共查询到20条相似文献,搜索用时 15 毫秒
1.
Viral abundance, burst sizes, lytic production and temperate phage were investigated in land-fast ice at two sites in Prydz
Bay Antarctica (68°S, 77°E) between April and November 2008. Both ice cores and brine were collected. There was no seasonal
pattern in viral or bacterial numbers. Across the two sites virus abundances ranged between 0.5 × 105 and 5.1 × 105 viruses ml−1 in melted ice cores and 0.6 × 105–3.5 × 105 viruses ml−1 in brine, and bacterial abundances between 2.7 × 104 and 17.3 × 104 cells ml−1 in melted ice cores and 3.9 × 104–32.5 × 104 cells ml−1 in brine. Virus to bacterium ratios (VBR) showed a clear seasonal pattern in ice cores with lowest values in winter (range
1.2–20.8), while VBRs in brine were lower (0.2–4.9). Lytic viral production range from undetectable to 2.0 × 104 viruses ml−1 h−1 in ice cores with maximum rates in September and November. In brine maximum, lytic viral production occurred in November
(1.18 × 104 viruses ml−1 h−1). Low burst sizes were typical (3.94–4.03 viruses per bacterium in ice cores and 3.16–4.0 viruses per bacterium in brine)
with unusually high levels of visibly infected cells—range 40–50%. This long-term investigation revealed that viral activity
was apparent within the sea ice throughout its annual cycle. The findings are discussed within the context of limited data
available on viruses in sea ice. 相似文献
2.
Letterio Guglielmo Giacomo Zagami Vincenzo Saggiomo Giulio Catalano Antonia Granata 《Polar Biology》2007,30(6):747-758
The aim of this study was to investigate patterns of abundance, distribution, temporal changes and species composition of
the dominant ice-associated copepods in the spring annual pack ice, platelet ice and water column at Terra Nova Bay, Ross
Sea, during late spring 1997. Ice cores were drilled for temporal and spatial scales. Stephos longipes and Harpacticus furcifer dominated the sea ice meiofauna in terms of numbers in the lower few centimeters of the bottom ice associated with high chlorophyll
a and phaeopigment levels. Nauplii dominated the S. longipes population (91.6%) and occurred in extremely high concentrations. In contrast, copepodids were the dominant stages in H. furcifer. How H. furcifer carries out its entire life cycle and how it differs from ecologically similar species such as Drescheriella glacialis should be examined in more detail. 相似文献
3.
Virus and microbial loop dynamics over an annual cycle in three contrasting Antarctic lakes 总被引:5,自引:0,他引:5
NANETTE J. MADAN WILLIAM A. MARSHALL JOHANNA LAYBOURN-PARRY 《Freshwater Biology》2005,50(8):1291-1300
1. Viral and microbial loop dynamics were investigated over an annual cycle in three contrasting saline Antarctic lakes – Highway Lake (salinity 4‰), Pendant Lake (salinity 19‰) and Ace Lake, a meromictic system (with a mixolimnion salinity of 18‰) in order to assess the importance of viruses in extreme, microbially dominated systems. 2. Virus like particles (VLP) showed no clear seasonal pattern, with high concentrations occurring in both winter and summer (range 0.89 × 107 ± 0.038 to 12.017 × 107 ± 1.28 mL?1). VLP abundances reflected lake productivity based on chlorophyll a concentrations. Bacterial abundances and biomass did not correlate with VLP numbers except in Pendant Lake, the most productive of the three lakes studied. 3. Pendant Lake supported the highest bacterial biomass (range Highway: 18.44 ± 1.35 to 59.43 ± 2.80 ng C mL?1; Ace: 14.42 ± 2.69 to 68.39 ± 2.95 ng C mL?1; Pendant: 31.36 ± 3.94 to 115.95 ± 4.49 ng C mL?1) so that virus to bacteria ratios (VBR) (range 30.48 ± 7.96 to 96.67 ± 8.21) were higher in Ace Lake (range 30.58 ± 3.98 to 80.037 ± 1.60) and Highway Lake (range 18.63 ± 3.12 to 126.74 ± 6.50). 4. Negative correlations occurred between VLP and cryptophytes (dominant phototrophic nanoflagellates), suggesting that they were not hosts to lytic viruses. Among the other protists only the heterotrophic nanoflagellates of Highway Lake (dominated by the marine choanoflagellate Diaphanoeca grandis) showed a positive correlation with VLP. 5. The VLP was negatively correlated with photosynthetically active radiation (PAR) and temperature, both of which increased with ice thinning and breakout, increasing viral decay. In winter VLP probably persisted in cold, dark water. 6. High VLP concentrations and high VBR (values at the upper end of those reported for marine and lacustrine systems) indicated that viruses, most of which were probably bacteriophage, are a major element within the microbial communities in extreme, saline lakes. 相似文献
4.
