首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have developed cellular automaton models for two species competing in a patchy environment. We have modeled three common types of competition: facilitation (in which the winning species can colonize only after the losing species has arrived) inhibition (in which either species is able to prevent the other from colonizing) and tolerance (in which the species most tolerant of reduced resource levels wins). The state of a patch is defined by the presence or absence of each species. State transition probabilities are determined by rates of disturbance, competitive exclusion, and colonization. Colonization is restricted to neighboring patches. In all three models, disturbance permits regional persistence of species that are excluded by competition locally. Persistence, and hence diversity, is maximized at intermediate disturbance frequencies. If disturbance and dispersal rates are sufficiently high, the inferior competitor need not have a dispersal advantage to persist. Using a new method for measuring the spatial patterns of nominal data, we show that none of these competition models generates patchiness at equilibrium. In the inhibition model, however, transient patchiness decays very slowly. We compare the cellular automaton models to the corresponding mean-field patch-occupancy models, in which colonization is not restricted to neighboring patches and depends on spatially averaged species frequencies. The patch-occupancy model does an excellent job of predicting the equilibrium frequencies of the species and the conditions required for coexistence, but not of predicting transient behavior.  相似文献   

2.
Population size distribution within a community of species with a competitive hierarchy, is studied. With the introduction of a stochastic model of invasion and extinction due to random environmental disturbance, the stationary population size distribution is derived as a function of the parameter, which denotes the ratio of rates of random extinction and invasion. From this result it is shown that the Shannon-type diversity takes the maximum value under the situation that 10 20 percent of habitat sites remain unoccupied, and the number of species also becomes maximum at intermediate levels of disturbance. The dynamical properties of a one-sided competitive system are also discussed by use of the Lotka-Volterra equations.  相似文献   

3.
The processes underlying plant invasions have been the subject of much ecological research. Understanding mechanisms of plant invasions are difficult to elucidate from observations, yet are crucial for ecological management of invasions. Hieracium lepidulum, an asteraceous invader in New Zealand, is a species for which several explanatory mechanisms can be raised. Alternative mechanisms, including competitive dominance, disturbance of resident vegetation allowing competitive release or nutrient resource limitation reducing competition with the invader are raised to explain invasion. We tested these hypotheses in two field experiments which manipulated competitive, disturbance and nutrient environments in pre‐invasion and post‐invasion vegetation. H. lepidulum and resident responses to environmental treatments were measured to allow interpretation of underlying mechanisms of establishment and persistence. We found that H. lepidulum differed in functional response profile from native species. We also found that other exotic invaders at the sites were functionally different to H. lepidulum in their responses. These data support the hypothesis that different invaders use different invasion mechanisms from one another. These data also suggest that functional differentiation between invaders and native resident vegetation may be an important contributing factor allowing invasion. H. lepidulum appeared to have little direct competitive effect on post‐invasion vegetation, suggesting that competition was not a dominant mechanism maintaining its persistence. There was weak support for disturbance allowing initial establishment of H. lepidulum in pre‐invasion vegetation, but disturbance did not lead to invader dominance. Strong support for nutrient limitation of resident species was provided by the rapid competitive responses with added nutrients despite presence of H. lepidulum. Rapid competitive suppression of H. lepidulum once nutrient limitation was alleviated suggests that nutrient limitation may be an important process allowing the invader to dominate. Possible roles of historical site degradation and/or invader‐induced soil chemical/microbial changes in nutrient availability are discussed.  相似文献   

