首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Knowledge of feeding rates is the basis to understand interaction strength and subsequently the stability of ecosystems and biodiversity. Feeding rates, as all biological rates, depend on consumer and resource body masses and environmental temperature. Despite five decades of research on functional responses as quantitative models of feeding rates, a unifying framework of how they scale with body masses and temperature is still lacking. This is perplexing, considering that the strength of functional responses (i.e. interaction strengths) is crucially important for the stability of simple consumer–resource systems and the persistence, sustainability and biodiversity of complex communities. Here, we present the largest currently available database on functional response parameters and their scaling with body mass and temperature. Moreover, these data are integrated across ecosystems and metabolic types of species. Surprisingly, we found general temperature dependencies that differed from the Arrhenius terms predicted by metabolic models. Additionally, the body-mass-scaling relationships were more complex than expected and differed across ecosystems and metabolic types. At local scales (taxonomically narrow groups of consumer–resource pairs), we found hump-shaped deviations from the temperature and body-mass-scaling relationships. Despite the complexity of our results, these body-mass- and temperature-scaling models remain useful as a mechanistic basis for predicting the consequences of warming for interaction strengths, population dynamics and network stability across communities differing in their size structure.  相似文献   

2.
Metabolism constitutes a fundamental property of all organisms. Metabolic rate is commonly described to scale as a power function of body size and exponentially with temperature, thereby treating the effects of body size and temperature independently. Mounting evidence shows that the scaling of metabolic rate with body mass itself depends on temperature. Across‐species analyses in fishes suggest that the mass‐scaling exponent decreases with increasing temperature. However, whether this relationship holds at the within‐species level has rarely been tested. Here, we re‐analyse data on the metabolic rates of four freshwater fish species, two coregonids and two cyprinids, that cover wide ranges of body masses and their naturally experienced temperatures. We show that the standard metabolic rate of the coregonids is best fit when accounting for a linear temperature dependence of the scaling of metabolic rate with body mass, whereas a constant mass‐scaling exponent is supported in case of the cyprinids. Our study shows that phenotypic responses to temperature can result in temperature‐dependent scaling relationships at the species level and that these responses differ between taxa. Together with previous findings, these results indicate that evolutionarily adaptive and phenotypically plastic responses to temperature affect the scaling of metabolic rate with body mass in fishes.  相似文献   

3.
Metabolic rates provide an estimate of the cost of living for different organisms that can readily be compared across species to provide an estimate of their relative requirements for survival. As such, metabolic rates have been measured for decades on a wide range of organisms. Here, we review published estimates of metabolic rates for brachyuran crabs, a ubiquitous and ecologically and economically important group of consumers. Consistent with ecological theory and results in many other groups of animals, and after controlling for phylogenetic relationships, crab metabolic rates scale with body mass with a scaling exponent of 0.65. Similarly, as with other groups of poikilotherms, crab metabolic rates increase strongly with temperature, with a Q10 of 1.26. Additionally, we found that metabolic rates were correlated with ecological niche, varying with both the diet strategy and the habitat occupied. These results help clarify the relative risk to crabs from environmental changes that impose metabolic stress, including climate change and the proliferation of hypoxic zones.  相似文献   

4.
A large number of analyses have examined how basal metabolic rate (BMR) is affected by body mass in mammals. By contrast, the critical ambient temperatures that define the thermo‐neutral zone (TNZ), in which BMR is measured, have received much less attention. We provide the first phylogenetic analyses on scaling of lower and upper critical temperatures and the breadth of the TNZ in 204 mammal species from diverse orders. The phylogenetic signal of thermal variables was strong for all variables analysed. Most allometric relationships between thermal variables and body mass were significant and regressions using phylogenetic analyses fitted the data better than conventional regressions. Allometric exponents for all mammals were 0.19 for the lower critical temperature (expressed as body temperature ‐ lower critical temperature), ?0.027 for the upper critical temperature, and 0.17 for the breadth of TNZ. The small exponents for the breadth of the TNZ compared to the large exponents for BMR suggest that BMR per se affects the influence of body mass on TNZ only marginally. However, the breadth of the TNZ is also related to the apparent thermal conductance and it is therefore possible that BMR at different body masses is a function of both the heat exchange in the TNZ and that encountered below and above the TNZ to permit effective homeothermic thermoregulation.  相似文献   

