首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A single dose of Myleran suppressed CFU in polycythemic mice to around 1% of normal for a period of 2 weeks and permitted the study of effects of erythropoietin on unipotential, erythroid stem cells (erythropoietin-responsive cells, ERC) in the absence of cell inflow from the CFU compartment. Without erythropoietin no ERC were detectable for 12 days after Myleran. Injections of erythropoietin had no effect on CFU but restored ERC populations in proportion to the dose of erythropoietin. Hydroxyurea given after erythropoietin markedly inhibited ERC repopulation and the latter is attributed to a stimulation of ERC proliferation by erythropoietin. Evidence in support of an age structure in the ERC population is presented. Daily erythropoietin injection resulted in stable ERC populations, indicating that ERC loss through differentiation and ERC self-replication were in balance.  相似文献   

2.
Preincubation of C57BL adult marrow cells or CBA fetal liver cells with a 250-fold excess concentration of purified GM-CSF failed to reduce the frequency of cells forming eosinophil, megakaryocyte or erythroid colonies in subsequent agar cultures. When excess concentrations of purified GM-CSF were added to agar cultures stimulated by pokeweed mitogen-stimulated spleen conditioned medium (SCM), no reduction was observed in the frequency of eosinophil, megakaryocyte or erythroid colonies. Addition of 4 units of purified erythropoietin (EPO) to cultures of fetal liver or adult marrow cells stimulated by SCM increased the number of erythroid colonies but did not reduce the number of non-erythroid colonies or the non-erythroid content of mixed erythroid colonies. Although neither GM-CSF nor EPO alone was able to stimulate erythroid colony formation in agar cultures of fetal liver cells, small numbers of large erythroid colonies were stimulated to develop in cultures containing both purified regulators. Purified GM-CSF was also able to support the survival in vitro of a small proportion of erythroid colony-forming cells in fetal liver populations cultured initially in the absence of SCM and the survival of some eosinophil and megakaryocyte colony-forming cells in similar cultures of adult marrow cells. The results do not support the hypothesis that GM-CSF and EPO compete for a common pool of uncommitted progenitor cells. On the contrary, the data indicate that GM-CSF und EPO are able to collaborate in stimulating the proliferation of some erythropoietic cells. Furthermore, purified GM-CSF appears to be able to support temporarily the survival and/or initial proliferation of at least some cells forming erythroid, eosinophil and megakaryocyte colonies, even though GM-CSF is unable to stimulate the formation of colonies of these types.  相似文献   

3.
Z Ben-Ishay  G Prindull 《Blut》1989,58(6):295-298
Bone marrow cells of normal and cytosine-arabinoside (Ara-C) treated C57B1 mice were cultured in primary long-term culture (LTBMC) for a period of eight weeks. Non-adherent cells collected at weekly culture feedings consisted of neutrophils, macrophages and megakaryocytes. These were transferred into a) secondary peritoneal diffusion chamber cultures (DC) and b) secondary stromal cell cultures (SCC) first, and then into tertiary DC cultures. While in LTBMC and SCC there was no evidence of erythropoiesis, many erythroid colonies developed in DC cultures. It appears that undifferentiated erythroid progenitors may have a long survival in LTBMC and SCC devoid of erythropoietin and then differentiate in vivo in DC cultures in host mice without specific erythropoietic stimuli. Terminal differentiation and maturation of erythroid progenitors occurs to a limited extent in conventional DC cultures. The large number of erythroid colonies in DC observed in the present study could be due to increased sensitivity of undifferentiated erythroid progenitors from LTBMC to physiological levels of Epo in host mice of DC.  相似文献   

