首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sarcoplasmic reticulum isolated from rabbit skeletal muscle was labeled with a limited (0.625 nmol/mg sarcoplasmic reticulum protein) amount of the fluorescent thiol reagent N-(7-dimethylamino-4-methyl-3-coumarinyl)maleimide (DACM). The fluorescence intensity of the membrane-attached DACM decreased concurrently with (Ca2+ and caffeine)-induced Ca2+ release, depolarization-induced Ca2+ release and Ca2+-dependent dependent passive efflux of Ca2+. The decreased DACM fluorescence level initiated by a Ca2+ jump was subsequently reversed under passive efflux conditions when there was no ATP-dependent Ca2+ uptake, suggesting spontaneous closing of the channels. Therefore, the higher fluorescence level corresponds to a larger population of closed channels, whereas the lower level represents a larger population of opened channels. Under conditions when the Ca2+ release-coupled fluorescence change was maximal, a stoichiometric incorporation of DACM took place only into a 32-kDa protein. Furthermore, reconstituted vesicles, in which purified DACM-labeled 32-kDa protein was incorporated into unlabeled sarcoplasmic reticulum vesicles, were capable of both (Ca2+ and caffeine)-induced Ca2+ release and the release-coupled DACM fluorescence change. These results suggest that the 32-kDa protein is a constituent of the Ca2+ release channel or a protein which is in close contact with the channel.  相似文献   

2.
The addition of polylysine to a heavy fraction of sarcoplasmic reticulum (SR) vesicles produces a rapid Ca2+ release with no appreciable lag period. The polylysine concentration for half-maximal activation (C1/2) is approximately 0.99 micrograms/ml, or 0.3 microM, the lowest C 1/2 for Ca2+ release-inducing reagents reported in the literature. The time course and the [Ca2+] dependence of polylysine-induced release are similar to those of caffeine-induced Ca2+ release. At higher concentrations of polylysine (e.g., 10 micrograms/ml), however, little or no Ca2+ release occurs. Upon photolysis of SR vesicles with the photocrosslinkable radiolabeled polylysine derivative, [3H]succinimidyl azido benzoate polylysine, 0.28 and 0.52-1.2 mol polylysine were bound to 1 mol of the 400-kDa foot protein at activating (3 micrograms/ml) and inhibitory (10 micrograms/ml) concentrations of polylysine, respectively. On the other hand, the amounts of polylysine bound to the other SR proteins (mol/mol) were negligible (e.g., less than or equal to 0.0127 mol polylysine/mol calsequestrin). This suggests that the binding of polylysine to the foot protein is responsible not only for the induction of release but also for inactivation. These results provide direct evidence that the receptor for the chemical trigger of Ca2+ release is localized within the foot protein. Ruthenium red, which inhibits polylysine-induced Ca2+ release, does not inhibit polylysine binding to the foot protein, suggesting that the polylysine binding domain of the foot protein is different from the channel domain.  相似文献   