Grazing of dominant zooplankton copepods (Calanoides acutus, and Metridia gerlachei), salps (Salpa thompsoni) and microzooplankton was determined during the austral summer of 1998/1999 at the seasonal ice zone of the Prydz Bay region. The objective was to measure the ingestion rates of zooplankton at the seasonal ice zone, so as to evaluate the importance of different groups of zooplankton in their grazing impact on phytoplankton standing stock and primary production. Grazing by copepods was low, and accounted for <1% of phytoplankton standing stocks and 3.8-12.5% of primary production for both species during this study; even the ingestion rates of individuals were at a high level compared with previous reports. S. thompsoni exhibited a relatively high grazing impact on primary production (72%) in the north of our investigation area. The highest grazing impact on phytoplankton was exerted by microzooplankton during this investigation, and accounted for 10-65% of the standing stock of phytoplankton and 34-100% of potential daily primary production. We concluded that microzooplankton was the dominant phytoplankton consumer in this study area. Salps also played an important role in control of phytoplankton where swarming occurred. The grazing of copepods had a relatively small effect on phytoplankton biomass development. 相似文献
5.
L. Guglielmo G. C. Carrada G. Catalano A. Dell'Anno M. Fabiano L. Lazzara O. Mangoni A. Pusceddu V. Saggiomo 《Polar Biology》2000,23(2):137-146
Studies on the chemical and biological properties of annual pack ice at a coastal station in Terra Nova Bay (74°41.72′S, 164°11.63′E) were carried out during austral spring at 3-day intervals from 5 November to 1 December 1997. Temporal changes of nutrient concentrations, algal biomasses, taxonomic composition, photosynthetic pigment spectra and P–E relationships were studied. Quantity, composition and degradation rates of organic matter in the intact sea ice were also investigated. In addition, microcosm experiments were carried out to evaluate photosynthetic and photo-acclimation processes of the sympagic flora in relation to different light regimes. High concentrations of ammonia were measured in four ice-cores (weighted mean values of the cores ranged from 4.3 ± 1.9 μM to 7.2 ± 3.4 μM), whereas nitrate and phosphate displayed high concentrations (up to 35.9 μM and 7.6 μM, respectively) only in the bottom layer (135–145 cm depth). Particulate carbohydrate and protein concentrations in the intact sea ice ranged from 0.5 to 2.3 mg l−1 and 0.2 to 2.0 mg l−1, respectively, displaying a notable accumulation of organic matter in the bottom colored layer, where bacterial enzymatic activities also reached the highest values. Aminopeptidase activity was extremely high (up to 19.7 μM l−1 h−1 ± 0.05 in the bottom layer), suggesting a rapid turnover rate of nitrogen–enriched organic compounds (e.g. proteins). By contrast, bacterial secondary production was low, suggesting that only a very small fraction of mobilized organic matter was converted into bacterial biomass (<0.01‰). The sympagic autotrophic biomass (in terms of chlorophaeopigments) of the bottom layer was high, increasing during the sampling period from 680 to 2480 μg l−1. Analyses of pigments performed by HPLC, as well as microscope observations, indicated that diatoms dominated bottom communities. The most important species were Amphiprora sp. and Nitschia cfr. stellata. Bottom sympagic communities showed an average P B max of 0.12 mgC mg Chl−1 and low photoadaptation index (E k=18 μE m−2 s−1, E m=65 μE m−2 s−1). Results of the microcosm experiment also indicated that communities were photo-oxidized when irradiance exceeded 100 μE m−2 s−1. This result suggests that micro- autotrophs inhabiting sea ice might have a minor role in the pelagic algal blooms. Accepted: 4 August 1999 相似文献
6.