4.
Erythroid colony formation in agar cultures of CBA bone marrow cells was stimulated by the addition of pokeweed mitogen-stimulated spleen conditioned medium (SCM). Optimal colony numbers were obtained when cultures contained 20% fetal calf serum and concentrated spleen conditioned medium. By 7 days of incubation, large burst or unicentric erythroid colonies occurred at a maximum frequency of 40–50 per 105 bone marrow cells. In CBA mice the cells forming erythroid colonies were also present in the spleen, peripheral blood, and within individual spleen colonies. A marked strain variation was noted with CBA mice having the highest levels of erythroid colony-forming cells. In CBA mice erythroid colony-forming cells were mainly non-cycling (12.5% reduction in colony numbers after incubation with hydroxyurea or 3H-thymidine). Erythroid colony-forming cells sedimented with a peak of 4.5 mm/hr, compared with CFU-S, which sedimented at 4.25 mm/hr. The addition of erythropoietin (up to 4 units) to cultures containing SCM did not alter the number or degree of hemoglobinisation of erythroid colonies. Analysis of the total number of erythroid colony-forming cells and CFU-S in 90 individual spleen colonies gave a correlation coefficient of r = 0.93 for these two cell types. In addition to benzidine-positive erythroid cells, up to 40% of the colonies contained, in addition, varying proportions of neutrophils, macrophages, eosinophils, and megakaryocytes. Taken together with the close correlation between the numbers of CFU-S in different adult hemopoietic tissues, including individual spleen colonies, the data indicate that the erythroid colony-forming cells expressing multiple hemopoietic differentiation are members of the hemopoietic multipotential stem cell compartment.  相似文献   

5.
Interleukin-4 (IL-4), which was originally identified as a B-cell growth factor, has been shown to produce diverse effects on hemopoietic progenitors. The present study investigated the effects of purified recombinant murine IL-4 on early hemopoetic progenitors in methylcellulose culture. IL-4 supported the formation of blast cell colonies and small granulocyte/macrophage (GM) colonies in cultures of marrow and spleen cells of normal mice as well as spleen cells of mice treated with 150 mg/kg 5-fluorouracil (5-FU) 4 days earlier. When the blast cell colonies were individually picked and replated in cultures containing WEHI-3 conditioned medium and erythropoietin (Ep), a variety of colonies were seen, including mixed erythroid colonies, indicating the multipotent nature of the blast cell colonies supported by IL-4. To test whether or not IL-4 affects multipotent progenitors directly, we replated pooled blast cells in cultures under varying conditions. In the presence of Ep, both IL-3 and IL-4 supported a similar number of granulocyte/erythrocyte/macrophage/megakaryocyte (GEMM) colonies. However, the number of GM colonies supported by IL-4 was significantly smaller than that supported by IL-3. When colony-supporting abilities of IL-4 and IL-3 were compared using day-4 post-5-FU spleen and day-2 post-5-FU marrow cells, IL-4 supported the formation of fewer blast cell colonies than did IL-3. IL-4 and IL-6 revealed synergy in support of colony formation from day 2 post-5-FU marrow cells. These results indicate that murine IL-4 is another direct-acting multilineage colony-stimulating factor (multi-CSF), similar to IL-3, that acts on primitive hemopoietic progenitors.  相似文献   

6.
M C Datta 《Prostaglandins》1985,29(4):561-577
The effects of prostaglandin E2 (PGE2) in association with erythropoietin on the synthesis of fetal and adult hemoglobin in peripheral blood-derived erythroid burst colonies from normal adults and from patients with sickle cell anemia were investigated. The synthesized hemoglobin at the end of 8, 14 or 18 days in culture was separated by DEAE-cellulose chromatography of 35S-methionine labelled hemoglobin. Quantitative estimation of the synthesized hemoglobin phenotypes, for the three indicated culture periods, showed preferential synthesis of Hb F in addition to an overall increase in hemoglobin synthesis in PGE2 treated colonies. Furthermore, the reactivation of fetal hemoglobin production by PGE2 was more pronounced when the adherent cells were included in the culture dishes. These results indicate that the addition of PGE2 to culture dishes presumably constitutes an environmental change to promote the functional changes seen in the blood erythroid bursts in terms of Hb synthesis and switching.  相似文献   