5.
In amniotes, daily rates of dentine formation in non-ever-growing teeth range from less than 1 to over 25 μm per day. The latter value has been suggested to represent the upper limit of odontoblast activity in non-ever-growing teeth, a hypothesis supported by the lack of scaling between dentine apposition rates and body mass in Dinosauria. To determine the correlates and potential controls of dentine apposition rate, we assembled a dataset of apposition rates, metabolic rates and body masses for ca 80 amniote taxa of diverse ecologies and diets. We used phylogenetic regression to test for scaling relationships and reconstruct ancestral states of daily dentine apposition across Amniota. We find no relationship between body mass and daily dentine apposition rate (DDAR) for non-ever-growing teeth in Amniota as a whole or within major clades. Metabolic rate, the number of tooth generations, diet and habitat also do not predict or correspond with DDARs. Similar DDARs are found in large terrestrial mammals, dinosaurs and marine reptiles, whereas primates, cetaceans and some smaller marine reptiles independently evolved exceptionally slow rates. Life-history factors may explain the evolution of dentine apposition rates, which evolved rapidly at the origin of major clades.  相似文献   

6.
Aim Variations in body size are well established for many taxa of endotherms and ectotherms, but remain poorly documented for marine invertebrates. Here we explore how body size varies with latitude, temperature and productivity for a major marine invertebrate class, the Bivalvia. Location Continental shelves world‐wide. Methods We used regression models to assess univariate relationships between size and latitude as well as multivariate relationships between size, latitude and environmental parameters (mean and seasonality in temperature and mean productivity). The dataset consisted of 4845 species in 59 families from shelf depths at all latitudes in the Pacific and Atlantic oceans. We also used Blomberg's K to assess whether size–latitude relationships show phylogenetic signal, and test whether functional groups based on feeding mode, substrate relationships, mobility and fixation can account for observed size–latitude trends. Results Size–latitude trends are taxonomically and geographically common in bivalves, but vary widely in sign and strength – no simple explanations based on environmental parameters, phylogeny or functional group hold across all families. Perhaps most importantly, we found that the observed trends vary considerably between hemispheres and among coastlines. Main conclusions Broadly generalizable macroecological patterns in inter‐specific body size may not exist for marine invertebrates. Although size–latitude trends occur in many bivalve lineages, the underlying mechanisms evidently differ among regions and/or lineages. Fully understanding macroecological patterns requires truly global datasets as well as information about the evolutionary history of specific lineages and regions.  相似文献   

7.
Debate on the mechanism(s) responsible for the scaling of metabolic rate with body size in mammals has focused on why the maximum metabolic rate (VO2max ) appears to scale more steeply with body size than the basal metabolic rate (BMR). Consequently, metabolic scope, defined as VO2max/BMR, systematically increases with body size. These observations have led some to suggest that VO2max, and BMR are controlled by fundamentally different processes, and to discount the generality of models that predict a single power-law scaling exponent for the size dependence of the metabolic rate. We present a model that predicts a steeper size dependence for VO2max than BMR based on the observation that changes in muscle temperature from rest to maximal activity are greater in larger mammals. Empirical data support the model's prediction. This model thus provides a potential theoretical and mechanistic link between BMR and VO2 max.  相似文献   

8.
Metabolic rates vary among individuals according to food availability and phenotype, most notably body size. Disentangling size from other factors (e.g., age, reproductive status) can be difficult in some groups, but modular organisms may provide an opportunity for manipulating size experimentally. While modular organisms are increasingly used to understand metabolic scaling, the potential of feeding to alter metabolic scaling has not been explored in this group. Here, we perform a series of experiments to examine the drivers of metabolic rate in a modular marine invertebrate, the bryozoan Bugula neritina. We manipulated size and examined metabolic rate in either fed or starved individuals to test for interactions between size manipulation and food availability. Field collected colonies of unknown age showed isometric metabolic scaling, but those colonies in which size was manipulated showed allometric scaling. To further disentangle age effects from size effects, we measured metabolic rate of individuals of known age and again found allometric scaling. Metabolic rate strongly depended on access to food: starvation decreased metabolic rate by 20% and feeding increased metabolic rate by 43%. In comparison to other marine invertebrates, however, the increase in metabolic rate, as well as the duration of the increase (known as specific dynamic action, SDA), were both low. Importantly, neither starvation nor feeding altered the metabolic scaling of our colonies. Overall, we found that field‐collected individuals showed isometric metabolic scaling, whereas metabolic rate of size‐manipulated colonies scaled allometrically with body size. Thus, metabolic scaling is affected by size manipulation but not feeding in this colonial marine invertebrate.  相似文献   

