首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kiss T 《Molecular cell》2006,23(6):775-776
In vertebrates, hundreds of small nucleolar RNAs (snoRNAs) are processed from pre-mRNA introns. In the September 1 issue of Molecular Cell, Hirose et al. (2006) demonstrate that a spliceosomal intron binding protein, IBP160, couples box C/D snoRNA processing with pre-mRNA splicing in the C1 splicing complex.  相似文献   

2.
Hirose T  Shu MD  Steitz JA 《Molecular cell》2003,12(1):113-123
In mammalian cells, all small nucleolar RNAs (snoRNAs) that guide rRNA modification are encoded within the introns of host genes. An optimal position about 70 nts upstream of the 3' splice site of the host intron is critical for efficient expression of box C/D snoRNAs in vivo, suggesting synergy with splicing. Here, we have used a coupled in vitro splicing-snoRNA processing system to demonstrate that assembly of box C/D snoRNP proteins is the step affected by snoRNA location, and that active splicing is essential for snoRNP assembly. Splicing blockage experiments further reveal that snoRNP proteins bind specifically at the spliceosomal C1 complex stage. In contrast, splicing-independent snoRNP assembly can occur in vitro on snoRNAs that possess stable external stems. In vivo analyses confirm that a stable stem can compensate for the unusual position of those few box C/D snoRNAs located far from the 3' splice site of their host intron.  相似文献   

3.
4.
A first step in understanding the architecture of the spliceosome is elucidating the positions of individual spliceosomal components and functional centers. Catalysis of the first step of pre-mRNA splicing leads to the formation of the spliceosomal C complex, which contains the pre-mRNA intermediates--the cleaved 5' exon and the intron-3' exon lariat. To topographically locate the catalytic center of the human C complex, we first determined, by DNA oligonucleotide-directed RNAse H digestions, accessible pre-mRNA regions closest to nucleotides of the cleaved 5' splice site (i.e., the 3' end of exon 1 and the 5' end of the intron) and the intron lariat branch point, which are expected to be at/near the catalytic center in complex C. For electron microscopy (EM) localization studies, C complexes were allowed to form, and biotinylated 2'-OMe RNA oligonucleotides were annealed to these accessible regions. To allow localization by EM of the bound oligonucleotide, first antibiotin antibodies and then protein A-coated colloidal gold were additionally bound. EM analyses allowed us to map the position of exon and intron nucleotides near the cleaved 5' splice site, as well as close to the anchoring site just upstream of the branch adenosine. The identified positions in the C complex EM map give first hints as to the path of the pre-mRNA splicing intermediates in an active spliceosomal C complex and further define a possible location for its catalytic center.  相似文献   

5.
Small nucleolar RNAs (snoRNAs) guide nucleotide modifications within ribosomal RNAs or spliceosomal RNAs by base-pairing to complementary regions within their RNA targets. The brain-specific snoRNA MBII-52 lacks such a complementarity to rRNAs or snRNAs, but instead has been reported to target the serotonin receptor 2C pre-mRNA, thereby regulating pre-mRNA editing and/or alternative splicing. To understand how the MBII-52 snoRNA might be involved in these regulatory processes, we isolated the MBII-52 snoRNP from total mouse brain by an antisense RNA affinity purification approach. Surprisingly, by mass spectrometry we identified 17 novel candidates for MBII-52 snoRNA binding proteins, which previously had not been reported to be associated with canonical snoRNAs. Among these, Nucleolin and ELAVL1 proteins were confirmed to independently and directly interact with the MBII-52 snoRNA by coimmunoprecipitation. Our findings suggest that the MBII-52 snoRNA assembles into novel RNA-protein complexes, distinct from canonical snoRNPs.  相似文献   

6.
We have carried out a systematic analysis of the proteins that interact with specific intron and exon sequences during each stage of mammalian spliceosome assembly. This was achieved by site-specifically labeling individual nucleotides within the 5' and 3' splice sites, the branchpoint sequence (BPS), or the exons with 32P and identifying UV-cross-linked proteins in the E, A, B, or C spliceosomal complex. Significantly, two members of the SR family of splicing factors, which are known to promote E-complex assembly, cross-link within exon sequences to a region approximately 25 nucleotides upstream from the 5' splice site. At the 5' splice site, cross-linking of the U5 small nuclear ribonucleoprotein particle protein, U5(200), was detected in both the B and C complexes. As observed in yeast cells, U5(200), also cross-links to intron/exon sequences at the 3' splice site in the C complex and may play a role in aligning the 5' and 3' exons for ligation. With label at the branch site, we detected three distinct proteins, designated BPS72,BpS70, and BPS56, which replace one another in the E, A, and C complexes. Another dynamic exchange was detected with pre-mRNA labeled at the AG dinucleotide of the 3' splice site. In this case, a protein, AG100,cross-links in the A complex and is replaced by another protein, AG75, in the C complex. The observation that these proteins are specifically associated with critical pre-mRNA sequence elements in functional complexes at different stages of spliceosome assembly implicates roles for these factors in key recognition events during the splicing pathway.  相似文献   