Analyses of the Mg/Ca and Sr/Ca ratios of the modern benthic foraminifera, Cibicides wuellerstorfi (epifaunal) and Uvigerina species (infaunal) from the Coral Sea, and Cibicides refulgens (epifaunal) and Trifarina angulosa (infaunal) from Prydz Bay, Antarctica revealed relationships with temperature that have possible applications for reconstructions of bottom-water paleotemperatures. A positive relationship exists between the Mg/Ca and Sr/Ca ratios of Cibicides wuellerstorfi and Cibicides refulgens and ambient temperatures, at least within the range of
2 and 6°C. For the correlation between Mg/Ca compositions and temperature the r2 values range from 0.78 (C. wuellerstorfi alone) to 0.88 (C. wuellerstorfi and C. refulgens together). At present, the Mg/Ca-temperature relationship must be regarded as tentative because of significant overlap of standard error values. The relationship between the Sr/Ca compositions of C. wuellerstorfi and bottom-water temperature yields an r2 value of 0.95. These results indicate that Sr/Ca and possibly Mg/Ca ratios of Cibicides wuellerstorfi may provide useful information for the assessment of paleotemperature. Single-species data are presently insufficient to assess the influence of ambient temperature on trace-element compositions of Uvigerina species. Trifarina angulosa may have Mg/Ca compositions which are positively related to temperature, but Sr/Ca values seem unaffected by temperature. This may be due to pore-water influences on infaunal tests or to vital effects. Although more modern data are needed, our present results suggest that Sr/Ca ratios and possibly Mg/Ca ratios of some benthic foraminifera have the potential to be useful paleothermometers, at least within a temperature range of −2 to 6°C. 相似文献
7.
Antonio Pusceddu Antonio Dell’Anno Luigi Vezzulli Mauro Fabiano Vincenzo Saggiomo Stefano Cozzi Giulio Catalano Letterio Guglielmo 《Polar Biology》2009,32(3):337-346
We investigated organic carbon quantity and biochemical composition, prokaryotic abundance, biomass and carbon production
in the annual and platelet sea ice of Terra Nova Bay (Antarctica), as well as the downward fluxes of organic matter released
by melting ice during early spring. Huge amounts of biopolymeric C accumulated in the bottom layer of the ice column concomitantly
with the early spring increase in sympagic algal biomass. Such organic material, mostly accounted for by autotrophic biomass,
was characterised by a high food quality and was rapidly exported to the sea bottom during sea ice melting. Prokaryote abundance
(up to 1.3 × 109 cells L−1) and extracellular enzymatic activities (up to 24.3 μM h−1 for amino-peptidase activity) were extremely high, indicating high rates of organic C degradation in the bottom sea ice.
Despite this, prokaryote C production values were very low (range 5–30 ng C L−1 h−1), suggesting that most of the degraded organic C was not channelled into prokaryote biomass. In the platelet ice, we found
similar organic C concentrations, prokaryote abundance and biomass values and even higher extracellular enzymatic activities,
but values of prokaryote C production (range 800–4,200 ng C L−1 h−1) were up to three orders of magnitude higher than in the intact bottom sea ice. Additional field and laboratory experiments
revealed that the dissolved organic material derived from algae accumulating in the bottom sea ice significantly reduced prokaryote
C production, suggesting the presence of a potential allopathic control of sympagic algae on prokaryote growth.
This article belongs to a special topic: Five articles on Sea-ice communities in Terra Nova Bay (Ross Sea), coordinated by
L. Guglielmo and V. Saggiomo, appear in this issue of Polar Biology. The studies were conducted in the frame of the National
Program of Research in Antarctica (PNRA) of Italy. 相似文献
8.
