首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have studied Ca transport and the Ca-activated Mg-ATPase in plasma membrane vesicles prepared from normal human lymphocytes. Membrane vesicles that were exposed to oxalate as a Ca-trapping agent accumulated Ca in the presence of Mg2+ and ATP. ADP, AMP, GTP, UTP, ITP, TTP, or CTP did not substitute for ATP in energizing uptake. The Vmax for Ca uptake was 2.4 pmol of Ca/micrograms of protein/min, and the Km values for Ca and ATP were 1.0 and 80 microM, respectively. One microM A23187, added initially, completely inhibited net Ca uptake and, if added later, caused the release of Ca accumulated previously. Cyanide, oligomycin, ouabain, or varying Na+ or K+ concentrations had no effect on Ca uptake. A Ca-activated ATPase was present in the same membrane vesicles, which had a Vmax of 25 pmol of Pi/micrograms of protein/min at a free Ca concentration of 4-5 microM. This Ca-ATPase had Km values for Ca and ATP of 0.6 and 90 microM, respectively. These kinetic parameters were similar to those observed for uptake of Ca by the vesicles. The Ca-ATPase activity was insensitive to azide, oligomycin, ouabain, or varying Na+ or K+ concentrations. No Ca-activated hydrolysis of GTP or UTP was observed. Both Ca transport and the Ca-ATPase activity of ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid-treated lymphocyte plasma membranes were stimulated 2-fold by a cytoplasmic component (calmodulin) that was purified 500-fold from lymphocyte cytoplasm. Thus, human lymphocyte plasma membranes have both a Ca transport activity and a Ca-stimulated ATPase activity with similar substrate affinities and specificities and similar sensitivities to calmodulin.  相似文献   

2.
Transverse tubule (TT) membranes isolated from chicken skeletal muscle possess a very active magnesium-stimulated ATPase (Mg-ATPase) activity. The Mg-ATPase has been tentatively identified as a 102-kD concanavalin A (Con A)-binding glycoprotein comprising 80% of the integral membrane protein (Okamoto, V.R., 1985, Arch. Biochem. Biophys., 237:43-54). To firmly identify the Mg-ATPase as the 102-kD TT component and to characterize the structural relationship between this protein and the closely related sarcoplasmic reticulum (SR) Ca-ATPase, polyclonal antibodies were raised against the purified SR Ca-ATPase and the TT 102-kD glycoprotein, and the immunological relationship between the two ATPases was studied by means of Western immunoblots and enzyme-linked immunosorbent assays (ELISA). Anti-chicken and anti-rabbit SR Ca-ATPase antibodies were not able to distinguish between the TT 102-kD glycoprotein and the SR Ca-ATPase. The SR Ca-ATPase and the putative 102-kD TT Mg-ATPase also possess common structural elements, as indicated by amino acid compositional and peptide mapping analyses. The two 102-kD proteins exhibit similar amino acid compositions, especially with regard to the population of charged amino acid residues. Furthermore, one-dimensional peptide maps of the two proteins, and immunoblots thereof, show striking similarities indicating that the two proteins share many common epitopes and peptide domains. Polyclonal antibodies raised against the purified TT 102-kD glycoprotein were localized by indirect immunofluorescence exclusively in the TT-rich I bands of the muscle cell. The antibodies substantially inhibit the Mg-ATPase activity of isolated TT vesicles, and Con A pretreatment could prevent antibody inhibition of TT Mg-ATPase activity. Further, the binding of antibodies to intact TT vesicles could be reduced by prior treatment with Con A. We conclude that the TT 102-kD glycoprotein is the TT Mg-ATPase and that a high degree of structural homology exists between this protein and the SR Ca-ATPase.  相似文献   

