首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Scaffolds (artificial ECMs) play a pivotal role in the process of regenerating tissues in 3D. Biodegradable synthetic polymers are the most widely used scaffolding materials. However, synthetic polymers usually lack the biological cues found in the natural extracellular matrix. Significant efforts have been made to synthesize biodegradable polymers with functional groups that are used to couple bioactive agents. Presenting bioactive agents on scaffolding surfaces is the most efficient way to elicit desired cell/material interactions. This paper reviews recent advancements in the development of functionalized biodegradable polymer scaffolds for tissue engineering, emphasizing the syntheses of functional biodegradable polymers, and surface modification of polymeric scaffolds.  相似文献   

2.
Smart materials as scaffolds for tissue engineering   总被引:6,自引:0,他引:6  
In this review, we focused our attention on the more important natural extracellular matrix (ECM) molecules (collagen and fibrin), employed as cellular scaffolds for tissue engineering and on a class of semi-synthetic materials made from the fusion of specific oligopeptide sequences, showing biological activities, with synthetic materials. In particular, these new "intelligent" scaffolds may contain oligopeptide cleaving sequences specific for matrix metalloproteinases (MMPs), integrin binding domains, growth factors, anti-thrombin sequences, plasmin degradation sites, and morphogenetic proteins. The aim was to confer to these new "intelligent" semi-synthetic biomaterials, the advantages offered by both the synthetic materials (processability, mechanical strength) and by the natural materials (specific cell recognition, cellular invasion, and the ability to supply differentiation/proliferation signals). Due to their characteristics, these semi-synthetic biomaterials represent a new and versatile class of biomimetic hybrid materials that hold clinical promise in serving as implants to promote wound healing and tissue regeneration.  相似文献   

3.
Rebuilding tissues involves the creation of a vasculature to supply nutrients and this in turn means that the endothelial cells (ECs) of the resulting endothelium must be a quiescent non-thrombogenic blood contacting surface. Such ECs are deployed on biomaterials that are composed of natural materials such as extracellular matrix proteins or synthetic polymers in the form of vascular grafts or tissue-engineered constructs. Because EC function is influenced by their origin, biomaterial surface chemistry and hemodynamics, these issues must be considered to optimize implant performance. In this review, we examine the recent in vivo use of endothelialized biomaterials and discuss the fundamental issues that must be considered when engineering functional vasculature.  相似文献   

4.
Novel therapeutic strategies that promote wound healing seek to mimic the response of the body to wounding, to regenerate rather than repair injured tissues. Many synthetic or natural biomaterials have been developed for this purpose and are used to deliver wound therapeutics in a controlled manner that prevents unwanted and potentially harmful side-effects. Here, we review the natural and synthetic biomaterials that have been developed for protein and gene delivery to enhance tissue regeneration. Particular emphasis is placed on novel biomimetic materials that respond to environmental stimuli or release their cargo according to cellular demand. Engineering biomaterials to release therapeutic agents in response to physiologic signals mimics the natural healing process and can promote faster tissue regeneration and reduce scarring in severe acute or chronic wounds.  相似文献   

5.
天然水凝胶是指原材料来自于天然生物材料的水凝胶。由于这种天然的聚合物含有构成生物体的天然成分,与天然组织具有生物学和化学相似性,而受到特别关注。天然水凝胶由于其与细胞外基质高度的相似性被认为是骨组织工程中优良的仿生基质材料。而针对天然水凝胶机械性能差、成骨诱导性能弱等缺陷,通常需要对天然水凝胶进行改性、引入其他材料或生物活性因子,以此来获得更适用于骨组织工程支架材料。对近年来基于天然水凝胶的生物材料在骨组织工程的应用,与其不同的应用形式(可注射水凝胶、多孔水凝胶支架、3D生物打印水凝胶支架等)进行了概述,以期对这类基于天然水凝胶的生物材料在未来骨组织工程中的应用提供参考。  相似文献   

