首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The activation of the protein kinase Raf at the cell membrane is a critical step in cell signaling during development, but the mechanisms that regulate Raf activity remain incompletely defined. We previously demonstrated that the C. elegans cgr-1 gene encodes a CRAL/TRIO domain-containing protein that is a critical modulator of Ras-dependent cell fate specification during C. elegans development. Here we identify the mammalian α-tocopherol associated protein-1 (TAP-1) as a functional ortholog of cgr-1. TAP-1 mRNA was expressed in many tissues, and TAP-1 protein colocalized with Ras and Raf at the cell membrane. Reducing TAP-1 expression by RNA interference increased Ras/ERK signaling in multiple cell types. These functional studies demonstrate that CRAL/TRIO domain proteins play a conserved role in regulating Ras signaling. Biochemical analyses indicated that TAP-1 operates at the level of Raf, since TAP-1 function negatively regulated the amount of Raf-1 recruited to GTP-bound Ras at the cell membrane. TAP-1 plays a significant physiological role in controlling cell division, since reducing TAP-1 expression increased the oncogenic capacity of Ras transformed human cancer cell lines. These studies identify TAP-1 as a critical modulator of Ras-mediated cellular signaling.  相似文献   

2.
3.
M Han  P W Sternberg 《Cell》1990,63(5):921-931
Genetic analysis previously suggested that the let-60 gene controls the switch between vulval and hypodermal cell fates during C. elegans vulval induction. We have cloned the let-60 gene, and shown that it encodes a gene product identical in 84% of its first 164 amino acids to ras gene products from other vertebrate and invertebrate species. This conservation suggests that the let-60 product contains all the biochemical functions of ras proteins. Extrachromosomal arrays of let-60 ras DNA cause cell-type misspecification (extra vulval fates) phenotypically opposite to that caused by let-60 ras loss-of-function mutations (no vulval fates), and suppress the vulvaless phenotype of mutations in two other genes necessary for vulval induction. Thus, the level and pattern of let-60 ras expression may be under strict regulation; increase in let-60 ras activity bypasses or reduces the need for upstream genes in the vulval induction pathway.  相似文献   

4.
5.
The Caenorhabditis elegans gene lin-36 acts to antagonize Ras-mediated vulval induction in a pathway that includes genes with products similar to the mammalian retinoblastoma (Rb) protein and the Rb-binding protein p48. We report that lin-36 encodes a novel protein of 962 amino acids. We demonstrate that lin-36 functions in and is expressed in the vulval precursor cells, establishing that the lin-36 pathway is involved in intercellular signaling. We also report that the lin-36 pathway and/or another pathway that is functionally redundant with the lin-36 pathway antagonize a ligand-independent activity of the receptor tyrosine kinase/Ras vulval induction pathway.  相似文献   

6.
Protein phosphatase 2A (PP2A) can both positively and negatively influence the Ras/Raf/MEK/ERK signaling pathway, but its relevant substrates are largely unknown. In C. elegans, the PR55/B regulatory subunit of PP2A, which is encoded by sur-6, positively regulates Ras-mediated vulval induction and acts at a step between Ras and Raf. We show that the catalytic subunit (C) of PP2A, which is encoded by let-92, also positively regulates vulval induction. Therefore SUR-6/PR55 and LET-92/PP2A-C probably act together to dephosphorylate a Ras pathway substrate. PP2A has been proposed to activate the Raf kinase by removing inhibitory phosphates from Ser259 from Raf-1 or from equivalent Akt phosphorylation sites in other Raf family members. However, we find that mutant forms of C. elegans LIN-45 RAF that lack these sites still require sur-6. Therefore, SUR-6 must influence Raf activity via a different mechanism. SUR-6 and KSR (kinase suppressor of Ras) function at a similar step in Raf activation but our genetic analysis suggests that KSR activity is intact in sur-6 mutants. We identify the kinase PAR-1 as a negative regulator of vulval induction and show that it acts in opposition to SUR-6 and KSR-1. In addition to their roles in Ras signaling, SUR-6/PR55 and LET-92/PP2A-C cooperate to control mitotic progression during early embryogenesis.  相似文献   

7.
8.
The let-23 gene, which encodes a putative tyrosine kinase of the epidermal growth factor (EGF) receptor subfamily, has multiple functions during Caenorhabditis elegans development. We show that let-23 function is required for vulval precursor cells (VPCs) to respond to the signal that induces vulval differentiation: a complete loss of let-23 function results in no induction. However, some let-23 mutations that genetically reduce but do not eliminate let-23 function result in VPCs apparently hypersensitive to inductive signal: as many as five of six VPCs can adopt vulval fates, in contrast to the three that normally do. These results suggest that the let-23 receptor tyrosine kinase controls two opposing pathways, one that stimulates vulval differentiation and another that negatively regulates vulval differentiation. Furthermore, analysis of 16 new let-23 mutations indicates that the let-23 kinase functions in at least five tissues. Since various let-23 mutant phenotypes can be obtained independently, the let-23 gene is likely to have tissue-specific functions.  相似文献   