3.
Trifluoperazine inhibits ADP-stimulated respiration in mung bean (Phaseolus aureus) mitochondria when either NADH, malate, or succinate serve as substrates (IC50 values of 56, 59, and 55 microM, respectively). Succinate:ferricyanide oxidoreductase activity of these mitochondria was inhibited to a similar extent. The oxidation of ascorbate/TMPD was also sensitive to the phenothiazine (IC50 = 65 microM). Oxidation of exogenous NADH was inhibited by trifluoperazine even in the presence of excess EGTA [ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid] (IC50 = 60 microM), indicating an interaction with the electron transport chain rather than with the dehydrogenase itself. In contrast, substrate oxidation in Voodoo lily (Sauromatum guttatum) mitochondria was relatively insensitive to the phenothiazine. The results suggest the bc1 complex to be a major site of inhibition. The membrane potential of energized mung bean mitochondria was depressed by micromolar concentrations of trifluoperazine, suggesting an effect on the proton-pumping capability of these mitochondria. Membrane-bound and soluble ATPases were equally sensitive to trifluoperazine (IC50 of 28 microM for both), implying the site of inhibition to be on the F1. Inhibition of the soluble ATPase was not affected by EGTA, CaCl2, or exogenous calmodulin. Trifluoperazine inhibition of electron transport and phosphorylation in plant mitochondria appears to be due to an interaction with a protein of the organelle that is not calmodulin.  相似文献   

4.
Chlorpromazine (CPZ) and lidocaine were added to cultures of mouse spleen cells stimulated by concanvalin A (Con A), phytohemagglutinin (PHA), pokeweed mitogen (PWM) and lipopolysaccharide (LPS). Concentrations of CPZ greater than 5 x 10(-6)M and concentrations of lidocaine greater than 2 x 10(-3)M totally inhibited the mitogenic responses to all four mitogens. Minimal inhibitory concentrations of neither drug interferred with cell viability as determined by trypan blue uptake or 51Cr release. The effects were totally reversed by the removal of the drugs from the culture. Addition of the drug at intervals after mitogen exposure demonstrated that the inhibited event occurred relatively soon after exposure to the mitogen. For example, the addition of lidocaine or CPZ more than 24 hr after Con A stimulation had no effect on tritiated thymidine incorporation. Elevated concentrations of cyclic AMP, cyclic GMP (or their derivatives) or calciunown membrane active actions of these drugs and the rapid reversibility of the effect strongly support the idea that the local anesthetics act on the surface membrane of lymphocytes. Binding of radiolabeled Con A or LPS to lymphocyte membranes in the presence of lidocaine or CPZ was not inhibited. The possibility exists that CPZ and lidocaine disorganized cell membranes so as to interfere with the surface membrane elaboration or action of a second messenger, or interfere with cell-cell interactions.  相似文献   

5.
The effects of the ionophore, X537A, and caffeine on ATP-dependent calcium transport by fragmented sarcoplasmic reticulum were studied in the absence (calcium storage) or presence (calcium uptake) of calcium-precipitating anions. The ionophore caused rapid calcium release after calcium storage, the final level of calcium storage being the same whether a given concentration of X537A was added prior to initiation of the reaction or after calcium storage had reached a steady state. Although 10 to 12 muM X537A caused approximately 90% inhibition of oxalate-supported calcium uptake when added prior to the start of the reaction, this ionophore concentration caused only a small calcium release when added after a calcium oxalate precipitate had formed within the vesicles, and only slight inhibition of calcium uptake velocity when added during the calcium uptake reaction. When low initial calcium loads limited calcium uptake to 0.4 mumol of calcium/mg of protein, subsequent calcium additions in the absence of the ionophore led to renewed calcium uptake. Uptake of the subsequent calcium additions was not significantly inhibited by 10 to 12 muM X537A. These phenomena are most readily understood in terms of constraints imposed by fixed Cai (calcium ion concentration inside the vesicles) on the pump-leak situation in sarcoplasmic reticulum vesicles containing a large amount of an insoluble calcium precipitate, where most of the calcium is within the vesicles and Cai is maintained at a relatively low level. These constraints restrict calcium loss after calcium permeability is increased because calcium release can end when the calcium pump is stimulated by the increased Cao (calcium concentration outside the vesicles) so as to compensate for the increased efflux rate. In contrast, an increased permeability in vesicles that have stored calcium in the absence of a calcium-precipitating ion causes a much larger portion of the internal calcium store to be released. Under these conditions calcium storage capacity is low so that release of stored calcium is less able to raise Cao to levels where the calcium pump can compensate for the increased efflux rate. The constraints imposed by anion-supported calcium uptake explain the finding that more calcium is released by X537A or caffeine when these agents are added at higher levels of Cao, and that more calcium leaves the vesicles in response to a given increase in calcium permeability at higher Cai. Although such calcium release is amplified by increased Cao, the amplification is attributable to the constraints described above and does not represent a "calcium-triggered calcium release."  相似文献   

