首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The presence and some properties of DNA polymerases isolated from normal human lymphocytes, non stimulated and stimulated by phytohemagglutinin, are described. In the non stimulated lymphocytes two cytoplasmic DNA polymerases are found, one eluting from DEAE cellulose at 0.07 M NaCl (CIn) and the other at 0.13 M NaCl (CIIn). In the nuclear soluble fraction only one enzyme activity is found (NIn) which does not adsorb to DEAE cellulose. In the cytoplasm of stimulated lymphocytes only one enzyme activity is detected (CIs) which elutes from DEAE cellulose at 0.12 M NaCl. The nuclear soluble fraction contains two activities, NIs, which does not adsorb to DEAE cellulose, and NIIs, which elutes from DEAE cellulose at 0.07 M NaCl. Some properties of the different enzymes are described which indicate that NIn and NIs enzymes are clearly different from the others.  相似文献   

2.

DNA polymerase activities were scanned in a Pyrococcus furiosus cell extract to identify all of the DNA polymerases in this organism. Three main fractions containing DNA polymerizing activity were subjected to Western blot analyses, which revealed that the main activities in each fraction were derived from three previously identified DNA polymerases. PCNA (proliferating cell nuclear antigen), the sliding clamp of DNA polymerases, did not bind tightly to any of the three DNA polymerases. A primer usage preference was also shown for each purified DNA polymerase. Considering their biochemical properties, the roles of the three DNA polymerases during DNA replication in the cells are discussed.  相似文献   

3.
DNA polymerase [EC 2.7.7.7] activities present in hypotonic extract from rat ascites hepatoma AH130 cells were eluted in three separable peaks on DEAE-cellulose column chromatography. Peak I activity had an alkaline pH optimum, and was relatively resistant to SH-blocking reagents and salt concentration. These properties of DEAE peak I are typical of low molecular weight DNA polymerase. DEAE peak II and peak III activities possessed properties corresponding to high molecular weight (6-8 S) polymerase; they showed maximal activity at neutral pH, and were sensitive to SH-blocking reagents and salt. No low molecular weight polymerase activity was released from DEAE peak II or peak III by salt treatment, though partial conversion from DEAE peak II to peak III was observed on the same treatment.  相似文献   

4.
DNA polymerase activities were scanned in a Pyrococcus furiosus cell extract to identify all of the DNA polymerases in this organism. Three main fractions containingDNA polymerizing activity were subjected to Western blot analyses, which revealed that the main activities in each fraction were derived from three previously identified DNA polymerases. PCNA (proliferating cell nuclear antigen), the sliding clamp of DNA polymerases, did not bind tightly to any of the three DNA polymerases. A primer usage preference was also shown for each purified DNA polymerase. Considering their biochemical properties, the roles of the three DNA polymerases during DNA replication in the cells are discussed.  相似文献   

5.
Four distinct DNA-dependent DNA polymerase activities (DNA polymerases I, II, III and IV according to the order of elution from a DEAE column) have been separated from extracts of unfertilized Xenopus laevis eggs. The same activities, on the basis of their chromatographic properties, template specificities and sedimentation coefficients, have been found in embryos at least until the gastrula stage. On the other hand, Xenopus kidney cells grown in culture, as well as full grown oocytes lack DNA polymerase I. These data suggest the DNA polymerase I might be a special DNA polymerase activity involved in the extremely rapid DNA synthesis which takes place during early development of X. laevis.  相似文献   

6.
We have isolated a mutant of Bacillussubtilis deficient in DNA polymerase I, denominated polA42, which shows a reduced ability to repair the damage to DNA by UV radiation, MMS and mitomycin C;the ability to perform recombination is not appreciably impaired.DEAE cellulose chromatography allows the separation of polymerases I and II from the parental strain;a simple procedure is also described which allows to separate rapidly the polymerases II and III of the mutant strain. The three separated polymerases have similar catalytic properties but they can be distinguished for their sensitivity to inhibitors: PCMB inhibits polymerases II and III but not polymerase I; HPUra inhibits only polymerase III. All three enzymes are unaffected by nalidixate. The DNA synthesis occurring in cells of the polA42 strain permeabilized with toluene is inhibited by nalidixate, whereas the synthesis occurring in polA+ toluenized cells is unaffected by the drug. The polA gene has been mapped by transduction and localized between the phe12 and argA3 genes.  相似文献   