7.
Erythroid colonies were generated in response to erythropoietin in plasma clot cultures of sheep and goat bone marrow cells. At low concentration erythropoietin only hemoglobin A (betaA globin) was synthesized in goat cultures, but at high concentrations 50% of the hemoglobin synthesized was hemoglobin C (betaC globin). This effect of erythropoietin on the expression of a specific beta globin gene was manifested only after 72 h in vitro and followed the development of erythroid colonies. Sheep colonies behaved differently from those of goat in that little or no betaC globin synthesis occurred even at high erythropoietin concentration. To investigate this difference, sheep marrow cells were fractionated by unit gravity sedimentation. The erythroid colony-forming cells sedimented more rapidly (3.5-6mm/h) than the hemoglobinized eththroid precursors (1-3.5 mm/h), suggesting that the colonies were formed from an early erythroid precursor, However, the colonies formed from the sheep marrow fractions synthesized only betaA globin even at concentrations of erythropoietin sufficient to stimulate betaC globin synthesis in goat colonies. Morphologically, the goat colonies were larger and more mature than those of the sheep. By 96 h in vitro three-fourths of the goat colonies contained enucleated red cells compared to only 3% of the sheep colonies. Thus, erythropoietin had an equivalent effect in stimulating erythroid colony growth from the marrow of both species although there were both biochemical and morphological differences between the colonies. Hemoglobin switching appeared to require exposure of an early precursor to high erythropoietin concentration, but the results with sheep marrow suggested that the rate of colony growth and cellular maturation might also be important.  相似文献   

8.
We have established permanent lines of nonadherent cells from fresh normal mouse bone marrow in media containing pokeweed mitogen-stimulated spleen cell conditioned medium (PWSCM). These lines continuously produced erythropoietic progenitor cells (detected by their ability to form erythroid bursts in semi-solid medium containing erythropoietin) together with cells having characteristics of the mast cell lineage (as demonstrated by metachromatic staining with toluidine blue, histamine content and membrane receptors for IgE). Sixteen such cell lines have been established in sixteen attempts. Cloning experiments were carried out to determine the nature of the progenitor cell(s) responsible for the permanence of these cultures. When cells were cultured in methylcellulose medium containing PWSCM, colonies were observed which reached macroscopic size after 4 weeks of incubation. Replating of individual primary colonies resulted in secondary colony formation, indicating the presence of progenitor cells with self-renewal potential. Forty-seven primary colonies were picked and their cells were suspended in liquid culture medium containing PWSCM. Of these, twenty-one could be expanded to establish permanently growing sublines. Sixteen of these sublines were found to be composed of both erythroid progenitors and mast cells. In five sublines only mast cells could be seen; none of the sublines appeared to be purely erythroid. Karyotypic analysis of mast cells and of erythroid cells of seven sublines derived from individual colonies which arose in cocultures of male and female cells revealed that the mast cells and erythroid cells were both of the same sex in each of the seven sublines; this demonstrates the single cell origin of each colony and of the two lineages derived from it. We conclude that these nonadherent, factor-dependent cell lines are maintained by self-renewal and differentiation of bipotential progenitor cells apparently restricted to the erythroid and mast cell lineages.  相似文献   