9.
代谢异速生长理论及其在微生物生态学领域的应用   总被引:1,自引:0,他引:1  
贺纪正  曹鹏  郑袁明 《生态学报》2013,33(9):2645-2655
新陈代谢是生物的基本生理过程,影响生物在不同环境中参与物质循环和能量转化的过程.代谢速率作为生物体重要的生命过程指标,几乎影响所有的生物活性速率,且在很多研究中均表现出异速生长现象.所谓代谢异速是指生物体代谢速率与其个体大小(或质量)之间存在的幂函数关系.代谢异速生长理论的提出,从机制模型角度解释了代谢异速关系这一普遍存在的生命现象.该理论利用分形几何学及流体动力学等原理,从生物能量学角度阐释了异速生长规律的机理,证实了3/4权度指数的存在;但同时有研究表明,权度指数因环境因素等影响处于2/3-1范围之间而非定值.随着研究工作的深入,代谢异速生长理论研究从起初的宏观动植物领域拓展到了微生物领域,在研究微生物的代谢异速生长理论时,可将微生物的可操作分类单元(Operational taxonomic unit,OTU)或具有特定功能的功能群视为一个微生物个体,基于其遗传多样性和功能多样性特征进行表征,以便于将微生物群落多样性与其生态功能性联系起来,使该理论在微生物生态学领域得到有效的补充和完善.尽管细菌具有独特的生物学特性,但与宏观生物系统中观测到的现象表现出明显的一致性.有研究表明,3个农田土壤细菌基于遗传多样性的OTU数的平均周转率分别为0.71、0.80和0.84,介于2/3与1之间,可能与生物代谢异速指数有一定关联,为微生物代谢异速指数的研究提出了一个参考解决方案.鉴于微生物个体特征和生物学特性,在分析代谢速率与个体大小关系中,从微生物单位个体的定义、个体大小表征到计量单位的统一,仍需更多的理论支持.分析了代谢异速生长理论在微生物与生态系统功能关系研究中的可能应用,延伸了该理论的应用范围,并对尚待加强的研究问题进行了评述和展望.  相似文献   

10.
The scaling of metabolic rate with body mass has long been a controversial topic. Some workers have claimed that the slope of log-log metabolic scaling relationships typically obeys a universal 3/4-power law resulting from the geometry of resource-transport networks. Others have attempted to explain the broad diversity of metabolic scaling relationships. Although several potentially useful models have been proposed, at present none successfully predicts the entire range of scaling relationships seen among both physiological states and taxonomic groups of animals and plants. Here I argue that our understanding may be aided by three shifts in focus: from explaining average tendencies to explaining variation between extreme boundary limits, from explaining the slope and elevation (metabolic level) of scaling relationships separately to showing how and why they are interrelated, and from focusing primarily on internal factors (e.g. body design) to a more balanced consideration of both internal and external (ecological) factors. By incorporating all of these shifts in focus, the recently proposed metabolic-level boundaries hypothesis appears to provide a useful way of explaining both taxonomic and physiological variation in metabolic scaling relationships. This hypothesis correctly predicts that the scaling slope should vary mostly between 2/3 and 1 and that it should be related to metabolic (activity) level according to an approximately U-shaped function. It also implies that the scaling of other energy-dependent biological processes should be related to the metabolic level of the organisms being examined. Some data are presented that support this implication, but further research is needed.  相似文献   

11.
Our study used a metabolic theory of ecology (MTE) to explore scaling of metabolic rates by body size and temperature, and to predict nutrient excretion by common carp (Cyprinus carpio). At high biomasses, common carp have negative impacts on water quality, and one mechanism is excretion of the nutrients N and P. We measured whole-body and mass-specific excretion rates during summer and winter for fish of different sizes (wet mass range 28–1,196 g) to produce an allometric scaling model capable of predicting excretion at different temperatures. We found positive relationships between both dissolved and total nutrient concentrations and fish wet mass in summer and winter, with greater excretion rates in summer (mean water temperature 24.2°C) than in winter (mean water temperature 9.2°C). Mass-specific excretion rates decreased with increasing fish size, consistent with the MTE, and the temperature-adjusted model explained more variation for N excretion than for P. The proportion of dissolved nutrients (NH4 and PO4) to total nutrients increased with increasing fish size. The significance of these models is that they can be used to predict population-based nutrient excretion by common carp when thermal history, fish density and size distribution in a water body are known.  相似文献   

12.
Aim We provide a new quantitative analysis of lizard reproductive ecology. Comparative studies of lizard reproduction to date have usually considered life‐history components separately. Instead, we examine the rate of production (productivity hereafter) calculated as the total mass of offspring produced in a year. We test whether productivity is influenced by proxies of adult mortality rates such as insularity and fossorial habits, by measures of temperature such as environmental and body temperatures, mode of reproduction and activity times, and by environmental productivity and diet. We further examine whether low productivity is linked to high extinction risk. Location World‐wide. Methods We assembled a database containing 551 lizard species, their phylogenetic relationships and multiple life history and ecological variables from the literature. We use phylogenetically informed statistical models to estimate the factors related to lizard productivity. Results Some, but not all, predictions of metabolic and life‐history theories are supported. When analysed separately, clutch size, relative clutch mass and brood frequency are poorly correlated with body mass, but their product – productivity – is well correlated with mass. The allometry of productivity scales similarly to metabolic rate, suggesting that a constant fraction of assimilated energy is allocated to production irrespective of body size. Island species were less productive than continental species. Mass‐specific productivity was positively correlated with environmental temperature, but not with body temperature. Viviparous lizards were less productive than egg‐laying species. Diet and primary productivity were not associated with productivity in any model. Other effects, including lower productivity of fossorial, nocturnal and active foraging species were confounded with phylogeny. Productivity was not lower in species at risk of extinction. Main conclusions Our analyses show the value of focusing on the rate of annual biomass production (productivity), and generally supported associations between productivity and environmental temperature, factors that affect mortality and the number of broods a lizard can produce in a year, but not with measures of body temperature, environmental productivity or diet.  相似文献   