7.
Properties of herpes simplex virus type 1 and type 2 DNA polymerase   总被引:25,自引:0,他引:25  
Herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) DNA polymerases were highly purified from infected HeLa BU cells by DEAE cellulose, phosphocellulose and DNA cellulose column chromatography. DNA exonuclease activity but not endonuclease activity was found associated with both types of DNA polymerase. Both DNA polymerase activities could be activated by salt in a similar fashion with the optimal activity in the range of ionic strength between 0.22 and 0.29 alpha. At an ionic strength of 0.14, spermidine and putrescine in the concentration range (0--5 mM) studied could mimic the action of KCI in stimulating DNA polymerase activity. Spermine, in the same concentration range, had a biphasic effect. At an ionic strength of 0.29 all three polyamines were inhibitory. HSV-1 and HSV-2 DNA polymerase are similar in their column chromatographic behavior, sedimentation rate in sucrose gradient centrifugation, and activation energy, but they differ in their heat stability at 45 degrees C with the HSV-2 enzyme more stable than the HSV-1 enzyme. Kinetic behavior of both enzymes is similar, with Km values for deoxyribonucleoside triphosphates in the range of 5 . 10(-7) to 1.8 . 10(-8) M. IdUTP and dUTP served as apparent competitive inhibitors with respect to dTTP, and AraATP acted as an apparent competitive inhibitor with respect to dATP. AraATP could not replace dATP in the DNA polymerization reaction; in contrast, IdUTP could replace TTP. Phosphonoformic acid behaved as an uncompetitive inhibitor with respect to DNA. The ID(50) value estimated was foind to be dependent on the purity of the DNA polymerase used and the ionic strength of the assay condition. Each DNA-polymerase associated DNA exonuclease had the same stability at 45 degrees C as its DNA polymerase. The associated DNAase activity was inhibited by phosphonoformic acid and high ionic strength of the assay condition.  相似文献   

8.
The DNA polymerases of midgestation mouse embryo, trophoblast, and decidua have been examined. A low molecular weight, nuclear. DNA-dependent polymerase (D-DNA polymerase) and a higher molecular weight cytoplasmic enzyme were found in all three cell types. A DNA polymerase which utilized the poly(A) strand of oligo(dT) · poly(A) as template (R-DNA polymerase) was also found in the three cell types. This enzyme was present both in the nucleus and the cytoplasm. All enzyme levels were highest in the rapidly dividing embryonic cells, substantially lower in the DNA replicating but nondividing trophoblast cells, and lowest in the nonreplicating, nondividing decidual cells. Our observations are consistent with the idea that the nuclear and cytoplasmic D-DNA polymerases are under coordinate control. The relationship of these enzymes to DNA synthesis in vivo is discussed.  相似文献   

9.
Genetic and biochemical evidence suggests there are at least three DNA polymerases required for replication in eukaryotic cells. However, Drosophila embryonic cells have a very short duration S phase which is regulated differently. To address the question of whether embryos utilize different DNA polymerases, we employed Mono Q anion exchange chromatography to resolve the DNA polymerase activities. Two types of DNA polymerase, DNA polymerase delta and DNA polymerase alpha, were distinguished by: 1. copurification of DNA primase or 3'-5'exonuclease activities; 2. immunoblot analysis with alpha-specific polyclonal antisera; 3. sensitivity to aphidicolin and BuPdGTP; and 4. processivity measurements with and without Proliferating Cell Nuclear Antigen. These observations suggest that Drosophila embryos, similar to nonembryonic cells, have both alpha- and delta-type DNA polymerases.  相似文献   

10.
An RNA directed DNA polymerase was purified over 2500 fold from gibbon ape leukemia virus by successive column chromatography on Sephadex G100, DEAE cellulose, phosphocellulose and hydroxyapatite. The purified DNA polymerase has a molecular weight of 68 000, a pH optimum of 7.5, a Mn2+ optimum of 0.8 mM, and KCl optimum of 80 mM. The purified enzyme transcribes heteropolymeric regions of viral 60-70 S RNA isolated from avian myeloblastosis virus, Rauscher murine leukemia virus and simian sarcoma virus and it is inhibited by antiserum prepared against either gibbon ape leukemia virus or simian sarcoma virus DNA polymerases.  相似文献   