9.
The purpose of this study was to analyze the effects of recombinant human interleukin 4 (IL-4) on the differentiation and proliferation in vitro of human granulocyte/macrophage (GM) and erythroid progenitors. IL-4 was added to either fetal bovine serum (FBS)-supplemented or to FBS-deprived cultures of unfractionated human marrow cells or marrow cells depleted of adherent and/or T cells. Paradoxical effects similar to those reported in the murine system were detected in these experiments. In FBS-supplemented cultures, IL-4, which had no effect on the growth or erythroid bursts (from burst-forming cells; BFU-E) detected in the presence of Epo alone, decreased by 46% the number of erythroid bursts detected in the presence of Epo and phytohemagglutinin-stimulated leukocyte-conditioned medium (PHA-LCM). In contrast, in FBS-deprived cultures, IL-4 increased by 30-700% the number of erythroid bursts in cultures containing Epo alone or containing Epo, IL-3, and GM-CSF. The stimulatory effect of IL-4 on erythroid burst growth under FBS-deprived conditions was particularly evident when adherent cells were removed. Under the conditions investigated, IL-4 had little effect on the growth of GM colonies. In FBS-deprived suspension cultures of nonadherent, T-cell-depleted marrow cells, IL-4 maintained both the number of BFU-E and CFU-GM for at least 8 days. In these cultures, IL-4 antagonized the capacity of IL-3 to increase the number of BFU-E but IL-4 and IL-3 acted together to maintain the number of CFU-GM. To determine if IL-4 acted directly or indirectly, its effects on the growth of factor-dependent subclones of the murine progenitor cell line 32D were analyzed. Three subclones were studied: the original IL-3-dependent clone 32D cl.3, the Epo-dependent erythroid clone 32D Epo-1, and the G-CSF-dependent myeloid clone 32D G-1. IL-4 alone failed to induce colony growth from these cell lines. However, IL-4 inhibited by 25% the number of colonies formed by 32D cl.3 in the presence of IL-3 while increasing by 25% and 25-50% the number of colonies formed by 32D Epo-1 and 32D G-1 in the presence of Epo or G-CSF, respectively. These results indicate that human IL-4, as its murine counterpart, is a multilineage growth factor with paradoxical effects which are mediated by the direct action of IL-4 on progenitor cells.  相似文献   

10.
Erythroid colony formation in agar cultures of CBA cells was stimulated by the addition of pokeweed mitogen-stimulated C57BL spleen conditioned medium. Both 48-hour colonies ("48-hour benzidine-positive aggregates") and day 7 large burst or unicentric erythroid colonies ("erythroid colonies") developed, together with many neutrophil and/or macrophage colonies. In CBA mice, the cells forming erythroid colonies occurred with maximum frequency (650/10(5) cells) in 10- to 11-day-old yolk sac and fetal liver but were present also in fetal blood, spleen and bone marrow. The frequency of these cells fell sharply with increasing age and only occasional cells (2/10(5) cells) were present in adult marrow. A marked strain variation was noted, CBA mice having the highest levels of erythroid colony-forming cells. The erythroid colony-forming cells in 12-day CBA fetal liver were radiosensitive (DO 110-125 rads), mainly in cycle and were non-adherent, light density, cells sedimenting with a peak velocity of 6-9 mm/hr. These properties are similar to those of other hemopoietic progenitor cells in fetal tissues. The relationship of these apparently erythropoietin-independent erythroid colony-forming cells to those forming similar colonies after stimulation by erythropoietin remains to be determined.  相似文献   

11.
A fibrin clot culture system with high plating efficiency is described for the growth of erythroid cells from chick bone marrow. Erythroid colonies grown in the absence of adult chicken plasma (spontaneous colonies) were either benzidine-negative or weakly benzidine-positive. Colonies grown in the presence of chicken plasma were 90% strongly benzidine-positive and 40% more abundant than spontaneous colonies. Plasma from anemic chickens was more effective than control plasma in inducing heme accumulation (heme-stimulating activity) and in increasing the number of erythroid colonies (colony-stimulating activity). Spontaneous colonies from 48-h cultures were transformed into benzidine-positive colonies by exposing them for 6-10 h to chicken plasma.  相似文献   