7.
8.
9.
In pre-mRNA splicing, specific spliceosomal components recognize key intron sequences, but the mechanisms by which splice sites are selected arenot completely understood. In the Saccharomyces cerevisiae actin intron a silent branch point-like sequence (UACUAAG) is located 7 nt upstream of the canonical sequence. Mutation of the canonicalUACUAAC sequence to UAAUAAC reduces utilization of this signal and activates the cryptic UACUAAG. Splicing-dependent beta-galactosidase assays have shown that these two splice signals cooperate to enhance splicing. Analyses of several variants of this double branch point intron demonstrate that the upstream UACUAAG sequence significantly increases usage of the UAAUAAC as a site of lariat formation. This activation is sequence-specific and unidirectional. However the ability of the UACUAAG signal to activate the downstream branch point is dependent on the presence of a short non-conserved sequence located a few nucleotides upstream of the UACUAAG. Mutation of this sequence leads to the disappearance of the cooperative interactions between the two branch signals. Our results show that this non-conserved sequence and the UACUAAG signal must both be present to achieve activation of the downstream branch point and suggest that a specific structure may be necessary to allow efficient recognition of the UAAUAAC.  相似文献   

10.
CUGBP2 (ETR-3/NAPOR/BRUNOL3) promotes inclusion of cardiac troponin T (cTNT) exon 5 via binding between positions 21 and 74 of the downstream intron. The molecular mechanism by which CUGBP2 activates cTNT exon 5 inclusion is unknown. Our results suggest that CUGBP2 promotes exon inclusion by a novel mechanism in which CUGBP2 directly interacts with components of the activated U2 snRNP and enhances binding of U2 snRNP to the branch site located upstream of the exon. Using an in vitro splicing assay, we show that recombinant CUGBP2 enhances complex A formation of a cTNT pre-mRNA. Enhanced complex A assembly requires both the upstream and downstream introns consistent with dual requirements for the downstream CUGBP2-binding site and an upstream branch site for U2 snRNP binding. We also show that CUGBP2 enhances binding of U2 snRNA to the cTNT pre-mRNA consistent with enhanced complex A assembly. Purification of CUGBP2-interacting proteins using tandem affinity purification leads to the demonstration that the core 17S U2 snRNP components, SF3b145 and SF3b49 bind directly to CUGBP2. We conclude that CUGBP2 activates exon inclusion by forming direct interactions with components of the 17S snRNP complex and recruits and/or stabilizes binding of U2 snRNP.  相似文献   

11.
Using a protein blotting method for the detection of nucleic acid binding proteins, we have identified in HeLa cell nuclear extracts an intron binding protein (IBP) that selectively recognizes the 3' splice site region of mammalian pre-mRNAs. The binding site was accurately delineated using oligonucleotides complementary to human beta-globin pre-mRNA. It spans the 3' splice site AG dinucleotide and the crucial polypyrimidine stretch upstream, but includes neither the branchpoint nor the lariat structure. Although the technique used here shows that the binding specificity is an intrinsic property of IBP and does not depend on snRNA-pre-mRNA interactions, it comigrates with U5 snRNP and is immunoprecipitated by anti-Sm antibody. This strongly suggests that IBP belongs to U5 snRNP. We propose that it is involved in one of the earliest steps of the splicing reaction by mediating the interaction of U5 snRNP with the 3' splice site.  相似文献   