4.
Smith KG 《Oecologia》2006,148(2):342-349
Predation, competition, and their interaction are known to be important factors that influence the structure of ecological communities. In particular, in those cases where a competitive hierarchy exists among prey species, the presence of certain keystone predators can result in enhanced diversity in the prey community. However, little is known regarding the influence of keystone predator presence on invaded prey communities. Given the widespread occurrence of invasive species and substantial concern regarding their ecological impacts, studies on this topic are needed. In this study I used naturalistic replications of an experimental tadpole assemblage to assess the influence of predatory eastern newts, Notophthalmus viridescens, on the outcome of interspecific competition among native and nonindigenous tadpoles. When newts were absent, the presence of the tadpoles of one invasive species, the Cuban treefrog, Osteopilus septentrionalis, resulted in decreased survival and growth rate of the dominant native species, Bufo terrestris, and dominance of the tadpole assemblage by O. septentrionalis. However, the presence of one adult newt generally reduced or eliminated the negative impacts of O. septentrionalis tadpoles, resulting in comparable survival and performance of native species in invaded and noninvaded treatments. Differential mortality among the tadpole species suggests that newts preyed selectively on O. septentrionalis tadpoles, supporting the hypothesis that newts acted as keystone predators in the invaded assemblage. The presence of nonindigenous larval cane toads, Bufo marinus, did not significantly affect native species, and this species was not negatively affected by the presence of newts. Collectively, these results suggest that eastern newts significantly modified the competitive hierarchy of the invaded tadpole assemblage and reduced the impacts of a competitively superior invasive species. If general, these results suggest that the presence of certain species may be an essential factor regulating the ecological impacts of biological invasions.  相似文献   

5.
To address how habitat destruction and hierarchical competition among species affect the spatio-temporal dynamics of a multi-species community, we present a compartment model in which multiple species undergo dispersal and competitive interactions in a patchy habitat arranged in a two-dimensional lattice. We assume that disturbances are periodically imposed on some parts of the lattice in a block, followed by a period free of disturbance. For convenience, species are ranked in order of competitive ability. We further assume that the intrinsic growth rate of species i, i , and the dispersal ability, D i , increase in decreasing order of rank. Our model can analytically determine the exact number of surviving species when disturbance is absent. In the presence of disturbance, we numerically examine how spatio-temporal changes in environmental heterogeneity affect species coexistence and extinction, for the case in which the value of i /D i monotonically increases or decreases with rank. The results demonstrate that (1) when the interspecific competition is smaller than the intraspecific competition, we can provide predictions on the prospective order of species to be driven extinct and the order of potential species to revive with increasing extents of disturbance; (2) when the interspecific competition is stronger than intraspecific competition, a small difference in the disturbance level can lead to drastic changes in the species composition, their densities and the order of species extinction. In addition, comparison with other similar models reveals that differences in species interaction in local population dynamics critically affect the disturbance-mediated species diversity.  相似文献   

6.
Keddy's competitive hierarchy model describes species distribution patterns along gradients under equilibrium conditions and can potentially serve as an explanation for zonation patterns of intertidal seaweeds on rocky shores. One of the assumptions of the model is a competitive hierarchy with the top competitor occupying the benign end of the gradient. Another assumption is the consistency of competitive ranks of species in all environmental conditions included in the shared parts of species' fundamental niches. In laboratory replacement series experiments, the competitive ranks of pairs of Fucus species that occupy adjacent zones in the field were analysed and compared to ranks found in previous field experiments. Unattached thalli of Fucus serratus versus F. vesiculosus or F. vesiculosus versus F. spiralis, respectively, were held in aerated beakers to establish the competitive ranking of the three congeners. Each replacement series was conducted at three total densities. F. vesiculosus was clearly competitively dominant over F. serratus. In competition with F. spiralis, F. vesiculosus was only dominant at its lowest absolute input frequencies, but at higher frequencies dominance was reversed. At high densities, the total ranking was F. spiralis > F. vesiculosus > F. serratus, which is the opposite order to that which would be expected from Keddy's model. Although all three species thrived well under the laboratory conditions, the results did not reflect in situ competitive dominances, which may be an effect of nutrient competition in the laboratory. Keddy's assumption that competitive ranks are consistent over the whole range of fundamental niches cannot be supported for Fucus spp. Communicated by K. Lüning  相似文献   

7.
Organisms occupying and competing for space appear to coexist indefinitely on a relatively homogeneous and limited resource. Armstrong (1976) developed a mathematical model showing how fugitive species, with high recruitment rates and low interference competitive ability, can coexist with dominant species, those with high competitive ability but lower rates of recruitment. This and similar models of coexistence have not considered the case where competitive success is indeterminate, that is, where the poorer competitor can sometimes win competitive encounters.Armstrong's model and others considering coexistence of more than two species (e.g., Hastings, 1980) predict coexistence of multiple species at intermediate rates of disturbance and monopolization of space by single species at either very low or very high disturbance rates. This result is not true for a three-species modification of Armstrong's model. Under certain parameter values, a single species can monopolize space at intermediate disturbance rates as well.  相似文献   