3.
Ca2+ release from sarcoplasmic reticulum during excitation--contraction coupling is likely to be mediated by conformational changes in the foot protein moiety of the triadic vesicles. As a preparative step toward the studies of dynamic conformational changes in the foot protein moiety, we have developed a new method that permits specific labeling of the foot protein moiety of the isolated membranes with a fluorophore. A novel fluorescent cleavable photoaffinity cross-linking reagent, sulfosuccinimidyl 3-((2-(7-azido-4-methylcoumarin-3-acetamido)ethyl)dithio)propionate (SAED), was conjugated with site-directing carriers, polylysine (Ca(2+)-release inducer) and neomycin (Ca(2+)-release blocker). The conjugates were allowed to bind to polylysine- and neomycin-binding sites of the heavy fraction of SR (HSR). After photolysis, the cross-linked reagent was cleaved by reduction and the fluorescently labeled HSR was separated from the carriers by centrifugation. These procedures led to specific incorporation of the methylcoumarin acetate (MCA) into the foot protein. Polylysine and neomycin bound to different sites of the foot protein, since neomycin, at release-blocking concentrations, did not interfere with polylysine binding. The fluorescence intensity of the foot protein labeled with the carrier, neomycin, showed biphasic changes as a function of ryanodine concentration (increasing up to 1 microM ryanodine and decreasing above it), while with the carrier polylysine, ryanodine induced no change in fluorescence intensity. In contrast, the fluorescence intensity of the foot protein labeled with each of the two carriers, neomycin and polylysine, showed almost identical calcium dependence (first increasing from 0.1 microM to about 3.0 microM calcium concentration, and then decreasing at higher calcium concentrations).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Ca2+ release from heavy sarcoplasmic reticulum (SR) vesicles was induced by 2 mM caffeine, and the amount (A) and the rate constant (k) of Ca2+ release were investigated as a function of the extent of Ca2+ loading. Under both passive and active loading conditions, the A value increased monotonically in parallel to Ca2+ loading. On the other hand, k sharply increased at partial Ca2+ loading, and upon further loading, it decreased to a lower level. Since most of the intravesicular calcium appears to be bound to calsequestrin both under passive and under active loading conditions, these results suggest that the kinetic properties of induced Ca2+ release show significant variation depending upon how much calcium has been bound to calsequestrin at the time of the induction of Ca2+ release. An SR membrane segment consisting of the junctional face membrane (jfm) and attached calsequestrin (jfm-calsequestrin complex) was prepared. The covalently reacting thiol-specific conformational probe N-[7-(dimethylamino)-4-methyl-3-coumarinyl]maleimide (DACM) was incorporated into several proteins of the jfm, but not into calsequestrin. The fluorescence intensity of DACM increased with Ca2+. Upon dissociation of calsequestrin from the jfm by salt treatment, the DACM fluorescence change was abolished, while upon reassociation of calsequestrin by dilution of the salt it was partially restored. These results suggest that the events occurring in the jfm proteins are mediated via the attached calsequestrin rather than by a direct effect of Ca2+ on the jfm proteins. We propose that the [Ca2+]-dependent conformational changes of calsequestrin affect the jfm proteins and in turn regulate the Ca2+ channel functions.  相似文献   

5.
Sarcoplasmic reticulum (SR) isolated from rabbit skeletal muscle was solubilized with a nonionic detergent, dodecyl octaethyleneglycol monoether (C12E8), at a weight ratio of detergent to protein of greater than 10, so that the Ca2+, Mg2+ dependent ATPase existed mainly in a monomeric form (7). The solubilized ATPase was reacted with 10 microM N-1-P or 5 microM DACM in the presence of 5 mM CaCl2, 0.4 M KCl, 20% glycerol and 50 mM TES at pH 7.5 and 20 degrees C. Under these conditions, about 1 mol of N-1-P was incorporated into 10(5) g SR protein on 10 min incubation and 1 mol of DACM was incorporated into the same amount of SR on 5 min incubation. Analysis of the tryptic digest of the N-1-P- or DACM-labeled. ATPase on SDS polyacrylamide gel revealed that almost all the fluorescence was associated with the 30K m.w. subfragment of the ATPase protein. Even when the amount of the probe incorporated into SR-ATPase was increased from 1 to 3 mol per 10(5) g SR protein, all was incorporated into the 30K subfragment. Both the activities of formation and decomposition of the phosphorylated intermediate (EP) were unaffected by these modifications. When the separately labeled ATPases were mixed together in the presence of C12E8 and the detergent was removed by incubation with Bio-Beads SM-2, a significant amount of fluorescence energy transfer was observed between N-1-P and DACM. However, energy transfer did not occur when the labeled ATPases were mixed after removal of C12E8.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The time course of changes in the intravesicular Ca2+ concentration ([Ca2+]i) in terminal cisternal sarcoplasmic reticulum vesicles upon the induction of Ca2+ release was investigated by using tetramethylmurexide (TMX) as an intravesicular Ca2+ probe. Upon the addition of polylysine at the concentration that led to the maximum rate of Ca2+ release, [Ca2+]i decreased monotonically in parallel with Ca2+ release. Upon induction of Ca2+ release by lower concentrations of polylysine, [Ca2+]i first increased above the resting level, followed by a decrease well below it. The release triggers polylysine, and caffeine brought about dissociation of calcium that bound to a nonvesicular membrane segment consisting of the junctional face membrane and calsequestrin bound to it, as monitored with TMX. No Ca2+ dissociation from calsequestrin-free junctional face membranes or from the dissociated calsequestrin was produced by release triggers, but upon reassociation of the dissociated calsequestrin and the junctional face membrane, Ca2+ dissociation by triggers was restored. On the basis of these results, we propose that the release triggers elicit a signal in the junctional face membrane, presumably in the foot protein moiety, which is then transmitted to calsequestrin, leading to the dissociation of the bound calcium; and in SR vesicles, to the transient increase of [Ca2+]i, and subsequently release across the membrane.  相似文献   