Greta Giljan Carol Arnosti Inga V. Kirstein Rudolf Amann Bernhard M. Fuchs 《Environmental microbiology》2022,24(5):2333-2347
Marine heterotrophic bacteria contribute considerably to global carbon cycling, in part by utilizing phytoplankton-derived polysaccharides. The patterns and rates of two different polysaccharide utilization modes – extracellular hydrolysis and selfish uptake – have previously been found to change during spring phytoplankton bloom events. Here we investigated seasonal changes in bacterial utilization of three polysaccharides, laminarin, xylan and chondroitin sulfate. Strong seasonal differences were apparent in mode and speed of polysaccharide utilization, as well as in bacterial community compositions. Compared to the winter month of February, during the spring bloom in May, polysaccharide utilization was detected earlier in the incubations and a higher portion of all bacteria took up laminarin selfishly. Highest polysaccharide utilization was measured in June and September, mediated by bacterial communities that were significantly different from spring assemblages. Extensive selfish laminarin uptake, for example, was detectible within a few hours in June, while extracellular hydrolysis of chondroitin was dominant in September. In addition to the well-known Bacteroidota and Gammaproteobacteria clades, the numerically minor verrucomicrobial clade Pedosphaeraceae could be identified as a rapid laminarin utilizer. In summary, polysaccharide utilization proved highly variable over the seasons, both in mode and speed, and also by the bacterial clades involved. 相似文献
9.
Temporal variations in composition and density of the benthic macrofauna at two stations (12 and 25 m depth) were studied
in Admiralty Bay, King George Island, Antarctica. Samples where carried out using an van Veen sampler between March and December
1999 (winter) and December 2000 and March 2001 (summer), comprising a discontinuous annual cycle. Sediment organic matter
showed a marked seasonal cycle, with lowest values at middle winter. Communities showed little variations in density and composition.
Temporal variations were not detected at 25 m depth. Variations at 12 m were related to one iceberg impact and to wind generated
hydrodinamism, as a function of wind direction, intensity and fetch. As winter scarcity of primary production did not seem
to affect macrofaunal community densities, nutrient availability for the benthos in winter can be related to the remineralization
of sediment organic matter by bacterial activity.
相似文献
C. A. EcheverríaEmail: |
10.
Inter-annual variations in zooplankton community structure in Prydz Bay were investigated using multivariate analysis based
on samples collected with a 330-μm mesh, 0.5-m2 Norpac net during the austral summer from 1999 to 2006. Two distinct communities, an oceanic and a neritic community, were
consistently identified in all surveys. Oceanic communities had higher diversity and were indicated by species such as Haloptilus ocellatus, Heterorhabdus austrinus, Thysanoessa macrura, Rhincalanus gigas, Scolecithricella minor and Oikopleura sp.. Neritic communities were indicated by Euphausia crystallorophias and Stephos longipes and were characterized by fewer but more abundant species. In 1999 and 2006, a transitional community was also distinguished near the continental shelf edge, where ice coverage was
more extensive than either the oceanic or neritic regions. Significant inter-annual variations in community structure (mainly
involving species abundance rather than species composition) were found in both oceanic and neritic communities, being more
obvious in the latter. The timing and amplitude of sea ice retreat (polynya appearance), and its effect on food availability,
had strong influences on zooplankton community structure. In oceanic communities during years with earlier ice retreat, the
extra time available for phytoplankton blooms to accumulate resulted in a higher proportion of large copepods (Calanoides acutus, Calanus propinquus, Metridia gerlachei) (especially the younger copepodites) in the zooplankton assemblage. In neritic communities, zooplankton such as the ice
krill E. crystallorophias, and large copepods (C. acutus, C. propinquus, M. gerlachei), also showed higher abundance and earlier developmental stages in years with larger polynya. On the other hand, in years
with later ice retreat, smaller polynya, and less time for phytoplankton blooms to form, the abundance of large copepods was
lower and older age classes were more common. 相似文献
11.