9.
10.
Hsu V  Zobel CL  Lambie EJ  Schedl T  Kornfeld K 《Genetics》2002,160(2):481-492
The protein kinase Raf is an important signaling protein. Raf activation is initiated by an interaction with GTP-bound Ras, and Raf functions in signal transmission by phosphorylating and activating a mitogen-activated protein (MAP) kinase kinase named MEK. We identified 13 mutations in the Caenorhabditis elegans lin-45 raf gene by screening for hermaphrodites with abnormal vulval formation or germline function. Weak, intermediate, and strong loss-of-function or null mutations were isolated. The phenotype caused by the most severe mutations demonstrates that lin-45 is essential for larval viability, fertility, and the induction of vulval cell fates. The lin-45(null) phenotype is similar to the mek-2(null) and mpk-1(null) phenotypes, indicating that LIN-45, MEK-2, and MPK-1 ERK MAP kinase function in a predominantly linear signaling pathway. The lin-45 alleles include three missense mutations that affect the Ras-binding domain, three missense mutations that affect the protein kinase domain, two missense mutations that affect the C-terminal 14-3-3 binding domain, three nonsense mutations, and one small deletion. The analysis of the missense mutations indicates that Ras binding, 14-3-3-binding, and protein kinase activity are necessary for full Raf function and suggests that a 14-3-3 protein positively regulates Raf-mediated signaling during C. elegans development.  相似文献   

11.
12.
In Caenorhabditis elegans, let-60 Ras controls many cellular processes, such as differentiation of vulval epithelial cells, function of chemosensory neurons, and meiotic progression in the germ line. Although much is known about the let-60 Ras signaling pathway, relatively little is understood about the target genes induced by let-60 Ras signaling that carry out terminal effector functions leading to morphological change. We have used DNA microarrays to identify 708 genes that change expression in response to activated let-60 Ras.  相似文献   

13.
14.
Sli-1, a Negative Regulator of Let-23-Mediated Signaling in C. Elegans   总被引:10,自引:0,他引:10       下载免费PDF全文
By screening for suppressors of hypomorphic mutations of let-23, a receptor tyrosine kinase necessary for vulval induction in Caenorhabditis elegans, we recovered >/=12 mutations defining the sli-1 (suppressor of lineage defect) locus. sli-1 mutations suppress four of five phenotypes associated with hypomorphic alleles of let-23 but do not suppress let-23 null alleles. Thus, a sli-1 mutation does not bypass the requirement for functional let-23 but rather allows more potent LET-23-dependent signaling. Mutations at the sli-1 locus are otherwise silent with respect to vulval differentiation and cause only a low-penetrance abnormal head phenotype. Mutations at sli-1 also suppress the vulval defects but not other defects associated with mutations of sem-5, whose product likely interacts with LET-23 protein during vulval induction. Mutations at sli-1 suppress lin-2, lin-7 and lin-10 mutations but only partially suppress lin-3 and let-60 mutations and do not suppress a lin-45 mutation. The sli-1 locus displays dosage sensitivity: severe reduction of function alleles of sli-1 are semidominant suppressors; a duplication of the sli-1 (+) region enhances the vulvaless phenotype of hypomorphic mutations of let-23. We propose that sli-1 is a negative regulator that acts at or near the LET-23-mediated step of the vulval induction pathway. Our analysis suggests that let-23 can activate distinct signaling pathways in different tissues: one pathway is required for vulval induction; another pathway is involved in hermaphrodite fertilty and is not regulated by sli-1.  相似文献   

15.
The let-23 gene encodes a Caenorhabditis elegans homolog of the epidermal growth factor receptor (EGFR) necessary for vulval development. We have characterized a mutation of let-23 that activates the receptor and downstream signal transduction, leading to excess vulval differentiation. This mutation alters a conserved cysteine residue in the extracellular domain and is the first such point mutation in the EGFR subfamily of tyrosine kinases. Mutation of a different cysteine in the same subdomain causes a strong loss-of-function phenotype, suggesting that cysteines in this region are important for function and nonequivalent. Vulval precursor cells can generate either of two subsets of vulval cells (distinct fates) in response to sa62 activity. The fates produced depended on the copy number of the mutation, suggesting that quantitative differences in receptor activity influence the decision between these two fates.  相似文献   