6.
Following exposure to a number of hormones, the cell membrane in Madin-Darby Canine Kidney (MDCK) cells is hyperpolarized by increase of intracellular calcium activity. The present study has been performed to elucidate the possible role of calmodulin in the regulation of intracellular calcium activity and cell membrane potential. To this end trifluoperazine has been added during continuous recording of cell membrane potential or intracellular calcium. Trifluoperazine leads to a transient increase of intracellular calcium as well as a sustained hyperpolarization of the cell membrane by activation of calcium sensitive K+ channels. Half-maximal effects are observed between 1 and 10 mumol/L trifluoperazine. A further calmodulin antagonist, chlorpromazine, (50 mumol/L), similarly hyperpolarizes the cell membrane. The effects of trifluoperazine are virtually abolished in the absence of extracellular calcium. Pretreatment of the cells with either pertussis toxin or phorbol-ester TPA does not interfere with the hyperpolarizing effect of trifluoperazine. In conclusion, calmodulin is apparently involved in the regulation of calcium transfer across the cell membrane but not in the stimulation of K+ channels by intracellular calcium.  相似文献   

7.
The transmembranal potential, in Saccharomyces cerevisiae, has been calculated from the distribution of the lipophilic cation tetraphenylphosphonium (TPP+) between the intracellular and extracellular water. Trifluoperazine at concentrations of 10 to 50 μM, caused a substantial increase in the membrane potential (negative inside). This increase was observed only in the presence of a metabolic substrate and was eliminated by the addition of the protonophores 2,4-dinitrophenol and sodium azide, removal of glucose, replacement of glucose by the nonmetabolizable analog 3-O-methyl glucose, or by the addition of 100mM KCl. An increase in 45CaCl2 accumulation from solutions of low concentrations (1 μM) was observed under all conditions where membrane potential was increased. Proton ejection activity was monitored by measurements of the rates of the decrease in the pH of unbuffered cell suspensions in the presence of glucose. Trifluoperazine inhibited the changes in medium pH; this inhibition was not the result of an increase in the permeability of cell membranes to protons since in the absence of glucose, trifluoperazine did not cause a change in the rate of pH change generated by proton influx. The activity of plasma membrane ATPase was measured in crude membrane preparations in the presence of sodium azide to inhibit mitochondrial ATPase. Trifluoperazine strongly inhibited the activity of the plasma membrane ATPase. The effect of phenothiazines on transport and on membrane potential reported in this study and in the previous one (Eilam, Y. (1983) Biochim. Biophys. Acta 733, 242–248) were observed only in the presence of a metabolic substrate. The possibility that energy is required for the uptake of phenothiazines into the cells was eliminated by results showing energy-independent uptake of [3H]chlorpromazine. The results strongly suggest that phenothiazines activate energy-dependent K+-extrusion pumps, which lead to increased membrane potential. Increased influx of calcium seems to be energized by membrane potential, and therefore stimulated under all conditions where membrane potential is increased. The analog which does not bind to calmodulin, trifluoperazine sulfoxide, had no effect on the cells, but the involvement of calmodulin in the processes altered by trifluoperazine cannot as yet, be determined.  相似文献   

8.
Histamine secretion from permeabilized mast cells by calcium   总被引:1,自引:0,他引:1  
N Chakravarty 《Life sciences》1986,39(17):1549-1554
A transient increase in the permeability of the mast cell membrane was caused by the exposure of the cells to low concentrations of saponin, 5 or 10 micrograms/ml. These concentrations had very little effect in the absence of calcium but caused 35 to 50% histamine release, having the character of a secretory response, when 0.25 mM or more calcium was added to the medium. The dose-response curve was steep between 25 microM and 250 microM calcium and tended to flatten with higher concentrations. The release was associated with a pronounced increase in calcium uptake, which was faster than the histamine release. The membrane changes were slight as indicated by only 7 to 12% leakage of lactate dehydrogenase and by the absence of any detectable change in the electron micrographs. The transient nature of the membrane change is shown by the following experiment. When the cells were first exposed to saponin in the absence of calcium, the amount of histamine released by the subsequent incubation with calcium varied inversely with the time interval that elapsed before calcium was added. If calcium was added after 15 minutes no histamine release occurred. When calcium uptake was studied in the same manner, the stimulation of calcium uptake in saponin-treated cells also declined progressively with increasing intervals after the exposure to saponin when calcium was added. Stimulation of both histamine release and calcium uptake was inhibited by antimycin A, the inhibition curves with 10(-9)M to 10(-7)M antimycin A being similar. The effect on the calcium uptake by itself could explain the inhibition of histamine release. But the release was also inhibited by the calmodulin antagonists, W-7 and mepacrine, suggesting that the influx of calcium in the permeabilized cells acts primarily through calmodulin-mediated enzyme activation.  相似文献   