1998/1999年南极普里兹湾邻近海域浮游植物的分布特征 总被引:3,自引:0,他引:3
中国第 1 5次南大洋考察从普里兹湾邻近海域获得 2 5个测站的浮游植物样品 ,主要研究了其种类组成、分布及其与环境的关系。浮游植物有 5门 1 6科 2 1属 48种 (变种和变型 ) ,浮游植物平均细胞密度为 2 2 .46× 1 0 3个 /dm3,其中以硅藻类占优势 (84.51 % )。浮游植物分布以近海岸陆架区的细胞密度最高 (4 6 .0 3× 1 0 3个 /dm3) ,其次为陆坡 (4 .40× 1 0 3个 /dm3) ,深海区最低 (3.34× 1 0 3个 /dm3)。表层叶绿素a浓度为 0 .1 6~ 3.99μg/dm3,普里兹湾内和湾西部四女士浅滩海域浓度在 3.5μg/dm3以上 ;平面分布趋势浓度从湾内向西北方向递减 ,深海区浓度在 0 .5μg/dm3以下。浮游植物优势种为硅藻的短拟脆杆藻 (Fragilariopsiscurta)。浮游植物垂直分布密集区位于 0~ 50m水层 ,1 0 0m或 1 0 0m以下水层随深度的增加而细胞密度逐渐减少 ,2 0 0m水层稀少或未见。其密集区位于普里兹湾近岸陆架区 ,而陆坡及深海区细胞密度显著减少。叶绿素a浓度的最大值同样分布在 2 5m或 50m层 ,50m以下的浓度随深度的增加而降低 ,2 0 0m层叶绿素a浓度分布范围为 0 .0 1~ 0 .95μg/dm3。粒径分级叶绿素a浓度以微小型浮游生物的贡献占优势 (56 % ) ,微型浮游生物的贡献占 2 4% ,微微型浮游生物的贡献占 2 0 %。经回 相似文献
12.
中国第15次南大洋考察从普里兹湾邻近海域获得25个测站的浮游植物样品,主要研究了其种类组成、分布及其与环境的关系.浮游植物有5门16科21属48种(变种和变型),浮游植物平均细胞密度为22.46×103个/dm3,其中以硅藻类占优势(84.51%).浮游植物分布以近海岸陆架区的细胞密度最高(46.03×103个/dm3),其次为陆坡(4.40×103个/dm3),深海区最低(3.34×103个/dm3).表层叶绿素a浓度为0.16~3.99 μg/dm3,普里兹湾内和湾西部四女士浅滩海域浓度在3.5 μg/dm3以上;平面分布趋势浓度从湾内向西北方向递减,深海区浓度在0.5 μg/dm3以下.浮游植物优势种为硅藻的短拟脆杆藻(Fragilariopsis curta).浮游植物垂直分布密集区位于0~50 m水层,100 m或100 m以下水层随深度的增加而细胞密度逐渐减少,200 m水层稀少或未见.其密集区位于普里兹湾近岸陆架区,而陆坡及深海区细胞密度显著减少.叶绿素a浓度的最大值同样分布在25 m或50 m层,50 m以下的浓度随深度的增加而降低,200 m层叶绿素a浓度分布范围为0.01~0.95 μg/dm3.粒径分级叶绿素a浓度以微小型浮游生物的贡献占优势(56%),微型浮游生物的贡献占24%,微微型浮游生物的贡献占20%.经回归统计分析,浮游植物细胞丰度(y)与水温(T)、盐度成正相关,与营养盐(PO4 (P)、NO-3 (N)、SiO3 (Si))成显著负相关. 相似文献
13.
[目的]为了解南极普利兹湾夏季海冰不同层次中细菌群落丰度及组成.[方法]利用荧光原位杂交技术对海冰不同层次中细菌进行定量研究,通过构建16S rRNA基因文库对海冰不同层次中细菌进行多样性分析,并结合环境因子进行相关性分析.[结果]荧光原位杂交结果表明,细菌占海冰总细胞数比例随着海冰层次下降呈现上升趋势,初步推断可能受海冰中总有机碳,总有机氮以及磷酸盐影响所致.16SrRNA基因文库分析结果表明,上、中、底3个海冰分层样品获得的16S rRNA基因序列归属于γ-变形细菌纲(γ-Proteobacteria),α-变形细菌纲(α-Proteobacteria)以及拟杆菌门(Bacteroidetes),多数16S rRNA基因序列与分离培养自海洋环境、南北极海冰菌株的16S rRNA基因序列相似性较高(90%-99%);在海冰底部样品中未检测到拟杆菌门;海冰不同层次中,细菌组成呈现些微的差异性,可能由铵离子在海冰不同层次的分布造成.[结论]海冰底部细菌数量最丰富.在海冰中,γ-变形细菌纲为优势类群. 相似文献
14.