11.
A simple and reproducible procedure is described which allows the fast and almost quantitative removal of DNA polymerases I and II from DNA polymerase III, in crude extracts of polA+ strains of Bacillus subtilis. The procedure entails streptomycin sulfate and ammonium sulfate fractionations; subsequent analysis of the partially purified preparation by G-200 chromatography, DEAE cellulose chromatography and density gradient sedimentation, shows that the ammonium sulfate fraction contains less than 5% of the total activity as DNA polymerase I and less than 2% as DNA polymerase II. The purification procedure, up to the ammonium sulfate step, was utilized for the analysis of the level of DNA polymerase III in several B. subtilis mutants, with results comparable to those obtained from the corresponding polA- strains following more cumbersome purification procedures. The M.W. of the purified form is of 227.000, somewhat greater than the published values. The early fractions of the purification have revealed the existence of a form with a M.W. of 426.000; the nature of this form, which has been observed in several instances and which is very unstable and short-lived, is under investigation.  相似文献   

12.
DNA polymerase activity was extracted from testis cells of the dogfish Scyliorhinus caniculus. On a sucrose gradient, two main peaks could be separated, corresponding to DNA polymerases beta (3.8 S) and alpha (7.5 S). DNA polymerase gamma could also be detected when poly(A) . (dT)12 was used as template. The properties of alpha and beta polymerases of this primitive vertebrate were similar to those generally described, especially in mammals. The beta enzyme was highly sensitive to N-ethylmaleimide, however, and could use poly(dT) . poly(A) as template. Polymerase alpha was present in spermatogonia, spermatocytes and spermatids. Activity was maximal in spermatocytes. DNA polymerase beta was present in all testis cells with similar activities in spermatogonia and spermatocytes. Decreased activities were observed during spermiogenesis. Some activity remained associated with the chromatin fraction of mature sperm cells.  相似文献   

13.
Extracts of large oocytes of Xenopus laevis contain high levels of one major DNA polymerase activity. After maturation into eggs, the overall level of DNA polymerase activity in extracts increases fourfold and a second major activity appears on Sephadex G-200 or DEAE cellulose columns. Although intense DNA synthesis occurs as the number of cells increase from one to over 100,000, no further increases in the level of either DNA polymerase activity are observed in cleavage, gastrula or early neurula stage embryos. In extracts of late neurulae or hatched embryos, however, a third major DNA polymerase activity appears coincident with an increase in the ability of the extracts to utilise native DNA templates in vitro.  相似文献   

14.
Three DNA polymerase activities, named 1, 2 and 3 were purified from maize embryo axes and were compared in terms of ion requirements, optimal pH, temperature and KCl for activity, response to specific inhibitors and use of templates. All three enzymes require a divalent cation for activity, but main differences were observed in sensitivity to inhibitors and template usage: while DNA polymerases 1 and 2 were inhibited by N-ethyl maleimide and aphidicolin, inhibitors of replicative-type enzymes, DNA polymerase 3 was only marginally or not affected at all. In contrast, DNA polymerase 3 was highly inhibited by very low concentrations of ddTTP, an inhibitor of repair-type enzymes, and a 100-fold higher concentration of the drug was needed to inhibit DNA polymerases 1 and 2. Additionally, DNA polymerases 1 and 2 used equally or more efficiently the synthetic template polydA-oligodT, as compared to activated DNA, while polymerase 3 used it very poorly. Whereas DNA polymerases 1 and 2 shared properties of replicative-type enzymes, DNA polymerase 3 could be a repair-type enzyme. Moreover, a DNA primase activity copurified with the 8000-fold purified DNA polymerase 2, strenghtening the suggestion that polymerase 2 is a replicative enzyme, of the -type. This DNA primase activity was also partially characterized. The results are discussed in terms of relevant data about other plant DNA polymerases and primases reported in the literature.  相似文献   

