trafficking by using RNA interference and overexpression studies. Naked capsid release does not require functions of the endosome‐associated Rab5, Rab7 and Rab27 proteins, but depends on functional Rab33B, a GTPase participating in autophagosome formation via interaction with the Atg5‐Atg12/Atg16L1 complex. During capsid formation, Rab33B acts in conjunction with its effector, as silencing of Atg5, Atg12 and Atg16L1 also impaired capsid egress. Analysis of capsid maturation steps revealed that Rab33B and Atg5/12/16L1 are required for proper particle assembly and/or stability. In support, the capsid protein was found to interact with Atg5 and colocalize with Atg5/12/16L1, implicating that autophagy pathway functions are involved in capsid biogenesis. However, a complete and functional autophagy pathway is dispensable for capsid release, as judged by knockdown analysis of Atg8/LC3 family members and pharmaceutical ablation of canonical autophagy. Experiments aimed at analysing the capsid release‐stimulating activity of the Alix protein provide further evidence for a link between capsid formation and autophagy.  相似文献   

5.
For many protein multimers, association and dissociation reactions fail to reach the same end point; there is hysteresis preventing one and/or the other reaction from equilibrating. We have studied in vitro assembly of dimeric hepatitis B virus (HBV) capsid protein and dissociation of the resulting T = 4 icosahedral capsids. Empty HBV capsids composed of 120 capsid protein dimers were more resistant to dissociation by dilution or denaturants than anticipated from assembly experiments. Using intrinsic fluorescence, circular dichroism, and size exclusion chromatography, we showed that denaturants dissociate the HBV capsids without unfolding the capsid protein; unfolding of dimer only occurred at higher denaturant concentrations. The apparent energy of interaction between dimers measured in dissociation experiments was much stronger than when measured in assembly studies. Unlike assembly, capsid dissociation did not have the concentration dependence expected for a 120-subunit complex; consequently the apparent association energy systematically varied with reactant concentration. These data are evidence of hysteresis for HBV capsid dissociation. Simulations of capsid assembly and dissociation reactions recapitulate and provide an explanation for the observed behavior; these results are also applicable to oligomeric and multidomain proteins. In our calculations, we find that dissociation is impeded by temporally elevated concentrations of intermediates; this has the paradoxical effect of favoring re-assembly of those intermediates despite the global trend toward dissociation. Hysteresis masks all but the most dramatic decreases in contact energy. In contrast, assembly reactions rapidly approach equilibrium. These results provide the first rigorous explanation of how virus capsids can remain intact under extreme conditions but are still capable of "breathing." A biological implication of enhanced stability is that a triggering event may be required to initiate virus uncoating.  相似文献   

6.
The structure of Red clover necrotic mosaic virus (RCNMV), an icosahedral plant virus, was resolved to 8.5 A by cryoelectron microscopy. The virion capsid has prominent surface protrusions and subunits with a clearly defined shell and protruding domains. The structures of both the individual capsid protein (CP) subunits and the entire virion capsid are consistent with other species in the Tombusviridae family. Within the RCNMV capsid, there is a clearly defined inner cage formed by complexes of genomic RNA and the amino termini of CP subunits. An RCNMV virion has approximately 390 +/- 30 Ca2+ ions bound to the capsid and 420 +/- 25 Mg2+ ions thought to be in the interior of the capsid. Depletion of both Ca2+ and Mg2+ ions from RCNMV leads to significant structural changes, including (i) formation of 11- to 13-A-diameter channels that extend through the capsid and (ii) significant reorganization within the interior of the capsid. Genomic RNA within native capsids containing both Ca2+ and Mg2+ ions is extremely resistant to nucleases, but depletion of both of these cations results in nuclease sensitivity, as measured by a significant reduction in RCNMV infectivity. These results indicate that divalent cations play a central role in capsid dynamics and suggest a mechanism for the release of viral RNA in low-divalent-cation environments such as those found within the cytoplasm of a cell.  相似文献   