12.
When Friend virus-induced leukemic cell lines were injected into irradiated hosts after the second radiation dose, the colony-forming unit (CFU) in the recipient spleens per 104 cells was found to be 7-fold higher than the CFU obtained when the second radiation dose had been given shortly after the inoculation of the cells. Serial passage of the cells from the spleen colonies to irradiated hosts resulted in a marked increase of the CFU value, indicating that this cell population was capable of both self-replication and erythroid differentiation. The “f” fraction, which indicates the percentage of the inoculated cells that reach the spleen in the irradiated recipients, was found to be approximately 15%. If the highest CFU value obtained from serial colony-to-colony passages is corrected by this factor, a final cloning efficiency of about 18% is demonstrated. Neither induced plethora nor the administration of erythropoietin (1 u/mouse/for 2 days) appeared to affect the spleen colony-forming ability of the leukemic cells. Erythroid differentiation is not detectable in the transplantable subcutaneous tumors which were used to initiate the tissue culture lines and which also are capable of inducing erythroid spleen clones in irradiated recipients. This lends support to the theory of the influence of “microenvironmental factors” on the fate of stem cells with potential for differentiation.  相似文献   

13.
The effect of various agents which are known to increase the differentiation of Friend erythroleukemia cells was investigated in cultures of mouse bone marrow cells. N, N-dimethylacetamide (5 and 15 mM) and acetamide (60 mM) significantly increased the number of erythroid colonies observed. Tetramethylurea, dimethylformamide, pyridine N-oxide, and butyric acid were ineffective. Dimethylsulfoxide at a concentration of 1% significantly increased colony number in cultures of marrow cells obtained from male mice, but had no effect in cultures of female bone marrow cells.  相似文献   

14.
The effect of various agents which are known to increase the differentiation of Friend erythroleukemia cells was investigated in cultures of mouse bone marrow cells. N,N-dimethylacetamide (5 and 15 mM) and acetamide (60 mM) significantly increased the number of erythroid colonies observed. Tetramethylurea, dimethylformamide, pyridine N-oxide, and butyric acid were ineffective. Dimethylsulfoxide at a concentration of 1% significantly increased colony number in cultures of marrow cells obtained from male mice, but had no effect in cultures of female bone marrow cells.  相似文献   

15.
Experiments were conducted on CBA mice and albino rats. A study was made of the effect of erythrocyte destruction products (EDP) on the content of hemopoietic colony-forming units (CFU), differentiation of stem cells and the erythropoietin production. It was shown that 3 or 4 EDP injections to normal mice or to lethally irradiated (1000 rad) mice after the transplantation of bone marrow cells caused no changes in the CFU level of stem cells differentiation. In case of a daily (for 3 days) administration of EDP to mice before the irradiation (1000 rad) and bone marrow transplantation there was observed an increase of the colonies count in the recipients' spleen on account of the erythroid colonies. EDP injection caused no changes in the erythropoietic activity of the blood serum. A possible role of erythrocyte destruction products in the mechanism of erythropoiesis autoregulation is discussed.  相似文献   

16.
The development of splenic erythroid colony-forming cells from rat embryos in the last 4 days of intrauterine life was examined after 2 and 7 days in a methylcellulose culture system. The number of 2- and 7-day erythroid colonies decreased sharply between, respectively, days 20 and 21 of gestation and days 19 and 20. Concomitantly, a maturation of proerythroblasts and basophilic erythroblasts to mature erythroblasts was detected on smears of splenic cellular suspensions. The effect of a corticosteroid excess induced by a maternal laparotomy was tested on spleen and liver cultures from the same control or experimental fetuses. The ratio of the number of 2-day to the number of 7-day erythroid colonies did not differ in experimental and control splenic cultures, but in liver cultures was significantly lower at days 19 and 20 in experimental than in control cultures.  相似文献   