9.
A membrane fraction isolated from lactating murine mammary tissue and enriched for the Golgi membrane marker enzyme galactosyltransferase exhibited Ca2+-stimulated ATPase activity (Ca-ATPase) in 20 microM-free Mg2+ and 10 microM-MgATP, with an apparent Km for Ca2+ of 0.8 microM. Exogenous calmodulin did not enhance Ca2+ stimulation, nor could Ca-ATPase activities be detected in millimolar total Mg2+ and ATP. When assayed with micromolar Mg2+ and MgATP the Ca-ATPases of skeletal-muscle sarcoplasmic reticulum and of calmodulin-enriched red blood cell plasma membranes were half-maximally activated by 0.1 microM- and 0.6 microM-Ca2+ respectively. All three Ca-ATPases were inhibited by similar micromolar concentrations of trifluoperazine, but the Golgi activity was unaffected by quercetin in concentrations which completely inhibited both the sarcoplasmic-reticulum and red-blood-cell enzymes. The results are consistent with the hypothesis that the high-affinity Ca-ATPase is responsible for the ATP-dependent Ca2+ transport exhibited by Golgi-enriched vesicles derived from lactating mammary gland [Neville, Selker, Semple & Watters (1981) J. Membr. Biol. 61, 97-105; West (1981) Biochim. Biophys. Acta 673, 374-386].  相似文献   

10.
We have purified unadhered human monocytes in sufficient quantities to prepare monocyte plasma membrane vesicles and study vesicular calcium transport. Monocytes were isolated from plateletpheresis residues by counterflow centrifugal elutriation. By combining this source and procedure, 7 x 10(8) monocytes of over 90% purity were obtained. The membranes, isolated on a sucrose step gradient, had an 18-fold enrichment in Na,K-ATPase, a 29-fold diminution of succinate dehydrogenase activity and were vesicular on transmission electron micrographs. The membrane vesicles loaded with oxalate accumulated calcium only in the presence of Mg and ATP. Calcium uptake did not occur if ATP was replaced by any of five nucleotide phosphates or if Mg was omitted. Calcium transport had a maximal velocity of 4 pmoles calcium/micrograms vesicle protein/min and a Km for calcium of 0.53 microM. The ionophore A23187 completely inhibited calcium accumulation while 5 mM sodium cyanide and 10 microM ouabain had no effect. A calcium-activated ATPase was present in the same plasma membrane vesicles. The calcium ATPase had a maximal velocity of 18.0 pmoles calcium/micrograms vesicle protein/min and a Km for calcium of 0.60 microM. Calcium-activated ATPase activity was absent if Mg was omitted or if (gamma - 32P) GTP replaced (gamma - 32P) ATP. Monocyte plasma membranes that were stripped of endogenous calmodulin by EGTA treatment showed a reduced level of calcium uptake and calcium ATPase activity. The addition of exogenous calmodulin restored the transport activity to that of unstripped monocyte plasma membranes. Thus, monocyte plasma membrane vesicles contain a highly specific, ATP-dependent calcium transport system and a calcium-ATPase with similar high calcium affinities.  相似文献   