Sea ice microbial communities. III. Seasonal abundance of microalgae and associated bacteria,Mcmurdo Sound,Antarctica 总被引:7,自引:0,他引:7
Numbers of bacteria in annual sea ice increased directly with numbers of algae during the 1981 spring ice diatom bloom in McMurdo Sound, Antarctica. Algae and bacteria in a control site grew at rates of 0.10 and 0.05 day–1, respectively, whereas in an experimentally darkened area neither increased after six weeks. Epiphytic bacteria grew at a rate twice that of the nonattached bacteria and were significantly larger, contributing approximately 30% of the total bacterial biomass after October. The microalgal assemblage was dominated by two species of pennate diatoms, anAmphiprora sp. andNitzschia stellata. Greater than 65% of epiphytic bacteria were associated withAmphiprora sp. after October.N. stellata, however, remained largely uncolonized throughout the study. We hypothesize that microalgae stimulate bacterial growth in sea ice, possibly by providing the bacteria with organic substrates. 相似文献
15.
This is the first study that has used satellite telemetry to assess the spatial behaviour of adult leopard seals. Satellite tags on 11 leopard seals transmitted between 29 days and 282 days. Swim speeds, distances swum per day and distances from tagging site were significantly different among individuals and seasons. Swim speeds ranged from 0.004 km/h to 10.86 km/h; distances swum per day from 0 km/day to 150 km/day; and the maximum distances from tagging site ranged from 33.30 km to 319.97 km. Rather than moving north-south with the ice most seals remained within a 50 km radius of their tagging site from 11 days to 97 days. The relatively sedentary movement of the leopard seals was unexpected, particularly the movement of animals over winter, which although slightly offshore did not reflect the usual northward winter migration described for the leopard seal. But traditionally, the leopard seals spatial habits have been described from sightings of animals at higher latitudes. These are generally younger animals and their behaviour may not be representative of the adults. This study has focused on adult females and animals at the extreme southerly range of the leopard seal. This highlights the importance of understanding and reporting age structure and distribution when discussing animal spatial behaviour. 相似文献
16.
Copepods in platelet-ice layers underlying fast ice and in the water column below were studied at Drescher Inlet, eastern Weddell Sea in February 1998. Three copepod species were found: Drescheriella glacialis and Paralabidocera antarctica occurred in platelet-ice layers, while Stephos longipes was only present in the water column. The distribution of all species varied considerably between station and depth. D. glacialis dominated the platelet-ice community and occurred at all five platelet-ice sampling sites, except one, with numbers of up to 26 ind. l–1. In contrast, P. antarctica was only found in low numbers (up to 2 ind. l–1) at one site. The total copepod abundance in the platelet ice was not associated with algal biomass, although it was strongly correlated with high ammonium concentrations (up to 9 M) in the interstitial water between the platelets. This is the first indirect evidence to support the hypothesis that zooplankton excretion can partly account for the high ammonium values often found in platelet-ice layers. 相似文献
17.
Palmisano Anna C.; SooHoo Janice Beeler; SooHoo Spencer L.; Kottmeier Steven T.; Craft Lin L.; Sullivan Cornelius W. 《Journal of plankton research》1986,8(5):891-906
A bloom of the colonial microalga Phaeocystis pouchetii wasadvected from ice-free waters to beneath 1.5 m of annual fastice in East McMurdo Sound, Antarctica in late December 1984.Strategies of photoadaptation to a reduction in growth irradianceinvolved a 3- to 4-fold increase in photosynthetic efficiencyper chlorophyll a ( 相似文献
18.