7.
Saiki Y  Ikemoto N 《Biochemistry》1999,38(10):3112-3119
We here report the results of our recent effort to produce, in the isolated sarcoplasmic reticulum (SR), a biphasic Ca2+ release and Ca2+ re-uptake transient and to resolve the kinetic relationship between Ca2+ release and re-uptake of the released Ca2+. Ca2+ release from the SR was induced by polylysine (the ryanodine receptor-specific Ca2+ release trigger) at various levels of calcium loading, or at various doses of the trigger. The changes in the Ca2+ concentration in the reaction solution and in the lumenal Ca2+ concentration were determined by stopped-flow spectroscopy using fluo-3 and mag-fura-2AM, respectively. At higher levels of calcium loading (>150 nmol/mg), polylysine induced monophasic Ca2+ release curves (without an appreciable re-uptake phase) as reported in most studies in the literature. However, lowering the calcium loading level to an intermediate range (100-150 nmol/mg) produced the desired biphasic transient curves consisting of Ca2+ release and Ca2+ re-uptake phases. Under these conditions, the increase in the polylysine concentration resulted in the increase of both the rate of Ca2+ release and that of re-uptake of the released Ca2+. The maximal rate of Ca2+ release and that of re-uptake showed a parallel relationship in the polylysine concentration range of 0-10 microM. This indicates that Ca2+ release from the SR and re-uptake of the released Ca2+ via the SR Ca2+ pump are well-coordinated processes. The changes in the lumenal Ca2+ concentration during the release and re-uptake reaction were monitored at an optimum level of calcium loading while clamping the extravesicular Ca2+ concentration at a constant value. There was again a tight correlation between Ca2+ release (decrease of the lumenal Ca2+ concentration) and re-uptake (increase of the lumenal Ca2+ concentration), indicating that acceleration of the re-uptake is controlled by the rate of decrease of the lumenal Ca2+ concentration. We propose that one of the mechanisms, by which the mode of coordination between the two components of the biphasic Ca2+ transient (viz. Ca2+ release via the ryanodine receptor and Ca2+ re-uptake via the SR Ca2+ pump) is controlled, is the change in the Ca2+ concentration gradient across the SR membrane.  相似文献   

8.
Several maleimide derivatives of potential usefulness as conformational probes were tested for reactivity toward SH groups of Ca2+, Mg2+-ATPase of sarcoplasmic reticulum. These include three fluorescent labels, N-(1-anilinonaphthyl-4)maleimide (ANM), N-(p-(2-benzimidazolyl)phenyl)maleimide (BIPM), and N-(7-dimethylamino-4-methyl-3-coumarinyl)maleimide (DACM), and a spin label, 4-maleimido-2,2,6,6-tetramethylpiperidinooxyl (MSL). These reagents also exhibit a selective reactivity toward SH groups which is similar to that of N-ethylmaleimide, although these conformational probes were somewhat more reactive than N-ethylmaleimide. Based on the above finding, procedures were devised to specifically label either one of two reactive SH groups of the ATPase, namely one highly reactive but functionally nonessential (SHN) and the other, essential for the decomposition of the E-P intermediate (SHD) [Kawakita, M., et al. (1980) J. Biochem. 87, 609-617], with any one of these conformational probes. Sarcoplasmic reticulum membranes labeled with ANM at either SHN or SHD showed a characteristic fluorescence whose intensity reversibly changed in response to the removal and readdition of Ca2+ ions in the range of 10(-6) to 10(-7) M. The change could be ascribed to a conformational change of the ATPase in response to dissociation and association of Ca2+ ions at the transport site. The Ca2+-dependent fluorescence change was quantitatively different, depending on whether the ATPase was labeled at SHN or SHD. Moreover, it was probe-specific in that BIPM and DACM fluorescence did not change in response to Ca2+. The possible significance of these observations is discussed.  相似文献   