8.
Abstract. A competitive effect hierarchy for 15 Namaqualand pioneer plant species was established by using the mean mass of the phytometer (Dimorphotheca sinuata) when grown in combination with itself and 14 other species. There were no clear groupings of species in the hierarchy. This competitive hierarchy (gradient) indicated which species are strong competitors (resulting in a low phytometer mass) with D. sinuata and which species are weak competitors (resulting in a high phytometer mass). Each plant species has a certain combination of plant traits which determines its life history strategy and competitive ability. Regressions of various plant traits (measured on plants grown singly) against phytometer biomass indicated which traits were significantly correlated. The traits, most being size-related, were: maximum shoot mass, total mass, stem mass, reproductive mass, leaf area, stem allocation, specific leaf area (SLA), vegetative height × diameter, leaf area ratio (LAR); and mean number of days to flower initiation. A forward stepwise multiple regression of the significant traits was used to determine an equation to predict competitive effect.  相似文献   

9.
Many theoretical and field studies have emphasized the impact of disturbance in the dynamics and diversity of sessile organism communities. This view is best reflected by the Intermediate Disturbance Hypothesis (IDH), which states that a maximum of diversity is found in ecosystems or communities experiencing intermediate disturbance regimes or at an intermediate stage of development since the last major disturbance event. Although theoretical models based on competitive interactions tend to validate this hypothesis, a recent meta-analysis of field experiments revealed that the mono-modal relationship between disturbance and diversity might not be a general pattern. In this article, we investigate the relationship between disturbance and diversity through the study of patch models, combining two types of competitive interactions: with or without competitive hierarchy, with two mechanisms influencing colonization: negative frequency dependence in colonization rates and immigration. These combinations led to various disturbance-diversity patterns. In the model without competitive hierarchy (founder effect model), a decreasing relationship appeared to be the rule as mentioned in previous studies. In the model with competitive hierarchy, the IDH pattern was obtained for low frequency dependence and low immigration. Nevertheless, high negative frequency dependence in colonization rates led to a decreasing relationship between disturbance and diversity. In contrast, high immigration led to an increasing relationship. The coexistence window (the range of disturbance intensity allowing coexistence) was the widest for intermediate immigration rates. For random species assemblages, patterns with multiple peaks were also possible. These results highlight the fact that the mono-modal IDH pattern should not be considered a rule. Competition and colonization mechanisms have a profound impact on the relationship between disturbance and diversity.  相似文献   

10.
Mechanisms that allow for the coexistence of two competing species that share a trophic level can be broadly divided into those that prevent competitive exclusion of one species within a local area, and those that allow for coexistence only at a regional level. While the presence of aphid‐tending ants can change the distribution of aphids among host plants, the role of mutualistic ants has not been fully explored to understand coexistence of multiple aphid species in a community. The tansy plant (Tanacetum vulgare) hosts three common and specialized aphid species, with only one being tended by ants. Often, these aphids species will not coexist on the same plant but will coexist across multiple plant hosts in a field. In this study, we aim to understand how interactions with mutualistic ants and predators affect the coexistence of multiple species of aphid herbivores on tansy. We show that the presence of ants drives community assembly at the level of individual plant, that is, the local community, by favoring one ant‐tended species, Metopeurum fuscoviride, while preying on the untended Macrosiphoniella tanacetaria and, to a lesser extent, Uroleucon tanaceti. Competitive hierarchies without ants were very different from those with ants. At the regional level, multiple tansy plants provide a habitat across which all aphid species can coexist at the larger spatial scale, while being competitively excluded at the local scale. In this case, ant mutualist‐dependent reversal of the competitive hierarchy can drive community dynamics in a plant–aphid system.  相似文献   