11.
Calcium uptake by rabbit skeletal muscle sarcoplasmic reticulum vesicles in phosphate-containing media exhibits time-dependent changes that arise from changing rates of calcium influx and efflux. The monovalent cation ionophore gramicidin, added before the start of the calcium uptake reaction, delayed the spontaneous calcium release that normally occurred after approx. 6 min in such reactions; the rate of calcium efflux was inhibited while calcium influx was little affected. Under these conditions, Ca2+-activated ATPase activity could remain unaltered. Gramicidin stimulated calcium uptake irrespective of the presence of a K+ gradient across the vesicle membrane. Valinomycin stimulated calcium uptake in a manner similar to that for gramicidin even in an NaCl-containing medium lacking potassium. Thus, dissipation of a transmembrane K+ gradient is unlikely to account for the effects of these ionophores on the spontaneous changes in calcium flux rates. Addition of gramicidin to partially calcium-filled vesicles inhibited the phase of spontaneous calcium reuptake because both calcium influx and efflux wre inhibited. Addition of gramicidin to partially calcium-filled vesicles in the presence of a water-soluble protein, such as bovine serum albumin, creatine kinase or pyruvate kinase, markedly stimulated calcium uptake. This stimulatory effect was due primarily to inhibition of calcium efflux, calcium influx being minimally influenced by the ionophore. After cleavage of the 100,000 dalton ATPase to 50,000 dalton fragments, which was not associated with changes in Ca2+-activated ATPase activity or initial calcium uptake rate, gramicidin increased rather than decreased calcium content when added to vesicles after the initial maximum in calcium content. Thus, the ability of monovalent cation ionophores to block calcium efflux from calcium-filled vesicles may reflect their interaction with a portion of the Ca2+-activated ATPase protein.  相似文献   

12.
Abstract: In isolated adrenal medullary cells, carbamyl-choline and high K+ cause the calcium-dependent secretion of catecholamines with a simultaneous increase in the synthesis of 14C-catecholamines from [14C]tyrosine. In these cells, trifluoperazine, a selective antagonist of calmodulin, inhibited both the secretion and synthesis of catecholamines. The stimulatory effect of carbamyl-choline was inhibited to a greater extent than that of high K+. The inhibitory effect of trifluoperazine on carbamylcholine-evoked secretion of catecholamines was not overcome by an increase in either carbamylcholine or calcium concentration, showing that inhibition by trifluoperazine occurs by a mechanism distinct from competitive antagonism at the cholinergic receptor and from direct inactivation of calcium channels. Doses of trifluoperazine that inhibited catecholamine secretion and synthesis also inhibited the uptake of radioactive calcium by the cells. These results suggest that trifluoperazine inhibits the secretion and synthesis of catecholamines mainly due to its inhibition of calcium uptake. Trifluoperazine seems to inhibit calcium uptake by uncoupling the linkage between cholinergic receptor stimulation and calcium channel activation.  相似文献   

13.
Characterization of Glutamate Uptake into Synaptic Vesicles   总被引:29,自引:22,他引:7  
Recent evidence indicates that L-glutamate is taken up into synaptic vesicles in an ATP-dependent manner, supporting the notion that synaptic vesicles may be involved in glutamate synaptic transmission. In this study, we further characterized the ATP-dependent vesicular uptake of glutamate. Evidence is provided that a Mg-ATPase, not Ca-ATPase, is responsible for the ATP hydrolysis coupled to the glutamate uptake. The ATP-dependent glutamate uptake was inhibited by agents known to dissipate the electrochemical proton gradient across the membrane of chromaffin granules. Hence, it is suggested that the vesicular uptake of glutamate is driven by electrochemical proton gradients generated by the Mg-ATPase. Of particular interest is the finding that the ATP-dependent glutamate uptake is markedly stimulated by chloride over a physiologically relevant, millimolar concentration range, suggesting an important role of intranerve terminal chloride in the accumulation of glutamate in synaptic vesicles. The vesicular glutamate translocator is highly specific for L-glutamate, and failed to interact with aspartate, its related agents, and most of the glutamate analogs tested. It is proposed that this vesicular translocator plays a crucial role in determining the fate of glutamate as a neurotransmitter.  相似文献   