15.
The use of 5'-AMP as a ligand for the affinity chromatography of DNA polymerases with intrinsic 3' to 5' exonuclease activities was investigated. The basis for this is that 5'-AMP would be expected to act as a ligand for the associated 3' to 5' exonuclease. The requirements for binding of Escherichia coli DNA polymerase I, T4 DNA polymerase, and calf thymus DNA polymerase delta, all of which have associated 3' to 5' exonuclease activities, to several commercially available 5'-AMP supports with different linkages of 5'-AMP to either agarose or cellulose were examined. The DNA polymerases which possessed 3' to 5' exonuclease activities were bound to agarose types in which the 5'-phosphoryl group and the 3'-hydroxyl group of the AMP were unsubstituted. Bound enzyme could be eluted by either an increase in ionic strength or competitive binding of nucleoside 5'-monophosphates. Magnesium was found to reinforce the binding of the enzyme to these affinity supports. DNA polymerase alpha, which does not have an associated 3' to 5' exonuclease activity, did not bind to any of these columns. These differences can be used to advantage for the purification of DNA polymerases that have associated 3' to 5' exonuclease activities, as well as a means for establishing the association of 3' to 5' exonuclease activities with DNA polymerases.  相似文献   

16.
A number of error-prone DNA polymerases have been found in various eukaryotes, ranging from yeasts to mammals, including humans. According to partial homology of the primary structure, they are grouped into families B, X, and Y. These enzymes display a high infidelity on an intact DNA template, but they are accurate on a damaged template. Error-prone DNA polymerases are characterized by probabilities of base substitution or frameshift mutations ranging from 10?3 to 7.5 · 10?1 in an intact DNA, whereas the spontaneous mutagenesis rate per replicated nucleotide varies between 10?10 and 10?12. Low-fidelity polymerases are terminal deoxynucleotidyl transferase (TdT) and DNA polymerases β, ζ, κ, η, ι, λ, μ, and Rev1. The main characteristics of these enzymes are reviewed. None of them exhibits proofreading 3′ → 5′ exonuclease (PE) activity. The specialization of these polymerases consists in their capacity for synthesizing opposite DNA lesions (not eliminated by the numerous repair systems), which is explained by the flexibility of their active centers or a limited ability to express TdT activity. Classic DNA polymerases α, δ, ε, and γ cannot elongate primers with mismatched nucleotides at the 3′-end (which leads to replication block), whereas some specialized polymerases can catalyze this elongation. This is accompanied by overcoming the replication block, often at the expense of an increased mutagenesis rate. How can a cell exist under the conditions of this high infidelity of many DNA polymerase activities? Not all tissues of the body contain a complete set of low-fidelity DNA polymerases, although some of these enzymes are vitally important. In addition, cells “should not allow” error-prone DNA polymerases to work on undamaged DNA. After a lesion on the DNA template is bypassed, the cell should switch over from DNA synthesis catalyzed by specialized polymerases to the synthesis catalyzed by relatively high-fidelity DNA polymerases δ and ? (with an error frequency of 10?5 to 10?6) as soon as possible. This is done by forming complexes of polymerase δ or ? with proliferating cell nuclear antigen (PCNA) and replication factors RP-A and RF-C. These highly processive complexes show a greater affinity to correct primers than specialized DNA polymerases do. The fact that specialized DNA polymerases are distributive or weakly processive favors the switching. The fidelity of these polymerases is increased by the PE function of DNA polymerases δ and ε, as well as autonomous 3′ → 5′ exonucleases, which are widespread over the entire phylogenetic tree of eukaryotes. The exonuclease correction decelerates replication in the presence of lesions in the DNA template but increases its fidelity, which decreases the probability of mutagenesis and carcinogenesis.  相似文献   

17.
A protein that stimulates DNA polymerase alpha/primase many-fold on unprimed poly(dT) was purified to homogeneity from extracts of cultured mouse cells. The protein contains polypeptides of approximately 132 and 44 kDa, and the total molecular mass of 150 kDa calculated from Stokes radius (54 A) and sedimentation coefficient (6.7 S) indicates that it contains one each of the two subunits. The purified "alpha accessory factor" (AAF) also stimulates DNA polymerase alpha/primase in the self-primed reaction with unprimed single-stranded DNA. In addition to these effects on the coordinate activities of DNA polymerase alpha and DNA primase, stimulatory effects were also demonstrated separately on both the polymerase and primase activities of the enzyme complex. However, there was no stimulation with DNase-treated ("activated") DNA under normal conditions for assay of DNA polymerase alpha. The stimulatory activity of mouse AAF is highly specific for DNA polymerase alpha/primase; no effect was observed with mouse DNA polymerases beta, gamma, or delta, nor with retroviral, bacteriophage, or bacterial DNA polymerases. Mouse AAF stimulated human DNA polymerase alpha/primase with several different templates, similar to results with the mouse enzyme. However, it had very little effect on the DNA polymerase/primase from either Drosophila embryo or from yeast.  相似文献   