11.
In aquatic ecosystems, physical disturbances have been suggested to be one of the main factors influencing phytoplankton structure and diversity. To elucidate whether large-scale artificial operation of a hydroelectric reservoir has potential impacts on phytoplankton diversity, the impact on phytoplankton biodiversity of physical disturbances under artificial operation from May 2007 to April 2008 in tributaries of the Three Gorges Reservoir (TGR), China, was analysed. Two disturbance parameters, i.e. the absolute incremental rates of discharge (R d,i ) and precipitation (R p,i ), were created in this study for evaluating physical disturbance intensities during low and high water level periods of the TGR. Results showed that river discharge seemed to be the main factor controlling the phytoplankton diversity in low water level periods (≤151 m), and that precipitation was a potential promoter of the physical disturbance. During the 156-m impoundment process, the species diversity clearly decreased due to the high dilution effect on the phytoplankton communities. At high water level periods (>151 m), the low levels of disturbance eventually allowed the phytoplankton community to approach competitive exclusion in late February 2008. Sharply declining diversity values appeared when the Dinophyta blooms occurred in late March and late April 2008 (Peridinium and Ceratium, respectively).  相似文献   

12.
We tested whether differences in the herbivory tolerance of plant species is related to their abundance in grassland communities and how herbivory and nutrient availability affect competitive balances among plant species through changes in their tolerance. The experimental approach involved a simulated grazing treatment (clipping) of two competitive grass species (Arrhenatherum elatius and Holcus lanatus) and two subordinate forb species (Prunella vulgaris and Lotus corniculatus) along a gradient of nutrient availability and under conditions of competition. Total standing, aboveground, root, and regrowth biomass were evaluated at the end of the experiment as an estimate of the capacity to compensate for twice removing aboveground biomass at different nutrient levels (NPK). Although clipping had a more pronounced negative effect on dominant plant species (Arrhenatherum and Holcus) than on subordinate species, the negative effects on dominant species were offset by the application of fertilizer. The combined effect of fertilizer and competition had more negative effects on the performance of Lotus and Prunella than on the dominant species. In terms of competition, the regrowth ability of Arrhenatherum and Holcus increased with the application of fertilizer, while the opposite pattern was observed for Lotus and Prunella. The addition of fertilizer has a positive effect on both grass species in terms of growth in clipped pots and competition, while subordinate species did not respond to the addition of fertilizer to the clipped pots and were negatively affected by competition with both grass species. The results suggest (1) that species replacement towards subordinate species as a function of herbivory is partially dependent on the herbivory tolerance of that species, (2) competitive relations between competitive grass species and subordinate forb species change under different environmental conditions, and (3) although grazing disturbance significantly influences competitive relations in favor of less competitive species, increasing nutrient levels counteract the negative effect of grazing on dominant competitive plant species.  相似文献   

13.
Laboratory microcosm experiments tested the intermediate disturbance hypothesis, which states that the highest level of diversity (e.g. species diversity) will be maintained at intermediate scales of disturbance. The effects of disturbance on the maintenance of clonal diversity and on competitive interactions among clones of the obligately parthenogenetic freshwater cladoceran, Daphnia pulex were examined. No significant effect of disturbance size (i.e. dilution volume) on clonal diversity was noted. However, frequency of disturbance had a pronounced effect on clonal diversity, with the highest clonal diversity maintained at low to intermediate disturbance frequencies. Competitive hierarchies among clones were often invariant within a given experiment. Generally, one or two clones dominated, with several less abundant clones persisting throughout an experiment. Results suggest that low to intermediate disturbances could be important in the maintenance of genetic variation in natural populations (i.e. through pre-emption of competitive exclusion between genotypes). This could have a direct bearing on the maintenance of both intra- and interspecific diversity.  相似文献   