17.
DiFalco MR  Congote LF 《Cytokine》2002,18(1):51-60
Azidothymidine (AZT)-induced anemia in mice can be reversed by the administration of IGF-IL-3 (fusion protein of insulin-like growth factor II (IGF II) and interleukin 3). Although interleukin 3 (IL-3) and erythropoietin (EPO) are known to act synergistically on hematopoietic cell proliferation in vitro, injection of IGF-IL-3 and EPO in AZT-treated mice resulted in a reduction of red cells and an increase of plasma EPO levels as compared to animals treated with IGF-IL-3 or EPO alone. We tested the hypothesis that the antagonistic effect of IL-3 and EPO on erythroid cells may be mediated by endothelial cells. Bovine liver erythroid cells were cultured on monolayers of human bone marrow endothelial cells previously treated with EPO and IGF-IL-3. There was a significant reduction of thymidine incorporation into both erythroid and endothelial cells in cultures pre-treated with IGF-IL-3 and EPO. Endothelial cell culture supernatants separated by ultrafiltration and ultracentrifugation from cells treated with EPO and IL-3 significantly reduced thymidine incorporation into erythroid cells as compared to identical fractions obtained from the media of cells cultured with EPO alone. These results suggest that endothelial cells treated simultaneously with EPO and IL-3 have a negative effect on erythroid cell production.  相似文献   

18.
The cellular control of the switch from embryonic to fetal globin formation in man was investigated with studies of globin expression in erythroid cells of 35- to 56-day-old embryos. Analyses of globins synthesized in vivo and in cultures of erythroid progenitors (burst-forming units, BFUe) showed that cells of the yolk sac (primitive) erythropoiesis, in addition to embryonic chains, produced fetal and adult globins and that cells of the definitive (liver) erythropoiesis, in addition to fetal and adult globins, produce embryonic globins. That embryonic, fetal, and adult globins were coexpressed by cells of the same lineage was documented by analysis of globin chains in single BFUe colonies: all 67 yolk sac-origin BFUe colonies and 42 of 43 liver-origin BFUe colonies synthesized epsilon-, gamma-, and beta-chains. These data showed that during the switch from embryonic to adult globin formation, embryonic and definitive globin chains are coexpressed in the primitive, as well as in the definitive, erythroid cells. Such results are compatible with the postulate that the switch from embryonic to fetal globin synthesis represents a time-dependent change in programs of progenitor cells rather than a change in hemopoietic cell lineages.  相似文献   

19.
The effects of prostaglandin E2 (PGE2) in association with erythropoietin on the synthesis of fetal and adult hemoglobin in peripheral blood-derived erythroid burst colonies from normal adults and from patients with sickle cell anemia were investigated. The synthesized hemoglobin at the end of 8, 14 or 18 days in culture was separated by DEAE-cellulose chromatography of 35S-methione labelled hemoglobin. Quantitative estimation of the synthesized hemoglobin phenotypes, for the three indicated culture periods, showed preferential synthesis of Hb F in addition to an overall increase in hemoglobin synthesis in PGE2 treated colonies. Furthermore, the reactivation of fetal hemoglobin production by PGE2 was more pronounced when the adherent cells were included in the culture dishes. These results indicate that the addition of PGE2 to culture dishes presumably constitutes an environmental change to promote the functional seen in the blood erythroid bursts in terms of Hb synthesis and switching.  相似文献   

20.
Primary cultures derived from mechanically dissociated definitive streak chick blastoderms were grown in a warm air stream on the stage of inverted phase microscope, through which in vitro erythroid development could be observed. Proerythroid cells divide three or four times in 48 hr to give rise to erythroid colonies ranging from 10 to 1000 cells, depending on the size of the blastoderm fragments from which they were derived.Erythroid cell development follows a similar course in cultures grown in a carbon dioxide incubator. Colonies consisting of about 50 cells, derived from blastoderm fragments containing 5 to 10 cells, were isolated and labeled with [3H]leucine, and their labeled hemoglobins were analyzed by isoelectric focusing. Both early hemoglobins (E,M,P,P′, and P″) and late hemoglobins (A and D) are made in colonies derived from single blastoderm fragments. The ratio of late to early hemoglobins is about 1.7 in all colonies analyzed. The implications of this finding for the clonal model of erythroid development are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号