14.
Calcium has been suggested as an internal second messenger when lymphocytes are stimulated by mitogens to enter the cell cycle. We have assessed the effect of 2 lymphocyte stimulants, the plant lectin phytohemagglutinin (PHA) and the calcium ionophore A23187, on human lymphocyte nucleic acid synthesis, total cell calcium content, and 4 5Ca labeling. We have used an ultrasensitive method for the measurement of total cell calcium in the same samples used for radiolabeling. Mitogenic concentrations of A23187 (~ .25 μ mole/liter) caused an increase in both total cell calcium and 4 5Ca labeling. These increases were almost completely blocked by inhibitors of mitochondrial respiration, suggesting that the calcium increment after ionophore treatment was located in the mitochondria. In contrast, total cell calcium was not altered at optimal mitogenic PHA concentrations (0.1 μg/ml and above). However, at the minimum PHA concentrations that caused stimulation (0.025 to 0.1 μg/ml), the dose response of 4 5Ca uptake was very similar to that of DNA sysnthesis. Importantly, we could not stimulate DNA synthesis with PHA without increasing lymphocyte 4 5Ca labeling. Thus, an increase in total cell calcium is not essential for mitogenesis; however, an increase in 4 5Ca exchange is closely associated with the mitogenic effects of A23187 and PHA.  相似文献   

15.
Calcium uptake by rabbit skeletal muscle sarcoplasmic reticulum vesicles in phosphate-containing media exhibits time-dependent changes that arise from changing rates of calcium influx and efflux. The monovalent cation ionophore gramicidin, added before the start of the calcium uptake reaction, delayed the spontaneous calcium release that normally occurred after approx. 6 min in such reactions; the rate of calcium efflux was inhibited while calcium influx was little affected. Under these conditions, Ca2+-activated ATPase activity could remain unaltered.Gramicidin stimulated calcium uptake irrespective of the presence of a K+ gradient across the vesicle membrane. Valinomycin stimulated calcium uptake in a manner similar to that for gramicidin even in an NaCl-containing medium lacking potassium. Thus, dissipation of a transmembrane K+ gradient is unlikely to account for the effects of these ionophores on the spontaneous changes in calcium flux rates.Addition of gramicidin to partially calcium-filled vesicles inhibited the phase of spontaneous calcium reuptake because both calcium influx and efflux were inhibited. Addition of gramicidin to partially calcium-filled vesicles in the presence of a water-soluble protein, such as bovine serum albumin, creatine kinase or pyruvate kinase, markedly stimulated calcium uptake. This stimulatory effect was due primarily to inhibition of calcium efflux, calcium influx being minimally influenced by the ionophore.After cleavage of the 100 000 dalton ATPase to 50 000 dalton fragments, which was not associated with changes in Ca2+-activated ATPase activity or initial calcium uptake rate, gramicidin increased rather than decreased calcium content when added to vesicles after the initial maximum in calcium content. Thus, the ability of monovalent cation ionophores to block calcium efflux from calcium-filled vesicles may reflect their interaction with a portion of the Ca2+-activated ATPase protein.  相似文献   

16.
The role of calcium in the release of superoxide anion (O2-) was examined in alveolar macrophages after stimulation with the soluble stimuli: concanavalin A (Con A), N-formyl methionyl phenylalanine (FMP), and the calcium ionophore. A23187. The release of O2- by Con A was unaffected over a wide range of extracellular calcium concentrations (20 microM to 3 mM), whereas increasing the extracellular calcium above 2 mM inhibited FMP-stimulated O2- release. In contrast, A23187 did not stimulate O2- release in calcium-free medium (less than or equal to 30 microM). The addition of EGTA (50 microM) to calcium-free medium had no effect on Con A stimulation of O2- release or FMP-stimulated O2- release. These results suggest that, for the three soluble stimuli, there are different roles for Ca+2 in the activation and transmission of stimulatory signals across the cell membrane. Con A- or FMP-stimulated calcium efflux from calcium-loaded cells in either calcium-free medium or 0.5 mM calcium-containing medium. In calcium-free medium, FMP transiently retarded 45Ca+2 uptake, while in 0.5 mM calcium-containing medium, FMP transiently stimulated 45Ca+2 uptake. For either Con A or FMP, calcium efflux preceded O2- release by 30-45 sec. Quinine, an agent that blocks membrane hyperpolarization in macrophages, completely blocked O2- release by concanavalin A or FMP and inhibited 45CA+2 efflux by 50% or more for both agents. These results support the hypothesis that redistribution of cellular Ca+2 is one of the initial steps leading to the release of O2-.  相似文献   