14.
Price JN  Berney PJ  Ryder D  Whalley RD  Gross CL 《Oecologia》2011,167(3):759-769
Dominance of invasive species is often assumed to be due to a superior ability to acquire resources. However, dominance in plant communities can arise through multiple interacting mechanisms, including disturbance. Inter-specific competition can be strongly affected by abiotic conditions, which can determine the outcome of competitive interactions. We evaluated competition and disturbance as mechanisms governing dominance of Phyla canescens (hereafter lippia), an invasive perennial forb from South America, in Paspalum distichum (perennial grass, hereafter water couch) meadows in floodplain wetlands of eastern Australia. Water couch meadows (in the study area) are listed under the Ramsar Convention due to their significance as habitat for migratory waterbirds. In the field, we monitored patterns of vegetation boundaries between the two species in response to flooding. Under controlled glasshouse conditions, we explored competitive interactions between the native water couch and lippia subject to different soil moisture/inundation regimes. We did this using a pairwise factorial glasshouse experiment that manipulated neighbor density (9 treatments) and soil moisture/inundation (4 treatments). In the field trial, inundation increased the cover of water couch. Under more controlled conditions, the invader had a competitive effect on the native species only under dry soil conditions, and was strongly inhibited by inundation. This suggests that dry conditions favor the growth of the invader and wetter (more historical) conditions favor the native grass. In this system, invader dominance is governed by altered disturbance regimes which give the invader a competitive advantage over the native species.  相似文献   

15.
Abstract. Competitive ability can be separated into competitive effect (ability to suppress neighbours) and competitive response (ability to tolerate suppressive effect from neighbours), but little is known about the competitive response of plants. A screening trial was conducted in outdoor plant pots where competitive response was measured for 48 wetland species during four months grown with seven established sward species: Acorus calamus, Carex crinita, Eleocharis smallii, Lythrum salicaria, Penthorum sedoides, Scirpus acutus and Typha angustifolia. Competitive response was calculated as 100 (x1x2)/x1, where x1 is the weight of the target plant grown alone and x2 the weight of the target plant grown in the swards. Despite significant differences in biomass and survivorship of the target plants between the sward species, the correspondence, W, of the rank order of the competitive response of target plants grown in the seven sward species was 0.70 (P < 0.001). The competitive response values were not significantly correlated with independent measures of competitive effect, relative growth rate or functional classification. Published competitive effect values, however, were significantly positively correlated with RGR. The results suggest a different approach towards the study of competitive response, with a conceptual model including three different response types: (1) escape; (2) foraging; and (3) persistence.  相似文献   

16.
Suppression of tree seedlings by the understory is an important ecological filter with implications for tree diversity and dynamics. In a greenhouse competition experiment, we used seedlings of four canopy species from coastal dune forest (Diospyros natalensis, Euclea racemosa, Sideroxylon inerme and Apodytes dimidiata) to examine the relative competitive effects of the dominant understory herb Isoglossa woodii on seedling performance. We manipulated I. woodii density, light and nutrient levels and measured growth responses. Total seedling biomass decreased with density of I. woodii. The magnitude of biomass suppression with competitor density was similar among tree species. Consequently there was no discernable hierarchy of competitive ranking among tree species. The relative growth rate of seedlings decreased at higher densities of I. woodii and increased at higher nutrient levels but was unaffected by variation in light conditions. Aboveground biomass decreased at higher densities of I. woodii and at higher light levels but increased at higher nutrient levels. Size asymmetric competition for light and nutrients may be the major driver of aboveground interactions between tree seedling and I. woodii. While tree species showed no hierarchy of competitive ability their seedlings exhibited equivalent responses to competition from an understory dominant, permitting species coexistence and the maintenance of species diversity.  相似文献   

17.
North American sagebrush (Artemisia spp.)-obligate birds are experiencing steep population declines due in part to increased disturbance, mainly human-caused, across their range. At the eastern edge of the sagebrush steppe, this issue may potentially be exacerbated because of natural disturbance by black-tailed prairie dogs (Cynomys ludovicianus). Our goal was to compare local and landscape models of habitat use by greater sage-grouse (Centrocercus urophasianus), Brewer's sparrow (Spizella breweri), and sage thrasher (Oreoscoptes montanus) with models including effects of natural (i.e., prairie dog) and anthropogenic disturbance. We used a combination of field data collection, and state and national datasets for the Thunder Basin National Grassland, eastern Wyoming, USA, to understand the factors that influence lek attendance by sage-grouse and habitat use by 2 passerines in this system. For all 3 species, models including big sagebrush (Artemisia tridentata) cover at local and landscape scales were the most competitive among univariate models, supporting the paradigm that sagebrush is key for these species. Models including anthropogenic disturbance (well density, road density) explained more variation than models of prairie dog disturbance alone for 2 of the 3 species, but long-term disturbance by prairie dogs did reduce abundance of Brewer's sparrows. Although long-term prairie dog disturbance has the potential to reduce sagebrush cover for sagebrush-obligate birds, such events are likely rare because outbreaks of plague (Yersina pestis) and lethal control on borders with private land reduce prairie dog disturbance. Conversely, anthropogenic disturbance is slated to increase in this system, suggesting potentially accelerated declines for sagebrush birds into the future. © 2020 The Wildlife Society.  相似文献   