Summary Changes in the abundance of the components of the microbial plankton between July 1990 and March 1991 in Crooked Lake, one of the largest and deepest freshwater lakes in Antarctica, are described. Chlorophyll a concentration is low (0.2–0.4g·1–1) and there is no discernable spring increase. The phytoplankton is largely dominated by flagellates. Bacterioplankton exhibits a seasonal pattern of abundance ranging from 1.0 × 108·1–1 in July to 3.25 × 108·1–1 in September. Changes in bacterial abundance probably relate to temperature and grazing by heterotrophic and mixotrophic flagellates. Total flagellated protozoan concentrations ranged between 25–136 × 102·l–1. Autotrophic and heterotrophic flagellate abundances were coupled and peaks in their abundance oscillated with peaks in bacterioplankton concentration. Four species of ciliated protozoa, dominated by oligotrichs, particularly the plastidic Strombidium, inhabit the lake. The plankton is characterised by the presence of floes which act as loci for bacteria, flagellates and amoebae and feeding sites for the ciliates and the two sparce metazoan components of the plankton. Crooked Lake is extremely oligotrophic but nonetheless supports a plankton community with a low species diversity and simple trophodynamics. 相似文献
19.
Patterns of carbon assimilation in a microalgal community from annual sea ice,east Antarctica 总被引:1,自引:0,他引:1
Summary Patterns of carbon assimilation into photosynthetic end products were measured in annual sea ice near the Antarctic stations of Davis and Mawson, during December 1982, following the peak of the spring ice algal bloom. Rates of14C assimilation in the ice communities, measured with an in situ sampler-incubation chamber ranged from 1.58–32.92 mg Cm-2h-1
during this period.The partitioning of14C bicarbonate into four subcellular fractions (chloroform-soluble, methanol/water (MeOH/H2O)-soluble, trichloroacetic acid (TCA)-soluble, and TCA-residue) and the efficacy of extraction was determined. During in situ incubations (3–4 h), it was found that a major proportion of the label
was incorporated into a (13)-glucan which was distributed between the neutral MeOH/H2O-and TCA-soluble fractions. The remainder of the label was found in the chloroform-(lipid;
), charged MeOH/H2O-soluble (amino/organic acids;
) and TCA-residue (protein;
). The glucan accounted for 93% of the cellular carbohydrate of ice algae and had a linkage composition similar to the reserve (13)--D-glucan found in cultured diatoms. High14C-incorporation into MeOH/H2O- and TCA-soluble fractions also occurred over a 24 h in vitro incubation, although incorporation into protein, at the expense of the other fractions, continued during the night.While primary productivity in the ice communities was still appreciable during December, the prominent synthesis of reserve glucan and the decreasing cellular ratios of protein/carbohydrate suggests that the ice algae may be nutrient limited during this period. 相似文献
20.
Summary Sea ice microbial communities (SIMCO) grow luxuriantly within several microhabitats of sea ice, indicating that the microorganisms comprising these communities are well adapted to the physicochemical gradients which characterize sea ice. We used SIMCO obtained from the bottom of congelation ice in McMurdo Sound, Antarctica, to test the hypothesis that low temperature limits microbial productivity in polar oceans and also to investigate the effect of salinity on rates of autotrophic and heterotrophic metablism. Substantial rates of carbon fixation, incorporation of thymidine, and uptake of glutamate occurred at the in situ temperatures of-1.9°C, with maximum rates at temperatures considerably warmer but below 15°C. Microalgae and bacteria of SIMCO are thus indicated to be psychrophiles. The relative rates of autotrophic and heterotrophic microbial growth (based on rates of fixation of 14CO2 by microalgae and incorporation of 3H-thymidine by bacteria, respectively) were similar and overlapped from 4° and 7°C. These data suggest that a recent hypothesis proposing the uncoupling of primary production and bacterial production in cold water, due to differential growth of phytoplankton and bacterioplankton at low temperatures, is refuted with respect to SIMCO. Maximum rates of carbon fixation by autotrophs of SIMCO occurred at salinities which characterized the ice from which the SIMCO were collected. In contrast, heterotrophs of SIMCO exhibited a more stenohaline response to variable salinity, with maximum incorporation of thymidine and uridine from 20 to 30. Adaptations by autotrophs and heterotrophs of SIMCO that permit substantial metabolism and growth at very low temperatures and variable salinities are significant when considering production and trophodynamics in polar oceans. Actively growing microorganisms in these unique communities contribute to overall production in polar oceans, provide carbon for food webs associated with sea ice, and upon release from melting ice may contribute to microbial blooms in marginal ice edge zones, which in turn support cryopelagic food webs. 相似文献