首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
为了考察甲醇或乙醇促进植物生长与赤霉素(GA)的合成关系,该研究在MS固体培养基中培养并添加外源GA和GA合成抑制剂多效唑(PAC),分析其对2mmol/L甲醇或乙醇促进烟草生长的影响及GA合成调控转录因子RSG(for repression of shoot growth)应答甲醇或乙醇刺激的分子机理。结果显示:(1)外源添加GA可增强甲醇或乙醇对烟草生长的刺激作用,而添加PAC却抑制甲醇和乙醇对烟草生长的刺激作用。(2)14-3-3蛋白与RSG结合抑制RSG进入细胞核及其转录调控活性;甲醇和乙醇诱导烟草14-3-3基因的转录和表达,对RSG蛋白表达也有诱导作用。(3)甲醇和乙醇可降低14-3-3蛋白与RSG的相互作用,同时增强RSG与GA20ox1启动子的结合。研究表明,甲醇和乙醇刺激烟草的生长可能通过增加RSG表达,且减弱RSG与14-3-3蛋白的结合来增加RSG细胞核定位作用,从而增强RSG与GA20ox1启动子的结合,最终增加GA的合成,从而促进烟草的生长,这可能是甲醇和乙醇促进烟草生长的一种重要的分子机制。  相似文献   

9.
10.
11.
12.
为研究棉花GA20-氧化酶同源基因GhGA20ox1的功能,将该基因转入本明烟(N.benthamiana)中进行超量表达。RT-PCR分析表明GhGA20ox1基因在转基因植株中得到了不同水平的表达。GhGA20ox1基因的超量表达促进了本明烟中的GA4+7合成,并导致赤霉素过量的表型出现。转基因本明烟的表型变化程度与GhGA20ox1基因的表达水平和GA4+7的含量一致。这些结果表明,GhGA20ox1基因编码一个有功能的GA20-氧化酶,能够在转基因烟草中促进活性GA(GA4+7)的合成,可以用作目的基因来提高棉花纤维和其他植物的内源GA水平。  相似文献   

13.
GA 20-oxidase is a key enzyme involved in gibberellin (GA) biosynthesis. In tomato, the GA 20-oxidase gene family consists of three members: GA20ox1, GA20ox2, and GA20ox3. To investigate the roles of these three genes in regulating plant growth and development, we used RNA interference technology to generate three kinds of transgenic tomato plants with suppressed expression of each three individual genes. Suppression of GA20ox1 or GA20ox2 resulted in shorter stems, a decreased length of internodes, and small dark green leaves while plants with decreased expression of GA20ox3 had no visible changes on stems and leaves. The plants of the three transgenic lines can flower and set fruits normally, but the seeds from these plants germinated slower than that from the normal plants. Decreased levels of endogenous GAs were detected in the apex of the three transgenic lines. These results demonstrate that the three GA 20-oxidase genes play different roles in the control of plan vegetative growth, but show no effects on flower and fruit development.Equal contribution authors: J. Xiao and H. Li.  相似文献   

14.
Gibberellin biosynthesis and the regulation of plant development   总被引:10,自引:0,他引:10  
Gibberellins (GAs) form a large family of plant growth substances with distinct functions during the whole life cycle of higher plants. The rate of GA biosynthesis and catabolism determines how the GA hormone pool occurs in plants in a tissue and developmentally regulated manner. With the availability of genes coding for GA biosynthetic enzymes, our understanding has improved dramatically of how GA plant hormones regulate and integrate a wide range of growth and developmental processes. This review focuses on two plant systems, pumpkin and Arabidopsis, which have added significantly to our understanding of GA biosynthesis and its regulation. In addition, we present models for regulation of GA biosynthesis in transgenic plants, and discuss their suitability for altering plant growth and development.  相似文献   

15.
Y L Xu  L Li  D A Gage    J A Zeevaart 《The Plant cell》1999,11(5):927-936
The gibberellin (GA) 20-oxidase encoded by the GA5 gene of Arabidopsis directs GA biosynthesis to active GAs, whereas that encoded by the P16 gene of pumpkin endosperm leads to biosynthesis of inactive GAs. Negative feedback regulation of GA5 expression was demonstrated in stems of Arabidopsis by bioactive GAs but not by inactive GA. In transgenic Arabidopsis plants overexpressing P16, there was a severe reduction in the amounts of C20-GA intermediates, accumulation of large amounts of inactive GA25 and GA17, a reduction in GA4 content, and a small increase in GA1. However, due to feedback regulation, expression of GA5 and GA4, the gene coding for the subsequent 3beta-hydroxylase, was greatly increased to compensate for the effects of the P16 transgene. Consequently, stem height was only slightly reduced in the transgenic plants.  相似文献   