7.
We have studied the mechanism of copper uptake by the cells, its oxidative action and effects on ion transport systems using rainbow trout erythrocytes. Cupric ions enter trout erythrocytes as negatively charged complexes with chloride and hydroxyl anions via the band 3-mediated Cl-/HCO3- exchanger. Replacement of Cl- by gluconate, and complexation of cupric ions with histidine abolish rapid Cu2+ uptake. Within the cell cupric ions interact with haemoglobin, causing methaemoglobin formation by direct electron transfer from heme Fe2+ to Cu2+, and consecutive proton release. Ascorbate-mediated reduction of cupric ions to cuprous decreases copper-induced metHb formation and proton release. Moreover, cuprous ions stimulate Na+H+ exchange and residual Na+ transport causing net Na+ accumulation in the cells. The effect requires copper binding to an externally facing thiol group. Copper-induced Na+ accumulation is accompanied by K+ loss occurring mainly via K+-Cl- cotransporter. Taurine efflux is also stimulated by copper exposure. However, net loss of osmolytes is not as pronounced as Na+ uptake and modest swelling of the cells occurs after 5 min of copper exposure. Taken together the results indicate that copper toxicity, including copper transport into the cells and its interactions with ion transport processes, depend on the valency and complex formation of copper ions.  相似文献   

8.
The effect of vpu on the release of human immunodeficiency type 1 capsid proteins was examined in the presence or absence of virus-encoded envelope glycoproteins as well as in cells which constitutively express either the CD4 or CD8 protein. The results show that vpu-mediated facilitated export of capsid proteins from HeLa cells does not require expression of the envelope glycoprotein. The experiments also show that export of virus capsid proteins from HeLa cells facilitated by vpu is not affected by coexpression of either the CD4 or CD8 protein. The vpu protein acts in trans to facilitate export of virus capsid proteins from HeLa cells.  相似文献   

9.
Meckes DG  Wills JW 《Journal of virology》2007,81(23):13028-13036
The UL16 tegument protein of herpes simplex virus is conserved throughout the herpesvirus family. It has been reported to be capsid associated and may be involved in budding by providing an interaction with the membrane-bound UL11 protein. UL16 has been shown to be present in all the major locations that capsids are found (i.e., the nucleus, cytoplasm, and virions), but whether it is actually capsid associated in each of these has not been reported. Therefore, capsids were purified from each compartment, and it was found that UL16 was present on cytoplasmic but not nuclear capsids. In extracellular virions, the majority of UL16 (87%) was once again not capsid associated, which suggests that the interaction is transient during egress. Because herpes simplex virus (HSV) buds into the acidic compartment of the trans-Golgi network (TGN), the effect of pH on the interaction was examined. The amount of capsid-associated UL16 dramatically increased when extracellular virions were exposed to mildly acidic medium (pH 5.0 to 5.5), and this association was fully reversible. After budding into the TGN, capsid and tegument proteins also encounter an oxidizing environment, which is conducive to disulfide bond formation. UL16 contains 20 cysteines, including five that are conserved within a putative zinc finger. Any free cysteines that are involved in the capsid interaction or release mechanism of UL16 would be expected to be modified by N-ethylmaleimide, and, consistent with this, the amount of capsid-associated UL16 dramatically increased when virions were incubated with this compound. Taken together, these data suggest a transient interaction between UL16 and capsids, possibly modified in the acidic compartment of secretory vesicles and requiring a release mechanism that involves cysteines.  相似文献   

10.
M Hansen  L Jelinek  S Whiting    E Barklis 《Journal of virology》1990,64(11):5306-5316
We have studied the process of Moloney murine leukemia virus (M-MuLV) assembly by characterization of core (gag) protein mutants and analysis of wild-type (wt) gag proteins produced by cells in the presence of the ionophore monensin. Our genetic studies involved examination of linker insertion mutants of a Gag-beta-galactosidase (Gag-beta-gal) fusion protein, GBG2051, which is incorporated into virus particles when expressed in the presence of wt viral proteins. Analysis indicated that the amino-terminal two-thirds of the gag matrix domain is essential for targeting of proteins to the plasma membrane; mutant proteins localized to the cytoplasm or were trapped on intracellular membranes. Mutations through most of the coding region of the gag capsid domain generated proteins which were released from cells in membrane vesicles but not in virions. In contrast, linker insertions into p12gag or carboxy-terminal portions of the matrix or capsid coding regions did not affect assembly of fusion proteins into virus particles. Monensin, which blocks vesicular transport, inhibited gag protein intracellular transport and release from cells. Our results suggest that a significant proportion of M-MuLV myristylated gag proteins travel via vesicles to the cell surface. Specific matrix protein polypeptide regions and myristic acid modification are both necessary for appropriate gag protein transport, while capsid protein interactions appear to mediate the final phase of virion formation.  相似文献   