6.
There is an ongoing need for effective materials that can replace autologous bone grafts in the clinical treatment of bone injuries and deficiencies. In recent years, research efforts have shifted away from a focus on inert biomaterials to favor scaffolds that mimic the biochemistry and structure of the native bone extracellular matrix (ECM). The expectation is that such scaffolds will integrate with host tissue and actively promote osseous healing. To further enhance the osteoinductivity of bone graft substitutes, ECM-mimetic scaffolds are being engineered with a range of growth factors (GFs). The technologies used to generate GF-modified scaffolds are often inspired by natural processes that regulate the association between endogenous ECMs and GFs. The purpose of this review is to summarize research centered on the development of regenerative scaffolds that replicate the fundamental collagen-hydroxyapatite structure of native bone ECM, and the functionalization of these scaffolds with GFs that stimulate critical events in osteogenesis.  相似文献   

7.
The micro-environment in which stem cells reside regulates their fate, and synthetic materials have recently been designed to emulate these regulatory processes for various medical applications. Ligands inspired by the natural extracellular matrix, cell-cell contacts, and growth factors have been incorporated into synthetic materials with precisely engineered density and presentation. Furthermore, material architecture and mechanical properties are material design parameters that provide a context for receptor-ligand interactions and thereby contribute to fate determination of uncommitted stem cells. Although significant progress has been made in biomaterials development for cellular control, the design of more sophisticated and robust synthetic materials can address future challenges in achieving spatiotemporal control of cellular phenotype and in implementing histocompatible clinical therapies.  相似文献   

8.
Synthetic biologists use engineering principles to design and construct genetic circuits for programming cells with novel functions. A bottom-up approach is commonly used to design and construct genetic circuits by piecing together functional modules that are capable of reprogramming cells with novel behavior. While genetic circuits control cell operations through the tight regulation of gene expression, a diverse array of environmental factors within the extracellular space also has a significant impact on cell behavior. This extracellular space offers an addition route for synthetic biologists to apply their engineering principles to program cell-responsive modules within the extracellular space using biomaterials. In this review, we discuss how taking a bottom-up approach to build genetic circuits using DNA modules can be applied to biomaterials for controlling cell behavior from the extracellular milieu. We suggest that, by collectively controlling intrinsic and extrinsic signals in synthetic biology and biomaterials, tissue engineering outcomes can be improved.  相似文献   

9.
Cellular differentiation, organization, proliferation and apoptosis are determined by a combination of an intrinsic genetic program, matrix/substrate interactions, and extracellular cues received from the local microenvironment. These molecular cues come in the form of soluble (e.g. cytokines) and insoluble (e.g. ECM proteins) factors, as well as signals from surrounding cells that can promote specific cellular processes leading to tissue formation or regeneration. Recent developments in the field of tissue engineering have employed biomaterials to present these cues, providing powerful tools to investigate the cellular processes involved in tissue development, or to devise therapeutic strategies based on cell replacement or tissue regeneration. These inductive scaffolds utilize natural and/or synthetic biomaterials fabricated into three-dimensional structures. This review summarizes the use of scaffolds in the dual role of structural support for cell growth and vehicle for controlled release of tissue inductive factors, or DNA encoding for these factors. The confluence of molecular and cell biology, materials science and engineering provides the tools to create controllable microenvironments that mimic natural developmental processes and direct tissue formation for experimental and therapeutic applications.  相似文献   

10.
Traditional synthetic substrates and matrices for cell culture have proven to be of only limited utility in efforts to understand and control cell behavior, in large part because they fail to capture the multifarious biochemical, mechanical, geometric and dynamic characteristics of in vivo environments. However, recent advances in materials chemistry and engineering have begun to provide researchers with a toolbox to mimic the complex characteristics of natural extracellular matrices (ECMs), providing new pathways to explore cell-matrix interactions and direct cell fate under physiologically realistic conditions. In this review, we describe recent developments in stimuli-responsive materials as dynamic substrates and matrices for cell culture, and highlight their use in furthering our understanding of how cells respond to temporal variations in their environment.  相似文献   