16.
17.
Previous studies have shown that reduced gibberellin (GA) level or signal promotes plant tolerance to environmental stresses, including drought, but the underlying mechanism is not yet clear. Here we studied the effects of reduced levels of active GAs on tomato (Solanum lycopersicum) plant tolerance to drought as well as the mechanism responsible for these effects. To reduce the levels of active GAs, we generated transgenic tomato overexpressing the Arabidopsis thaliana GA METHYL TRANSFERASE 1 (AtGAMT1) gene. AtGAMT1 encodes an enzyme that catalyses the methylation of active GAs to generate inactive GA methyl esters. Tomato plants overexpressing AtGAMT1 exhibited typical GA‐deficiency phenotypes and increased tolerance to drought stress. GA application to the transgenic plants restored normal growth and sensitivity to drought. The transgenic plants maintained high leaf water status under drought conditions, because of reduced whole‐plant transpiration. The reduced transpiration can be attributed to reduced stomatal conductance. GAMT1 overexpression inhibited the expansion of leaf‐epidermal cells, leading to the formation of smaller stomata with reduced stomatal pores. It is possible that under drought conditions, plants with reduced GA activity and therefore, reduced transpiration, will suffer less from leaf desiccation, thereby maintaining higher capabilities and recovery rates.  相似文献   

18.

Overexpression of GA20 oxidase gene has been a recent trend for improving plant growth and biomass. Constitutive expression of GA20ox has successfully improved plant growth and biomass in several plant species. However, the constitutive expression of this gene causes side-effects, such as reduced leaf size and stem diameter, etc. To avoid these effects, we identified and employed different tissue-specific promoters for GA20ox overexpression. In this study, we examined the utility of At1g promoter to drive the expression of GUS (β-glucuronidase) reporter and AtGA20ox genes in tobacco and Melia azedarach. Histochemical GUS assays and quantitative real-time-PCR results in tobacco showed that At1g was a root-preferential promoter whose expression was particularly strong in root tips. The ectopic expression of AtGA20ox gene under the control of At1g promoter showed improved plant growth and biomass of both tobacco and M. azedarach transgenic plants. Stem length as well as stem and root fresh weight increased by up to 1.5–3 folds in transgenic tobacco and 2 folds in transgenic M. azedarach. Both tobacco and M. azedarach transgenic plants showed increases in root xylem width with xylem to phloem ratio over 150–200% as compared to WT plants. Importantly, no significant difference in leaf shape and size was observed between At1g::AtGA20ox transgenic and WT plants. These results demonstrate the great utility of At1g promoter, when driving AtGA20ox gene, for growth and biomass improvements in woody plants and potentially some other plant species.

  相似文献   

19.
Gibberellin 3beta-hydroxylase catalyzes the final step in the biosynthetic pathway leading to the plant hormone gibberellin (GA) and, therefore, the in vivo localization of this enzyme should give a direct indication of the site of synthesis of bioactive GAs in plants. We have isolated a cDNA clone, Nty (Nicotiana tabacum GA 3beta-hydroxylase), which encodes a putative GA 3beta-hydroxylase, by RT-PCR using RNA from tobacco shoot apices. Functional analysis, using an NTY protein expressed in Escherichia coli, revealed that Nty encoded an active GA 3beta-hydroxylase. A high expression level of Nty was observed in shoot apices, flowers, roots, young internodes but not in leaves or seeds. We performed more detailed expression analyses using in situ hybridization and histochemical analyses of the GUS activity in transgenic tobacco plants carrying an Nty promoter:GUS fusion gene. These studies revealed that expression of Nty was restricted to specific regions, including actively dividing and elongating cells in the various organs; rib meristem and elongation zones of shoot apices, tapetum and pollen grains in developing anthers and root tips, which are consistent with the sites of GA action. It is proposed that GA actions depend on the modulation of endogenous bioactive GA levels through the regulation of GA 3beta-hydroxylase expression in situ.  相似文献   

20.
The rice gene ELONGATED UPPERMOST INTERNODE1 (EUI1) encodes a P450 monooxygenase that epoxidizes gibberellins (GAs) in a deactivation reaction. The Arabidopsis genome contains a tandemly duplicated gene pair ELA1 (CYP714A1) and ELA2 (CYP714A2) that encode EUI homologs. In this work, we dissected the functions of the two proteins. ELA1 and ELA2 exhibited overlapping yet distinct gene expression patterns. We showed that while single mutants of ELA1 or ELA2 exhibited no obvious morphological phenotype, simultaneous elimination of ELA1 and ELA2 expression in ELA1-RNAi/ela2 resulted in increased biomass and enlarged organs. By contrast, transgenic plants constitutively expressing either ELA1 or ELA2 were dwarfed, similar to those overexpressing the rice EUI gene. We also discovered that overexpression of ELA1 resulted in a severe dwarf phenotype, while overexpression of ELA2 gave rise to a breeding-favored semi-dwarf phenotype in rice. Consistent with the phenotypes, we found that the ELA1-RNAi/ela2 plants increased amounts of biologically active GAs that were decreased in the internodes of transgenic rice with ELA1 and ELA2 overexpression. In contrast, the precursor GA(12) slightly accumulated in the transgenic rice, and GA(19) highly accumulated in the ELA2 overexpression rice. Taken together, our study strongly suggests that the two Arabidopsis EUI homologs subtly regulate plant growth most likely through catalyzing deactivation of bioactive GAs similar to rice EUI. The two P450s may also function in early stages of the GA biosynthetic pathway. Our results also suggest that ELA2 could be an excellent tool for molecular breeding for high yield potential in cereal crops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号