11.
Normal mode analysis based on a simplified energy function was used to study the swelling process of the icosahedral virus, cowpea chlorotic mottle virus (CCMV). Native state virus particles (coat proteins) of this T=3 icosahedral virus have been shown to undergo a large conformational change to a swollen state when metal ions are removed or the pH is raised. A normal mode analysis based on the native state capsid showed one preferential direction, a breathing mode, that explains the majority of the structural rearrangement necessary to bring the native structure close to the swollen state. From the native form of CCMV, the structure can be displaced along the direction of a single breathing mode by different amounts to create several candidate swollen structures and a putative pathway for virus expansion. The R-factor between these predicted swollen capsid structures and experimental electron density from cryoelectron microscopy (cryo-EM) measurements is then calculated to indicate how well each structure satisfies the experimental measurements on the swollen capsid state. A decrease of the crystallographic R-factor value from approximately 72% to approximately 49% was observed for these simple incremental displacements along the breathing mode. The simultaneous displacement of the native structure along other relevant (symmetric, non-degenerate) modes produce a structure with an R-factor of 45%, which is further reduced to 43.9% after minimization: a value in good accord with models based on the EM data at 28 A resolution. Based on the incrementally expanded structures, a pathway for the swelling process has been proposed. Analysis of the intermediate structures along this pathway indicates a significant loss of interactions at the quasi-3-fold interfaces occurs in the initial stages of the swelling process and this serves as a trigger for the compact to swollen transition. Furthermore, the pH dependent swelling appears to be triggered by the titration of a single residue with an anomalous pK(a) value in the unswollen particle.  相似文献   

12.
Alphaviruses, particularly Sinbis virus and Semliki Forest virus, are proving to be useful vectors for the expression of heterologous genes. In infected cells, these self-replicating vectors (replicons) transcribe a subgenomic mRNA that codes for a heterologous protein instead of the structural proteins. We reported recently that translation of the reporter gene lacZ is enhanced 10-fold when the coding sequences of this gene are fused downstream of and in frame with the 5' half of the capsid gene (I. Frolov and S. Schlesinger, J. Virol. 68:8111-8117, 1994). The enhancing sequences, located downstream of the AUG codon that initiates translation of the capsid protein, have a predicted hairpin structure. We have mutated this region by making changes in the codons which do not affect the protein sequence but should destabilize the putative hairpin structure. These changes caused a decrease in the accumulation of the capsid-beta-galactosidase fusion protein. When these alterations were inserted into the capsid gene in the context of the intact Sindbis virus genome, they led to a decrease in the rate of virus formation but did not affect the final yield. We also altered the original sequence to one that has 12 contiguous G.C base pairs and should form a stable hairpin. The new sequence was essentially as effective as the original had been in enhancement of translation and in the rate of virus formation. The position of the predicted hairpin structure is important for its function; an insertion of 9 nucleotides or a deletion of 9 nucleotides decreased the level of translation. The insertion of a hairpin structure at a particular location downstream of the initiating AUG appears to be a way that alphaviruses have evolved to enhance translation of their mRNA, and, as a consequence, they produce high levels of the structural proteins which are needed for virus assembly. This high level of translation requires an intracellular environment in which host cell protein synthesis is inhibited.  相似文献   