16.
In Caenorhabditis elegans, the EGF receptor (encoded by let-23) is localized to the basolateral membrane domain of the epithelial vulval precursor cells, where it acts through a conserved Ras/MAP kinase signaling pathway to induce vulval differentiation. lin-10 acts in LET-23 receptor tyrosine kinase basolateral localization, because lin-10 mutations result in mislocalization of LET-23 to the apical membrane domain and cause a signaling defective (vulvaless) phenotype. We demonstrate that the previous molecular identification of lin-10 was incorrect, and we identify a new gene corresponding to the lin-10 genetic locus. lin-10 encodes a protein with regions of similarity to mammalian X11/mint proteins, containing a phosphotyrosine-binding and two PDZ domains. A nonsense lin-10 allele that truncates both PDZ domains only partially reduces lin-10 gene activity, suggesting that these protein interaction domains are not essential for LIN-10 function in vulval induction. Immunocytochemical experiments show that LIN-10 is expressed in vulval epithelial cells and in neurons. LIN-10 is present at low levels in the cytoplasm and at the plasma membrane and at high levels at or near the Golgi. LIN-10 may function in secretion of LET-23 to the basolateral membrane domain, or it may be involved in tethering LET-23 at the basolateral plasma membrane once it is secreted.  相似文献   

17.
18.
Gupta BP  Liu J  Hwang BJ  Moghal N  Sternberg PW 《Genetics》2006,174(3):1315-1326
The LIN-3-LET-23-mediated inductive signaling pathway plays a major role during vulval development in C. elegans. Studies on the components of this pathway have revealed positive as well as negative regulators that function to modulate the strength and specificity of the signal transduction cascade. We have carried out genetic screens to identify new regulators of this pathway by screening for suppressors of lin-3 vulvaless phenotype. The screens recovered three loci including alleles of gap-1 and a new gene represented by sli-3. Our genetic epistasis experiments suggest that sli-3 functions either downstream or in parallel to nuclear factors lin-1 and sur-2. sli-3 synergistically interacts with the previously identified negative regulators of the let-23 signaling pathway and causes excessive cell proliferation. However, in the absence of any other mutation sli-3 mutant animals display wild-type vulval induction and morphology. We propose that sli-3 functions as a negative regulator of vulval induction and defines a branch of the inductive signaling pathway. We provide evidence that sli-3 interacts with the EGF signaling pathway components during vulval induction but not during viability and ovulation processes. Thus, sli-3 helps define specificity of the EGF signaling to induce the vulva.  相似文献   

19.
Vulval induction in Caenorhabditis elegans has helped define an evolutionarily conserved signal transduction pathway from receptor tyrosine kinases (RTKs) through the adaptor protein SEM-5 to RAS. One component present in other organisms, a guanine nucleotide exchange factor for Ras, has been missing in C.ELEGANS: To understand the regulation of this pathway it is crucial to have all positive-acting components in hand. Here we describe the identification, cloning and genetic characterization of C.ELEGANS: SOS-1, a putative guanine nucleotide exchanger for LET-60 RAS. RNA interference experiments suggest that SOS-1 participates in RAS-dependent signaling events downstream of LET-23 EGFR, EGL-15 FGFR and an unknown RTK. We demonstrate that the previously identified let-341 gene encodes SOS-1. Analyzing vulval development in a let-341 null mutant, we find an SOS-1-independent pathway involved in the activation of RAS signaling. This SOS-1-independent signaling is not inhibited by SLI-1/Cbl and is not mediated by PTP-2/SHP, raising the possibility that there could be another RasGEF.  相似文献   

20.
M. Han  R. V. Aroian    P. W. Sternberg 《Genetics》1990,126(4):899-913
During induction of the Caenorhabditis elegans hermaphrodite vulva by the anchor cell of the gonad, six multipotent vulval precursor cells (VPCs) have two distinct fates: three VPCs generate the vulva and the other three VPCs generate nonspecialized hypodermis. Genes that control the fates of the VPCs in response to the anchor cell signal are defined by mutations that cause all six VPCs to generate vulval tissue (Multivulva or Muv) or that cause all six VPCs to generate hypodermis (Vulvaless or Vul). Seven dominant Vul mutations were isolated as dominant suppressors of a lin-15 Muv mutation. These mutations are dominant alleles of the gene let-60, previously identified only by recessive lethal mutations. Our genetic studies of these dominant Vul recessive lethal mutations, recessive lethal mutations, intragenic revertants of the dominant Vul mutations, and the closely mapping semi-dominant multivulva lin-34 mutations suggest that: (1) loss-of-function mutations of let-60 are recessive lethal at a larval stage, but they also cause a Vul phenotype if the lethality is rescued maternally by a lin-34 gain-of-function mutation. (2) The dominant Vul alleles of let-60 are dominant negative mutations whose gene products compete with wild-type activity. (3) lin-34 semidominant Muv alleles are either gain-of-function mutations of let-60 or gain-of-function mutations of an intimately related gene that elevates let-60 activity. We propose that let-60 activity controls VPC fates. In a wild-type animal, reception by a VPC of inductive signal activates let-60, and it generates into a vulval cell type; in absence of inductive signal, let-60 activity is low and the VPC generates hypodermal cells. Our genetic interaction studies suggest that let-60 acts downstream of let-23 and lin-15 and upstream of lin-1 and lin-12 in the genetic pathway specifying the switch between vulval and nonvulval cell types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号