9.
The effects of SH reagents on Ca2+ release from sarcoplasmic reticulum (SR) vesicles were examined by the tracer method using 45Ca2+. Among the various SH reagents tested, 4,4'-dithiodipyridine (PDS) was found to induce Ca2+ release most specifically from the heavy fraction of SR vesicles. Further, the following results were obtained. (i) PDS bound covalently to proteins in the SR membrane and induced Ca2+ release. (ii) The Ca2+ release was further enhanced by ATP and caffeine, but inhibited by procaine, ruthenium red and various divalent cations. (iii) PDS enhanced the Ca2+ release in the whole range of Ca2+ concentrations tested. (iv) Choline permeability was also enhanced by PDS. Further, the electrical conductance of the Ca2+-induced Ca2+ release channels was studied by incorporating them into lipid bilayers and it was found that PDS increased the probability of opening of the channels. These results suggest that PDS binds to certain SH groups of the Ca2+-induced Ca2+ release channels in the SR membrane and thus induces Ca2+ release.  相似文献   

10.
[3H]Ryanodine binding to skeletal muscle and cardiac sarcoplasmic reticulum (SR) vesicles was compared under experimental conditions known to inhibit or stimulate Ca2+ release. In the skeletal muscle SR, ryanodine binds to a single class of high-affinity sites (Kd of 11.3 nM). In cardiac SR vesicles, more than one class of binding sites is observed (Kd values of 3.6 and 28.1 nM). Ryanodine binding to skeletal muscle SR vesicles requires high concentrations of NaCl, whereas binding of the drug to cardiac SR is only slightly influenced by ionic strength. In the presence of 5'-adenylyl imidodiphosphate (p[NH]ppA), increased pH, and micromolar concentration of Ca2+ (which all induce Ca2+ release from SR) binding of ryanodine to SR is significantly increased in skeletal muscle, while being unchanged in cardiac muscle. Ryanodine binding to skeletal but not to cardiac muscle SR is inhibited in the presence of high Ca2+ or Mg2+ concentrations (all known to inhibit Ca2+ release from skeletal muscle SR). Ruthenium red or dicyclohexylcarbodiimide modification of cardiac and skeletal muscle SR inhibit Ca2+ release and ryanodine binding in both skeletal and cardiac membranes. These results indicate that significant differences exist in the properties of ryanodine binding to skeletal or cardiac muscle SR. Our data suggest that ryanodine binds preferably to site(s) which are accessible only when the Ca2+ release channel is in the open state.  相似文献   

11.
The change in the fluorescence properties of dioleoyl-N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)phosphatidylethanola mine (N-NBD-PE) as an indicator of the (liquid-crystalline) bilayer-to-non-bilayer hexagonalII (HII) phase transition has been investigated. Lipid bilayer systems which are known to undergo the bilayer-to-HII phase transition on addition of Ca2+ were compared with systems which can undergo aggregation and fusion but not HII phase formation. The former included Ca2+-triggered non-bilayer transitions in cardiolipin and in phosphatidylethanolamine mixed with phosphatidylserine. The latter type of system investigated included the addition of polylysine to cardiolipin and Ca2+ to phosphatidylserine. Freeze-fracture electron microscopy was used to confirm that under the experimental conditions used, the formation of HII phase was occurring in the first type of system, but not in the second, which was stable in the bilayer state. It was found that the fluorescence intensity of N-NBD-PE (at 1 mol% of the phospholipids) increased in both types of system, irrespective of the formation of the HII phase. A dehydration at the phospholipid head group is a common feature of the formation of the HII phase, the interaction of divalent cations with phosphatidylserine and the interaction of polylysine with lipid bilayers, suggesting that this may be the feature which affects the fluorescence properties of the NBD. The finding of a fluorescence intensity increase in systems lacking HII phase involvement clearly indicates that the effect is not unique to the formation of the HII phase. Thus, while offering high sensitivity and the opportunity to follow kinetics of lipid structural changes, changes in the N-NBD-PE fluorescence properties should be interpreted with caution in the study of the bilayer-to-HII phase transition.  相似文献   