13.
Hepatitis B virus (HBV) capsids play an important role in viral nucleic acid metabolism and other elements of the virus life cycle. Misdirection of capsid assembly (leading to formation of aberrant particles) may be a powerful approach to interfere with virus production. HBV capsids can be assembled in vitro from the dimeric capsid protein. We show that a small molecule, bis-ANS, binds to capsid protein, inhibiting assembly of normal capsids and promoting assembly of noncapsid polymers. Using equilibrium dialysis to investigate binding of bis-ANS to free capsid protein, we found that only one bis-ANS molecule binds per capsid protein dimer, with an association energy of -28.0 +/- 2.0 kJ/mol (-6.7 +/- 0.5 kcal/mol). Bis-ANS inhibited in vitro capsid assembly induced by ionic strength as observed by light scattering and size exclusion chromatography. The binding energy of bis-ANS for capsid protein calculated from assembly inhibition data was -24.5 +/- 0.9 kJ/mol (-5.9 +/- 0.2 kcal/mol), essentially the same binding energy observed in studies of unassembled protein. These data indicate that capsid protein bound to bis-ANS did not participate in assembly; this mechanism of assembly inhibition is analogous to competitive or noncompetitive inhibition of enzymes. While assembly of normal capsids is inhibited, our data suggest that bis-ANS leads to formation of noncapsid polymers. Evidence of aberrant polymers was identified by light scattering and electron microscopy. We propose that bis-ANS acts as a molecular "wedge" that interferes with normal capsid protein geometry and capsid formation; such wedges may represent a new class of antiviral agent.  相似文献   

14.
Currently virus-like particles (VLPs) are receiving much attention as platforms for next generation vaccines. However, chromatography-based methods for purifying VLPs remain challenging. Unlike traditional methods using density gradient for purifying VLPs, there have been few advances in explaining how assembled particles can be obtained by chromatography. Nervous necrosis virus (NNV) infects over 30 species of fish and leads to large economic losses in the farmed fish industry. Previously we developed a heparin chromatography-based method for purifying red-spotted grouper NNV (RGNNV) VLPs. However it is unclear how the assembled RGNNV VLPs are obtained by this method. It is known that assembly of NNV capsid proteins depends on calcium ions. In the present study, we found that the yield of purified RGNNV capsid protein in heparin chromatography was enhanced when calcium ions were present during binding. Also, it appears that the capsid protein of RGNNV undergoes partial disassembly and reassembly during sample preparation prior to heparin chromatography and the protein finally undergoes assembly during the chromatography. Therefore, our results indicated that heparin-binding affinity of RGNNV capsid protein is linked to its ability for VLP formation. The assembly of RGNNV capsid proteins recombinantly produced is a good model for explaining VLP formation during chromatography-based purification processes.  相似文献   

15.
The crystal structure of the human hepatitis B virus capsid.   总被引:6,自引:0,他引:6  
Hepatitis B is a small enveloped DNA virus that poses a major hazard to human health. The crystal structure of the T = 4 capsid has been solved at 3.3 A resolution, revealing a largely helical protein fold that is unusual for icosahedral viruses. The monomer fold is stabilized by a hydrophobic core that is highly conserved among human viral variants. Association of two amphipathic alpha-helical hairpins results in formation of a dimer with a four-helix bundle as the major central feature. The capsid is assembled from dimers via interactions involving a highly conserved region near the C terminus of the truncated protein used for crystallization. The major immunodominant region lies at the tips of the alpha-helical hairpins that form spikes on the capsid surface.  相似文献   

16.
Apoptosis is an important mechanism by which virus-infected cells are eliminated from the host. Accordingly, many viruses have evolved strategies to prevent or delay apoptosis in order to provide a window of opportunity in which virus replication, assembly and egress can take place. Interfering with apoptosis may also be important for establishment and/or maintenance of persistent infections. Whereas large DNA viruses have the luxury of encoding accessory proteins whose primary function is to undermine programmed cell death pathways, it is generally thought that most RNA viruses do not encode these types of proteins. Here we report that the multifunctional capsid protein of Rubella virus is a potent inhibitor of apoptosis. The main mechanism of action was specific for Bax as capsid bound Bax and prevented Bax-induced apoptosis but did not bind Bak nor inhibit Bak-induced apoptosis. Intriguingly, interaction with capsid protein resulted in activation of Bax in the absence of apoptotic stimuli, however, release of cytochrome c from mitochondria and concomitant activation of caspase 3 did not occur. Accordingly, we propose that binding of capsid to Bax induces the formation of hetero-oligomers that are incompetent for pore formation. Importantly, data from reverse genetic studies are consistent with a scenario in which the anti-apoptotic activity of capsid protein is important for virus replication. If so, this would be among the first demonstrations showing that blocking apoptosis is important for replication of an RNA virus. Finally, it is tempting to speculate that other slowly replicating RNA viruses employ similar mechanisms to avoid killing infected cells.  相似文献   