18.
The rates of RNA synthesis in cultured human KB cells infected by adenovirus 2 were estimated by measuring the endogenous RNA polymerase activities in isolated nuclei. The fungal toxin α-amanitin was used to determine the relative and absolute levels of RNA synthesis by RNA polymerases I, II, and III in nuclei isolated during the course of infection. Whereas the level of endogenous RNA polymerase I activity in nuclei from infected cells remained constant relative to the level in nuclei from mock-infected cells, the endogenous RNA polymerase II and III activities each increased about 10-fold. These increases in endogenous RNA polymerase activities were accompanied by concomitant increases in the rates of synthesis in isolated nuclei of viral mRNA precursor, which was monitored by hybridization to viral DNA, and of viral 5.5S RNA, which was quantitated by electrophoretic analysis on polyacrylamide gels. The cellular RNA polymerase levels were measured with exogenous templates after solubilization and chromatographic resolution of the enzymes on DEAE-Sephadex, using procedures in which no losses of activity were apparent. In contrast to the endogenous RNA polymerase activities in isolated nuclei, the cellular levels of the solubilized class I, II, and III RNA polymerases remained constant throughout the course of the infection. Furthermore, no differences were detected in the chromatographic properties of the RNA polymerases obtained from infected or control mock-infected cells. These observations suggest that the increases in endogenous RNA polymerase activities in isolated nuclei are not due to variations in the cellular concentrations of the enzymes. Instead, it is likely that the increased endogenous enzyme activities result from either the large amounts of viral DNA template available as a consequence of viral replication or from functional modifications of the RNA polymerases or from a combination of these effects.  相似文献   

19.
We have determined the levels of cellular DNA polymerases and Epstein-Barr virus specific DNA polymerase in three Burkitt's lymphoma cell lines producing varying amounts of EBV, one of which was induced by 12-0-tetra-decanoylphorbol-13-acetate (TPA). There was a proportional increase in the level of EBV-DNA polymerase with an increase in the percent of virus-producing cells. However, there was a reciprocal relationship between the levels of EBV-DNA polymerase and DNA polymerase alpha i.e., in cell line containing the highest level of EBV-DNA polymerase, activity of DNA polymerase alpha, but not of DNA polymerase beta, was reduced to an insignificantly low level. TPA does not have any direct effect on activities of either EBV-DNA polymerase or DNA polymerase alpha. EBV-DNA polymerases isolated from cells grown with or without TPA are indistinguishable in their properties such as elution position on phosphocellulose column, molecular weight, mono and divalent cation requirements, pH optimum, and other requirements for optimum activity. Addition of crude extracts of cells grown in presence of TPA to the purified DNA polymerase alpha did not inhibit its activity indicating that the observed loss was not due to any specific inhibitor present in TPA treated cells. Raji, a nonproducer cell line, did not contain EBV-DNA polymerase. There was no induction of EBV-DNA polymerase when Raji cells were grown in presence of TPA. The phenomenon of reduction in the levels of DNA polymerase alpha in cells induced to produce EBV may represent a mechanism by which the host DNA replication is shut off following virus infection.  相似文献   

20.
DNA polymerases were purified several hundred-fold from the10 000 x g soluble (polymerase I) and particulate (polymeraseIII) fractions prepared from virus PBCV-1 infected ChlorellaNC64A extracts. Both DNA polymerases exhibited optimal activitywith activated calf thymus DNA at pH 8.5. DNA polymerase I required3.0 mol m–3 MgSO4 and 150 to 250 mol m–3 KCl foroptimum activity whereas, DNA polymerase III required 2.0 molm–3 MgSO4 and 150 mol m–3 KCl. Both enzymes wereinhibited by pyrophosphate, actinomycin D, ethidium bromide,dideoxythymidine triphosphate, and N-ethylmaleimide but wererelatively insensitive to aphidicolin. DNA polymerase I differedfrom DNA polymerase III in its response to cations (particularlyNH4Cl), elution from a DEAE cellulose column, and molecularweight. Key words: Algal virus, DNA polymerase, Chlorella  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号