11.
The three ingredients for the successful tissue engineeping of bone and cartilage are ragulatory signals, cells and extracellular matrix. Recent advance in cellular and molecular biology of thde growth and differentiation factors have set the stage for a symbiosis of biotechnology and biomaterials. Recent advances permit one to enunciate the rules of architechure for tissue engineering of bone and cartilage. The purification and cloning of bone morphogenetic proteins (BMPs) and growth factors such as platelet derived growth factors (PDGF), tranforming growth factor-β (TGF-β), and insulin-like growth factors (IGF-I) Will allow the design of an optimal combinatiol of signals to initiate and promote development of skeletal stem cells into cartilage and bone. Successful and optimal bone and motion. BMPs function as inductive signals. Biomaterials (Both natural and synthetic) mimic the extracellular matrix and play a role in conduction of bone and cartiage. Examples of biomaterials include hydroxyapatite, polyanhydrides, polyphosphoesters, polylactic acid, and polyglycolic acid. The prospects for novel biomaterials are immense, and they likely will be a fertile erowth industpy. Cooperative ventures between academia and industry and teahnology transfer from the federal government augur well for an exciting future fop clinical applications.  相似文献   

12.
骨组织工程天然衍生细胞外基质材料   总被引:10,自引:0,他引:10  
细胞外基质材料的开发是骨组织工程的重要组成部分,目前,在骨组织工程中应用较多的基质材料可分为天然衍生材料、人工合成材料以及这两种材料的复合材料。介绍了各种天然衍生骨材料如煅烧骨、脱钙骨基质、脱蛋白骨基质、重组合异种骨基质和天然高分子材料如胶原、纤维蛋白、几丁质、藻酸盐及其衍生物以及珊瑚衍生骨在骨组织工程中的应用,展望了骨组织工程细胞外基质材料的未来发展方向,认为未来的理想基质材料应该是集各种材料的优点于一身,能够充分适应体内各种生理环境并能采用智能化的加工方式进行大批量生产的生物仿生材料。  相似文献   

13.
Potential of plant proteins for medical applications   总被引:1,自引:0,他引:1  
Various natural and synthetic polymers are being explored to develop biomaterials for tissue engineering and drug delivery. Although proteins are preferable over carbohydrates and synthetic polymers, biomaterials developed from proteins lack the mechanical properties and/or biocompatibilities required for medical applications. Plant proteins are widely available, have low potential to be immunogenic and can be made into fibers, films, hydrogels and micro- and nano-particles for medical applications. Studies, mostly with zein, have demonstrated the potential of using plant proteins for tissue engineering and drug delivery. Although other plant proteins such as wheat gluten and soyproteins have also shown biocompatibility using in vitro studies, fabricating biomaterials such as nano-fibers and nano-particles from soy and wheat proteins offers considerable challenges.  相似文献   

14.
The extracellular matrix (ECM) in contact with the cells and the soluble growth factors (GFs) binding to their cell surface receptors are the two main signals that directly regulate cell motility. Human keratinocytes and dermal fibroblasts are two primary cell types in skin that must undergo migration for skin wounds to heal. In this cell migration, ECMs play an "active" role by providing the cells with both focal adhesions and a migration-initiating signal, even in the absence of GFs. In contrast, GFs cannot initiate cell migration in the absence of a pro-migratory ECM. Rather, GFs play a "passive" role by enhancing the ECM-initiated motility and giving the moving cells directionality. Inside the cells, the initiation signal of the ECM and the optimization signals of the GFs are propagated by both overlapping and discrete signaling networks. However, activation of no single signaling pathway by itself is sufficient to replace the role of ECMs or GFs. This review focuses on our current understanding of both the individual and the combined functions of ECMs and GFs in the control of skin cell motility. An abbreviation of the terminologies used in this article is provided.  相似文献   