12.
Micromolar concentrations of cupric ion (Cu2+) and mercaptans such as cysteine, cysteamine, and homocysteine trigger large and rapid Ca2+ release from skeletal muscle sarcoplasmic reticulum (SR) vesicles. At the concentrations used, Cu2+ alone does not induce Ca2+ release nor does cysteine alone; both are required to induce Ca2+ release from SR. Cu2+ is known to catalyze the autooxidation of cysteine to its disulfide form cystine; Cu2+/mercaptan-induced Ca2+ release appears to be caused by Cu2+-catalyzed formation of a mixed disulfide between the exogenous mercaptan and a critical sulfhydryl on a transmembrane protein. In the oxidized state the SR is highly permeable to Ca2+. Supporting evidence for this interpretation is as follows. The order of Ca2+-releasing reactivity of the mercaptans is the same as the order in which these compounds undergo oxidation to disulfide forms in the presence of Cu2+. Ca2+ efflux induced by cysteine and Cu2+ can be reversed by the addition of the disulfide reducing agent dithiothreitol. Hypochlorous acid and plumbagin, both potential sulfhydryl oxidants, induce rapid Ca2+ efflux from SR vesicles; in addition, Cu2+, which catalyzes H2O2 oxidation of cysteine, enhances H2O2-induced release. Oxidation-induced Ca2+ release from SR can be partially reversed or blocked by ruthenium red or the local anesthetics procaine and tetracaine. The Ca2+ efflux rates are strongly Mg2+ dependent and are significantly higher in heavy SR than in light SR. These data suggest that the Ca2+ efflux thus induced is via the "Ca2+ release channel" and that the oxidation state of a critical sulfhydryl group on this protein may be the principal means by which the Ca2+ permeability of the SR is regulated in vivo.  相似文献   

13.
Defective interaction between FKBP12.6 and ryanodine receptors (RyR) is a possible cause of cardiac dysfunction in heart failure (HF). Here, we assess whether the new cardioprotective agent JTV519 can correct it in tachycardia-induced HF. HF was induced in dogs by 4-wk rapid ventricular pacing, and sarcoplasmic reticulum (SR) was isolated from left ventricular muscles. In failing SR, JTV519 increased the rate of Ca(2+) release and [(3)H]ryanodine binding. RyR were then labeled in a site-directed fashion with the fluorescent conformational probe methylcoumarin acetamide. In failing SR, the polylysine induced a rapid change in methylcoumarin acetamide fluorescence, presumably because the channel opening preceding the Ca(2+) release was smaller than in normal SR (consistent with a decreased rate of Ca(2+) release in failing SR), and JTV519 increased it. In conclusion, JTV519, a new 1,4-benzothiazepine derivative, corrected the defective channel gating in RyR (increase in both the rapid conformational change and the subsequent Ca(2+) release rate) in HF.  相似文献   

14.
Calcium ions that have been preloaded into isolated SR subfractions in the presence of ATP and pyrophosphate may be released upon addition of a large number of diverse pharmacologic substances in a manner that is effectively blocked by ruthenium red and other organic polyamines. Effective blocking substances include certain antibiotics (neomycin, gentamicin, streptomycin, clindamycin, kanamycin, and tobramycin), naturally occurring polyamines (spermine and spermidine), and a number of basic polypeptides and proteins (polylysine, polyarginine, certain histones, and protamine). These agents have only one feature in common: the presence of several amino groups. Ruthenium red, neomycin, spermine, and protamine all appear to act by blocking SR Ca2+ channels since unidirectional 45Ca2+ efflux from the vesicles is strongly inhibited by these agents. Functions ascribable to the SR Ca2+ pump are largely unaffected by these agents. Since inositol 1,4,5-trisphosphate is ineffective at inducing Ca2+ release under these conditions, we conclude that these polyamines may directly block SR Ca2+ channels at very low concentrations by a mechanism unrelated to effects on inositol 1,4,5-trisphosphate production.  相似文献   