18.
A simple differential equation model was developed to describe the competitive interaction that may occur between species through reproductive interference. The model has the form comparable to Volterra's competition equations, and the graphical analysis of the outcome of the two-species interaction based on its zero-growth isoclines proved that: (1) The possible outcome in this model, as in usual models of resource competition, is either stable coexistence of both species or gradual exclusion of one species by the other, depending critically upon the values of the activity overlapping coefficient cij; (2) but, for the same cij-values, competitive exclusion is much more ready to occur here than in resource competition; (3) and moreover, the final result of the competition is always dependent on the initial-condition due to its non-linear isoclines, i.e., even under the parameter condition that generally allows both species to coexist, an extreme bias in intial density to one species can readily cause subsequent complete exclusion of its counterparts. Thus, it may follow that the reproductive interference is likely to be working in nature as an efficient mechanism to bring about habitat partitioning in either time or space between some closely related species in insect communities, even though they inhabit heterogeneous habitats where resource competition rarely occurs so that they could otherwise attain steady coexistence.  相似文献   

19.
Abstract. There is growing evidence that plant and animal species are arranged in hierarchies of relative competitive performance. More work is needed to determine which plant traits best predict relative competitive performance. We therefore measured relative competitive performance of 63 terrestrial herbaceous plant species using Trichostema brachiatum as a reference species (that is, phytometer or target species). The neighbour species came from a wide array of terrestrial vegetation types (e.g. rock barrens, alvars, old fields), and represented a wide array of growth forms (e.g. small rosette species such as Saxifraga virginiensis and large clonal graminoids such as Agropyron repens). The experiment was repeated with two pot sizes: large (control) and small (stress treatment). Relative competitive performance in large pots (controls) was highly correlated with that in small pots (stress treatment) (r= 0.90, p < 0.001). The hierarchy of relative competitive performance in the large pots was also highly correlated with the hierarchy in the small (stressed) pots (rs= 0.91, p < 0.001). Principal components analysis and multiple linear regression showed that plant size (measured by total biomass, above‐ground biomass, below‐ground biomass, canopy area, height and leaf area index) and leaf shape (measured as length to width ratio, length, width) were the two characteristics that best predicted relative competitive performance (large pots, r2= 0.55; small pots, r2= 0.48).  相似文献   

20.
1. Interspecific competition is a major structuring principle in ecological communities. Despite their prevalence, the outcome of competitive interactions is hard to predict, highly context-dependent, and multiple factors can modulate such interactions. 2. We tested predictions concerning how competitive interactions are modified by anthropogenic habitat disturbance in ground-foraging ant assemblages inhabiting fragmented Inter-Andean tropical dry forests in southwestern Colombia, and investigated ant assemblages recruiting to baits in 10 forest fragments exposed to varying level of human disturbance. 3. Specifically, we evaluated how different components of competitive interactions (patterns of species co-occurrence, resource partitioning, numerical dominance, and interspecific trade-offs between discovery and dominance competition) varied with level of habitat disturbance in a human-dominated ecosystem. 4. Multiple lines of evidence suggest that the role of competitive interactions in structuring ground-foraging ant communities at baits varied with respect to habitat disturbance. As disturbance increased, community structure was more likely to exhibit random co-occurrence patterns, higher levels of monopolization of food resources by dominant ants, and disproportionate dominance of a single species, the little fire ant (Wasmannia auropunctata). At a regional scale, we found evidence for a trade-off between dominance and discovery abilities of the 15 most common species at baits. 5. Together, these results suggest that human disturbance modifies the outcome of competitive interactions in ground-foraging ant assemblages and may promote dominant species that reduce diversity and coexistence in tropical ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号