15.
《Biotechnology advances》2017,35(5):530-544
Recently, understanding of the extracellular matrix (ECM) has expanded rapidly due to the accessibility of cellular and molecular techniques and the growing potential and value for hydrogels in tissue engineering. The fabrication of hydrogel-based cellular scaffolds for the generation of bioengineered tissues has been based on knowledge of the composition and structure of ECM. Attempts at recreating ECM have used either naturally-derived ECM components or synthetic polymers with structural integrity derived from hydrogels. Due to their increasing use, their biocompatibility has been questioned since the use of these biomaterials needs to be effective and safe. It is not surprising then that the evaluation of biocompatibility of these types of biomaterials for regenerative and tissue engineering applications has been expanded from being primarily investigated in a laboratory setting to being applied in the multi-billion dollar medicinal industry. This review will aid in the improvement of design of non-invasive, smart hydrogels that can be utilized for tissue engineering and other biomedical applications. In this review, the biocompatibility of hydrogels and design criteria for fabricating effective scaffolds are examined. Examples of natural and synthetic hydrogels, their biocompatibility and use in tissue engineering are discussed. The merits and clinical complications of hydrogel scaffold use are also reviewed. The article concludes with a future outlook of the field of biocompatibility within the context of hydrogel-based scaffolds.  相似文献   

16.
Stem cells are unspecialized cells that can self renew indefinitely and differentiate into several somatic cells given the correct environmental cues. In the stem cell niche, stem cell-extracellular matrix (ECM) interactions are crucial for different cellular functions, such as adhesion, proliferation, and differentiation. Recently, in addition to chemical surface modifications, the importance of nanometric scale surface topography and roughness of biomaterials has increasingly becoming recognized as a crucial factor for cell survival and host tissue acceptance in synthetic ECMs. This review describes the influence of nanotopography on stem cell phenotypes.  相似文献   

17.
18.
19.
Collagens, characterized by a unique triple-helical structure, are the predominant component of extracellular matrices (ECMs) existing in all multicellular animals. Collagens not only maintain structural integrity of tissues and organs, but also regulate a number of biological events, including cell attachment, migration and differentiation, tissue regeneration and animal development. The specific functions of collagens are generally triggered by specific interactions of collagen-binding molecules (membrane receptors, soluble factors and other ECM components) with certain structures displayed on the collagen triple helices. Thus, synthetic triple-helical peptides that mimic the structure of native collagens have been used to investigate the individual collagen-protein interactions, as well as collagen structure and stability. The first part of this article illustrates the design of various collagen-mimetic peptides and their recent applications in matrix biology. Collagen is also acknowledged as one of the most promising biomaterials in regenerative medicine and tissue engineering. However, the use of animal-derived collagens in human could put the recipients at risks of pathogen transmission or allergic reactions. Hence, the production of safe artificial collagen surrogates is currently of considerable interest. The latter part of this article reviews recent attempts to develop artificial collagens as novel biomaterials.  相似文献   

20.
Bioactive bone substitute materials are a valuable alternative to autologous bone transplantations in the repair of skeletal defects. However, clinical studies have reported varying success rates for many commonly used biomaterials. While osteoblasts have traditionally been regarded as key players mediating osseointegration, increasing evidence suggests that bone-resorbing osteoclasts are of crucial importance for the longevity of applied biomaterials. As no standardized data on the resorbability of biomaterials exists, we applied an in vitro-assay to compare ten commonly used bone substitutes. Human peripheral blood mononuclear cells (PBMCs) were differentiated into osteoclasts in the co-presence of dentin chips and biomaterials or dentin alone (control) for a period of 28 days. Osteoclast maturation was monitored on day 0 and 14 by light microscopy, and material-dependent changes in extracellular pH were assessed twice weekly. Mature osteoclasts were quantified using TRAP stainings on day 28 and their resorptive activity was determined on dentin (toluidin blue staining) and biomaterials (scanning electron microscopy, SEM). The analyzed biomaterials caused specific changes in the pH, which were correlated with osteoclast multinuclearity (r = 0.942; p = 0.034) and activity on biomaterials (r = 0.594; p = 0.041). Perossal led to a significant reduction of pH, nuclei per osteoclast and dentin resorption, whereas Tutogen bovine and Tutobone human strikingly increased all three parameters. Furthermore, natural biomaterials were resorbed more rapidly than synthetic biomaterials leading to differential relative resorption coefficients, which indicate whether bone substitutes lead to a balanced resorption or preferential resorption of either the biomaterial or the surrounding bone. Taken together, this study for the first time compares the effects of widely used biomaterials on osteoclast formation and resorbability in an unbiased approach that may now aid in improving the preclinical evaluation of bone substitute materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号