15.
The photooxidizing xanthene dye rose bengal is shown to induce rapid Ca2+ release from skeletal muscle sarcoplasmic reticulum (SR) vesicles. In the presence of light, nanomolar concentrations of rose bengal increase the Ca2+ permeability of the SR and stimulate the production of singlet oxygen (1O2). In the absence of light, no 1O2 production is measured. Under these conditions, higher concentrations of rose bengal (micromolar) are required to stimulate Ca2+ release. Furthermore, removal of oxygen from the release medium results in marked inhibition of the light-dependent reaction rate. Rose bengal-induced Ca2+ release is relatively insensitive to Mg2+. At nanomolar concentrations, rose bengal inhibits [3H]ryanodine binding to its receptor. beta,gamma-Methyleneadenosine 5'-triphosphate, a nonhydrolyzable analog of ATP, inhibits rose bengal-induced Ca2+ release and prevents rose bengal inhibition of [3H]ryanodine binding. Ethoxyformic anhydride, a histidine modifying reagent, at millimolar concentrations induces Ca2+ release from SR vesicles in a manner similar to that of rose bengal. The molecular mechanism underlying rose bengal modification of the Ca2+ release system of the SR appears to involve a modification of a histidyl residue associated with the Ca2+ release protein from SR. The light-dependent reaction appears to be mediated by singlet oxygen.  相似文献   

16.
Ag+-induced Ca2+ release in isolated sarcoplasmic reticulum (SR) was studied by the stopped flow method monitoring chlortetracycline fluorescence change. After improving the experimental procedure, the initial rate of Ca2+ release could be determined more precisely than before. Micromolar concentrations of Ag+ specifically enhanced Ca2+ efflux from heavy fraction of SR vesicles (HSR). This specific effect was referred to as Ag+-induced calcium release. The Ag+-induced Ca2+ efflux was activated by caffeine and ATP, but was inhibited by Mg2+ and procaine. Further, Ag+ enhanced the Ca2+-induced Ca2+ release over the whole range of Ca2+ concentrations, similarly to ATP. Parallel to Ca2+ efflux, Mg2+ efflux, measured by the same method, was also activated by Ag+. Choline permeability determined by the light scattering method was also activated by Ag+. The results suggest that Ag+ binds to the activation site of the Ca2+-induced Ca2+ release channel and opens the channel. The Ag+ binding site is different from the Ca2+ binding site but similar to the ATP binding site.  相似文献   

17.
Using a Ca2+-selective electrode and the chlorotetracycline fluorescence technique, the effects of heparin on Ca2+ transport in the sarcoplasmic reticulum (SR) of skeletal muscles in the absence of oxalate were investigated. It was shown that heparin (0.5-10 micrograms/ml) causes a rapid release of 40-50 nmol Ca2+/mg protein from the terminal cistern SR vesicles bound to 130-150 nmol/mg protein of Ca2+ in the presence of ATP. However, heparin has practically no effect on the longitudinal cistern fraction of SR. The effects of heparin can be prevented by ruthenium red. No influence of heparin is observed in the case of the Ca2+-induced release of Ca2+ from the terminal cisterns. When the Ca2+ release is induced by heparin, no Ca2+-induced release of Ca2+ takes place.  相似文献   