12.
J C Rain  P Legrain 《The EMBO journal》1997,16(7):1759-1771
Pre-mRNA splicing is a stepwise nuclear process involving intron recognition and the assembly of the spliceosome followed by intron excision. We previously developed a pre-mRNA export assay that allows the discrimination between early steps of spliceosome formation and splicing per se. Here we present evidence that these two assays detect different biochemical defects for point mutations. Mutations at the 5' splice site lead to pre-mRNA export, whereas 3' splice site mutations do not. A genetic screen applied to mutants in the branch site region shows that all positions in the conserved TACTAAC sequence are important for intron recognition. An exhaustive analysis of pre-mRNA export and splicing defects of these mutants shows that the in vivo recognition of the branch site region does not involve the base pairing of U2 snRNA with the pre-mRNA. In addition, the nucleotide preceding the conserved TACTAAC sequence contributes to the recognition process. We show that a T residue at this position allows for optimal intron recognition and that in natural introns, this nucleotide is also used preferentially. Moreover, the Mud2 protein is involved in the recognition of this nucleotide, thus establishing a role for this factor in the in vivo splicing pathway.  相似文献   

13.
O Gozani  J G Patton    R Reed 《The EMBO journal》1994,13(14):3356-3367
We have isolated and determined the protein composition of the spliceosomal complex C. The pre-mRNA in this complex has undergone catalytic step I, but not step II, of the splicing reaction. We show that a novel set of 14 spliceosome-associated proteins (SAPs) and the essential splicing factor PSF are specifically associated with the C complex, implicating these proteins in catalytic step II. Significantly, immunodepletion and biochemical complementation studies demonstrate directly that PSF is essential for catalytic step II. Purified PSF is known to UV crosslink to pyrimidine tracts, and our data show that PSF UV crosslinks to pre-mRNA in purified C complex. Thus, PSF may replace the 3' splice site binding factor U2AF65 which is destabilized during spliceosome assembly. Finally, we show that SAPs 60 and 90, which are present in both the B and C complexes, are specifically associated with U4 and U6 snRNPs, and thus may have important roles in the functioning of these snRNPs during the splicing reaction.  相似文献   

14.
Four peptides are shown to block mammalian spliceosome assembly and pre-mRNA splicing in vitro. Previously, these peptides have been shown to inhibit Ca2+-dependent calmodulin kinase II (CaMK II) via distinct mechanisms. One is a competitive inhibitor of the kinase, two interfere with autophosphorylation events, and one competes for binding to calmodulin, a CaMK II-activating protein. However, because EGTA does not inhibit splicing, the involvement of CaMK II itself in splicing is unlikely; rather, a protein similar to CaMK II may be involved in spliceosome assembly and splicing. Two of the inhibitory peptides, the calmodulin binding domain (CBD) and glycogen synthase (GS) fragment, block assembly of spliceosomal complex C. These peptides inhibited splicing if they were added to reactions any time within the first 10 min of splicing assays. No inhibition of spliceosome assembly or splicing occurred in the presence of randomized versions of the CBD or GS peptide. Additionally, the GS peptide inhibited splicing when added to assays at later time points, despite the fact that spliceosomal complex C had formed. Cumulatively, these analyses suggest that the peptides inhibit at least two distinct events in the spliceosomal cycle. The first event occurs early during in vitro splicing. For this event, prolonged incubations of splicing reactions do not result in a recovery of splicing activity. The second event occurs later and represents a slowing of an essential step, because splicing activity can be recovered in prolonged incubations. Peptides known to inhibit protein kinase A and protein kinase C had no effect on pre-mRNA splicing, underscoring the specificity of the observed inhibitory effects.  相似文献   

15.
The eukaryotic nucleolus contains a diverse population of small nucleolar RNAs (snoRNAs) that have been categorized into two major families based on evolutionarily conserved sequence elements. U14 snoRNA is a member of the larger, box C/D snoRNA family and possesses nucleotide box C and D consensus sequences. In previous studies, we have defined a U14 box C/D core motif that is essential for intronic U14 snoRNA processing. These studies also revealed that nuclear proteins that recognize boxes C/D are required. We have now established an in vitro U14 snoRNP assembly system to characterize protein binding. Electrophoretic mobility-shift analysis demonstrated that all the sequences and structures of the box C/D core motif required for U14 processing are also necessary for protein binding and snoRNP assembly. These required elements include a base paired 5',3' terminal stem and the phylogenetically conserved nucleotides of boxes C and D. The ability of other box C/D snoRNAs to compete for protein binding demonstrated that the box C/D core motif-binding proteins are common to this family of snoRNAs. UV crosslinking of nuclear proteins bound to the U14 core motif identified a 65-kDa mouse snoRNP protein that requires boxes C and D for binding. Two additional core motif proteins of 55 and 50 kDa were also identified by biochemical fractionation of the in vitro-assembled U14 snoRNP complex. Thus, the U14 snoRNP core complex is a multiprotein particle whose assembly requires nucleotide boxes C and D.  相似文献   