17.
Point mutations were introduced into the major capsid protein (P3) of cloned infectious cDNA of the polerovirus beet western yellows virus (BWYV) by manipulation of cloned infectious cDNA. Seven mutations targeted sites on the S domain predicted to lie on the capsid surface. An eighth mutation eliminated two arginine residues in the R domain, which is thought to extend into the capsid interior. The effects of the mutations on virus capsid formation, virus accumulation in protoplasts and plants, and aphid transmission were tested. All of the mutants replicated in protoplasts. The S-domain mutant W166R failed to protect viral RNA from RNase attack, suggesting that this particular mutation interfered with stable capsid formation. The R-domain mutant R7A/R8A protected approximately 90% of the viral RNA strand from RNase, suggesting that lower positive-charge density in the mutant capsid interior interfered with stable packaging of the complete strand into virions. Neither of these mutants systemically infected plants. The six remaining mutants properly packaged viral RNA and could invade Nicotiana clevelandii systemically following agroinfection. Mutant Q121E/N122D was poorly transmitted by aphids, implicating one or both targeted residues in virus-vector interactions. Successful transmission of mutant D172N was accompanied either by reversion to the wild type or by appearance of a second-site mutation, N137D. This finding indicates that D172 is also important for transmission but that the D172N transmission defect can be compensated for by a "reverse" substitution at another site. The results have been used to evaluate possible structural models for the BWYV capsid.  相似文献   

18.
Packaging in a yeast double-stranded RNA virus.   总被引:2,自引:1,他引:1       下载免费PDF全文
W Yao  K Muqtadir    J A Bruenn 《Journal of virology》1995,69(3):1917-1919
The yeast virus ScV-L1 has only two genes, cap and pol, which encode the capsid polypeptide and the viral polymerase, respectively. The second gene is translated only as a cap-pol fusion protein. This fusion protein is responsible for recognition of a specific small stem and loop region of the viral plus strands, of 19 to 31 bases in length, ensuring packaging specificity. We have used a related virus, ScV-La, which has about 29% codon identity with ScV-L1 in the most conserved region of the pol gene, to map the region in pol that is responsible for packaging L1. Characterization of a number of chimeric viral proteins that recognize L1 but have the La capsid region delimits the region necessary for recognition of L1 to a 76- to 82-codon portion of pol. In addition, we show that overproduction of the La capsid polypeptide results in curing of the ScV-La virus, analogous to the production of plants resistant to RNA viruses by virtue of systemic production of viral coat protein.  相似文献   

19.
An investigation was made of the role of calcium ions in the reversible stage of fibrin polymerization, using a direct and relatively simple approach. Purified fibrin monomer in solution (7.5 mg/ml) in 1.0 m NaBr (pH 5.3) was polymerized by raising the pH to 5.7–7.7 by the addition of aliquots of standard NaOH solution and the rate and total extent of proton release during polymerization were measured potentiometrically. In the presence of added CaCl2 (10−5-10−2m) the rate of proton release was increased and the clotting time was decreased. The profile of equilibrium proton release vs pH of polymerization was also shifted, the maximum being increased and occurring at a lower pH. Sedimentation velocity studies in the intermediate pH range (5.7–6.0) showed that the altered profile of equilibrium proton release was due to a broadening of the pH range of polymerization, and that polymerization remained reversible in the presence of CaCl2. At pH 5.3, where fibrin is essentially monomeric, addition of CaCl2 resulted in the release of protons and small increases in sedimentation coefficient and reduced viscosity. Under the same conditions, a similar release of protons was observed from fibrinogen, but there was no effect on its sedimentation coefficient. It was concluded that the proton release at pH 5.3 was due mainly to binding of calcium ions to fibrinogen and fibrin monomer. The effect of CaCl2 on the sedimentation coefficient of fibrin at pH 5.3 was found to decrease with decreasing protein concentration, indicating that it was the result of a small extent of polymerization, rather than a conformational change. Added MgCl2 had no effect on fibrin monomer at pH 5.3 and no significant effect on the rate or extent of proton release during polymerization at higher pH, indicating that there are specific binding sites for calcium ions in fibrinogen and fibrin. The observed effects of bound calcium ions on reversible fibrin polymerization are explained most simply in electrostatic terms.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号