18.
Using the fluorescent probes, Quin 2 and chlortetracycline, a comparative study of the Ca2+ and inositol-1.4.5-triphosphate (IP3)-induced Ca2+ release from rabbit skeletal muscle sarcoplasmic reticulum (SR) terminal cisterns and rat brain microsomal vesicles was carried out. It was shown that Ca2+ release from rat brain microsomal vesicles is induced both by IP3 and Ca2+, whereas that in SR terminal cisterns is induced only by Ca2+. Data from chlorotetracycline fluorescence analysis revealed that CaCl2 (50 microM) causes the release of 15-20% and 40-50% of the total Ca2+ pool accumulated in rat brain microsomal vesicles and rabbit SR terminal cisterns, respectively. Using Quin 2, it was found that IP3 used at the optimal concentration (1.5 mM) caused the release of 0.4-0.6 nmol of Ca2+ per mg microsomal protein, which makes up to 10-15% of the total Ca2+ pool. IP3 does not induce Ca2+ release in SR. Preliminary release of Ca2+ from brain microsomes induced by IP3 diminishes the liberation of this cation induced by Ca2+. It is suggested that brain microsomes contain a Ca2+ pool which is exhausted under the action of the both effectors, Ca2+ and IP3.  相似文献   

19.
The photooxidizing xanthene dye rose bengal (10 nM to 1 microM) stimulates rapid Ca2+ release from skeletal muscle sarcoplasmic reticulum vesicles. Following fusion of sarcoplasmic reticulum (SR) vesicles to an artificial bilayer, reconstituted Ca2+ channel activity is stimulated by nanomolar concentrations of rose bengal in the presence of a broad-spectrum light source. Rose bengal does not appear to affect K+ channels present in the SR. Following reconstitution of the sulfhydryl-activated 106-kDa Ca2+ channel protein into a bilayer, rose bengal activates the isolated protein in a light-dependent manner. Ryanodine at a concentration of 10 nM is shown to lock the 106-kDa channel protein in a subconductance state which can be reversed by subsequent addition of 500 nM rose bengal. This apparent displacement of bound ryanodine by nanomolar concentrations of rose bengal is also directly observed upon measurement of [3H]ryanodine binding to JSR vesicles. These observations indicate that photooxidation of rose bengal causes a stimulation of the Ca2+ release protein from skeletal muscle sarcoplasmic reticulum by interacting with the ryanodine binding site. Furthermore, similar effects of rose bengal on isolated SR vesicles, on single channel measurements following fusion of SR vesicles, and following incorporation of the isolated 106-kDa protein strongly implicates the 106-kDa sulfhydryl-activated Ca2+ channel protein in the Ca2+ release process.  相似文献   

20.
The mechanism by which chloride increases sarcoplasmic reticulum (SR) Ca2+ permeability was investigated. In the presence of 3 microM Ca2+, Ca2+ release from 45Ca(2+)-loaded SR vesicles prepared from procine skeletal muscle was increased approximately 4-fold when the media contained 150 mM chloride versus 150 mM propionate, whereas in the presence of 30 nM Ca2+, Ca2+ release was similar in the chloride- and the propionate-containing media. Ca(2+)-activated [3H]ryanodine binding to skeletal muscle SR was also increased (2- to 10-fold) in media in which propionate or other organic anions were replaced with chloride; however, chloride had little or no effect on cardiac muscle SR 45Ca2+ release or [3H]ryanodine binding. Ca(2+)-activated [3H]ryanodine binding was increased approximately 4.5-fold after reconstitution of skeletal muscle RYR protein into liposomes, and [3H]ryanodine binding to reconstituted RYR protein was similar in chloride- and propionate-containing media, suggesting that the sensitivity of the RYR protein to changes in the anionic composition of the media may be diminished upon reconstitution. Together, our results demonstrate a close correlation between chloride-dependent increases in SR Ca2+ permeability and increased Ca2+ activation of skeletal muscle RYR channels. We postulate that media containing supraphysiological concentrations of chloride or other inorganic anions may enhance skeletal muscle RYR activity by favoring a conformational state of the channel that exhibits increased activation by Ca2+ in comparison to the Ca2+ activation exhibited by this channel in native membranes in the presence of physiological chloride (< or = 10 mM). Transitions to this putative Ca(2+)-activatable state may thus provide a mechanism for controlling the activation of RYR channels in skeletal muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号