16.
Splicing factor 1 (SF1) functions at early stages of pre-mRNA splicing and contributes to splice site recognition by interacting with the essential splicing factor U2AF65 and binding to the intron branch site. We have identified an 80 kDa substrate of cGMP-dependent protein kinase-I (PKG-I) isolated from rat brain, which is identical to SF1. PKG phosphorylates SF1 at Ser20, which inhibits the SF1-U2AF65 interaction leading to a block of pre-spliceosome assembly. Mutation of Ser20 to Ala or Thr also inhibits the interaction with U2AF65, indicating that Ser20 is essential for binding. SF1 is phosphorylated in vitro by PKG, but not by cAMP-dependent protein kinase A (PKA). Phosphorylation of SF1 also occurs in cultured neuronal cells and is increased on Ser20 in response to a cGMP analogue. These results suggest a new role for PKG in mammalian pre-mRNA splicing by regulating in a phosphorylation-dependent manner the association of SF1 with U2AF65 and spliceosome assembly.  相似文献   

17.
Early recognition of pre-mRNA during spliceosome assembly in mammals proceeds through the association of U1 small nuclear ribonucleoprotein particle (snRNP) with the 5' splice site as well as the interactions of the branch binding protein SF1 with the branch region and the U2 snRNP auxiliary factor U2AF with the polypyrimidine tract and 3' splice site. These factors, along with members of the SR protein family, direct the ATP-independent formation of the early (E) complex that commits the pre-mRNA to splicing. We report here the observation in U2AF-depleted HeLa nuclear extract of a distinct, ATP-independent complex designated E' which can be chased into E complex and itself commits a pre-mRNA to the splicing pathway. The E' complex is characterized by a U1 snRNA-5' splice site base pairing, which follows the actual commitment step, an interaction of SF1 with the branch region, and a close association of the 5' splice site with the branch region. These results demonstrate that both commitment to splicing and the early proximity of conserved sequences within pre-mRNA substrates can occur in a minimal complex lacking U2AF, which may function as a precursor to E complex in spliceosome assembly.  相似文献   

18.
In all eukaryotes, C/D small nucleolar ribonucleoproteins (C/D snoRNPs) are essential for methylation and processing of ribosomal RNAs. They consist of a box C/D small nucleolar RNA (C/D snoRNA) associated with four highly conserved nucleolar proteins. Recent data in HeLa cells and yeast have revealed that assembly of these snoRNPs is directed by NUFIP protein and other auxiliary factors. Nevertheless, the precise function and biological importance of NUFIP and the other assembly factors remains unknown. In plants, few studies have focused on RNA methylation and snoRNP biogenesis. Here, we identify and characterise the AtNUFIP gene that directs assembly of C/D snoRNP. To elucidate the function of AtNUFIP in planta, we characterized atnufip mutants. These mutants are viable but have severe developmental phenotypes. Northern blot analysis of snoRNA accumulation in atnufip mutants revealed a specific degradation of C/D snoRNAs and this situation is correlated with a reduction in rRNA methylation. Remarkably, the impact of AtNUFIP depends on the structure of snoRNA genes: it is essential for the accumulation of those C/D snoRNAs encoded by polycistronic genes, but not by monocistronic or tsnoRNA genes. We propose that AtNUFIP controls the kinetics of C/D snoRNP assembly on nascent precursors to overcome snoRNA degradation of aberrant RNPs. Finally, we show that AtNUFIP has broader RNP targets, controlling the accumulation of scaRNAs that direct methylation of spliceosomal snRNA in Cajal bodies.  相似文献   

19.
20.
U3 snoRNP, the most abundant of the small nucleolar ribonucleoprotein particles (snoRNPs), has previously been demonstrated to participate in pre-rRNA maturation. Here we report the purification of U3 snoRNP from CHO cells using anti-m3G-immunoaffinity and mono Q anion-exchange chromatography. Isolated U3 snoRNPs contain three novel proteins, of 15, 50 and 55 kDa respectively. These proteins may represent core U3 snoRNP proteins whose binding mediates the association of other proteins, such as fibrillarin, that are lost during purification. Using a rabbit antiserum raised against the 55 kDa protein, and an in vitro reconstitution assay, we have localised the 55 kDa protein binding site on the U3 snoRNA. Stable binding of the 55 kDa protein requires sequences located between nucleotides 97 and 204 of the human U3 snoRNA, including the evolutionarily conserved B and C sequence motifs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号