17.
We previously reported that in preeclampsia Ca-ATPase activity diminishes about 50% in red blood cells, myometrium and syncitiotrophoblast plasma membranes. In this work, we measured the active Ca++ uptake by inside-out vesicles of human red blood cells from preeclamptic and normotensive pregnant women. Active calcium uptake by the vesicles was diminished by 49+/-3% in the preeclamptic women as compared to the gestational controls ( 8.06 +/- 0.11 nmol Ca++/mg protein min, gestational controls; 4.08 +/- 0.1 nmol Ca++/mg protein min, preeclamptics). This lowered calcium uptake correlates well with the lowered Ca-ATPase activity found in the red blood cells ghosts of the preeclamptic women (17.05 +/- 0.96 nmol Pi/mg protein min, gestational controls; 8.85 +/- 0.45 nmol Pi/mg protein min, preeclamptics). The reduced calcium uptake and Ca-ATPase activity of the red cell membranes both appear to be associated with a high level of lipid peroxidation. Thus there is a diminution in the active transport of calcium in the red blood cells of preeclamptic women. If this also occurs in other cell types of the preclamptic women, it could result in an increase in their cytosolic calcium concentration which might be responsible, in part, for some of the symptoms of this disease.  相似文献   

18.
The role of ATP-dependent calcium uptake into intracellular storage compartments is an essential feature of hormonally induced calcium signaling. Thapsigargin, a non-phorboid tumor promoter, increasingly is being used to manipulate calcium stores because it induces a hormone-like elevation of cytosolic calcium. It has been suggested that thapsigargin acts through inhibition of the endoplasmic reticulum calcium pump. We have directly tested the specificity of thapsigargin on all of the known intracellular-type calcium pumps (referred to as the sarcoplasmic or endoplasmic reticulum Ca-ATPase family (SERCA]. Full-length cDNA clones encoding SERCA1, SERCA2a, SERCA2b, and SERCA3 enzymes were expressed in COS cells, and both calcium uptake and calcium-dependent ATPase activity were assayed in microsomes isolated from them. Thapsigargin inhibited all of the SERCA isozymes with equal potency. Furthermore, similar doses of thapsigargin abolished the calcium uptake and ATPase activity of sarcoplasmic reticulum isolated from fast twitch and cardiac muscle but had no influence on either the plasma membrane Ca-ATPase or Na,K-ATPase. The interaction of thapsigargin with the SERCA isoforms is rapid, stoichiometric, and essentially irreversible. These properties demonstrate that thapsigargin interacts with a recognition site found in, and only in, all members of the endoplasmic and sarcoplasmic reticulum calcium pump family.  相似文献   

19.
The effects of modulators of Ca-ATPase and alkaline phosphatase (AP) activity on placental calcium and phosphorus transfer were studied using the in situ perfused guinea pig placenta. The diuretics ethacrynic acid and furosemide had no significant effect on placental calcium and phosphorus transfer when injected into the mother (1.0 or 10.0 mg X kg-1) or added to the solution perfusing the fetal side of the placenta (0.25 or 2.0 mM). These two drugs have previously been shown to inhibit placental Ca-ATPase and enhance AP activity in vitro. D-Penicillamine, which inhibits placental AP but not Ca-ATPase activity in vitro, also had no significant effect on net calcium and phosphorus transfer from mother to fetus either when given to the mother (50 mg X kg-1) or added to the placental perfusion solution (0.25 or 2.0 mM). These results suggest that placental transfer of calcium and phosphorus in the guinea pig may not be directly related to placental Ca-ATPase and AP activities.  相似文献   

20.
G A Plishker 《Cell calcium》1984,5(2):177-185
Elevation of red blood cell calcium increases the efflux of potassium. The active extrusion of calcium from the red cell is regulated by calmodulin. Phenothiazines bind to calmodulin in a calcium-dependent manner preventing the calmodulin from activating a wide variety of cellular processes. The present study shows that phenothiazines increase the efflux of potassium from red cells incubated with the calcium ionophore A23187. The dose dependent effect of trifluoperazine on potassium efflux correlates with its inhibition of Ca-ATPase activity. The phenothiazine effects are dependent upon ATP in that increases in potassium efflux are not observed in energy depleted cells. In calcium buffered ghosts no direct effect of calmodulin or an antibody to calmodulin can be shown. These data suggest that phenothiazines stimulate calcium-dependent potassium loss indirectly by a drug-induced blockage of the calmodulin-activated Ca-ATPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号