13.
Development time is a critical life-history trait that has profound effects on organism fitness and on population growth rates. For ectotherms, development time is strongly influenced by temperature and is predicted to scale with body mass to the quarter power based on 1) the ontogenetic growth model of the metabolic theory of ecology which describes a bioenergetic balance between tissue maintenance and growth given the scaling relationship between metabolism and body size, and 2) numerous studies, primarily of vertebrate endotherms, that largely support this prediction. However, few studies have investigated the allometry of development time among invertebrates, including insects. Abundant data on development of diverse insects provides an ideal opportunity to better understand the scaling of development time in this ecologically and economically important group. Insects develop more quickly at warmer temperatures until reaching a minimum development time at some optimal temperature, after which development slows. We evaluated the allometry of insect development time by compiling estimates of minimum development time and optimal developmental temperature for 361 insect species from 16 orders with body mass varying over nearly 6 orders of magnitude. Allometric scaling exponents varied with the statistical approach: standardized major axis regression supported the predicted quarter-power scaling relationship, but ordinary and phylogenetic generalized least squares did not. Regardless of the statistical approach, body size alone explained less than 28% of the variation in development time. Models that also included optimal temperature explained over 50% of the variation in development time. Warm-adapted insects developed more quickly, regardless of body size, supporting the “hotter is better” hypothesis that posits that ectotherms have a limited ability to evolutionarily compensate for the depressing effects of low temperatures on rates of biological processes. The remaining unexplained variation in development time likely reflects additional ecological and evolutionary differences among insect species.  相似文献   

14.
Advancing the metabolic theory of biodiversity   总被引:1,自引:0,他引:1  
A component of metabolic scaling theory has worked towards understanding the influence of metabolism over the generation and maintenance of biodiversity. Specific models within this ‘metabolic theory of biodiversity’ (MTB) have addressed temperature gradients in speciation rate and species richness, but the scope of MTB has been questioned because of empirical departures from model predictions. In this study, we first show that a generalized MTB is not inconsistent with empirical patterns and subsequently implement an eco‐evolutionary MTB which has thus far only been discussed qualitatively. More specifically, we combine a functional trait (body mass) approach and an environmental gradient (temperature) with a dynamic eco‐evolutionary model that builds on the current MTB. Our approach uniquely accounts for feedbacks between ecological interactions (size‐dependent competition and predation) and evolutionary rates (speciation and extinction). We investigate a simple example in which temperature influences mutation rate, and show that this single effect leads to dynamic temperature gradients in macroevolutionary rates and community structure. Early in community evolution, temperature strongly influences speciation and both speciation and extinction strongly influence species richness. Through time, niche structure evolves, speciation and extinction rates fall, and species richness becomes increasingly independent of temperature. However, significant temperature‐richness gradients may persist within emergent functional (trophic) groups, especially when niche breadths are wide. Thus, there is a strong signal of both history and ecological interactions on patterns of species richness across temperature gradients. More generally, the successful implementation of an eco‐evolutionary MTB opens the perspective that a process‐based MTB can continue to emerge through further development of metabolic models that are explicit in terms of functional traits and environmental gradients.  相似文献   

15.
DeLong JP 《Biology letters》2011,7(4):611-614
The energetic equivalence rule states that population-level metabolic rate is independent of average body size. This rule has been both supported and refuted by allometric studies of abundance and individual metabolic rate, but no study, to my knowledge, has tested the rule with direct measurements of whole-population metabolic rate. Here, I find a positive scaling of whole-colony metabolic rate with body size for eusocial insects. Individual metabolic rates in these colonies scaled with body size more steeply than expected from laboratory studies on insects, while population size was independent of body size. Using consumer-resource models, I suggest that the colony-level metabolic rate scaling observed here may arise from a change in the scaling of individual metabolic rate resulting from a change in the body size dependence of mortality rates.  相似文献   

16.
Historically, allometric equations relate organismal traits, such as metabolic rate, individual growth rate, and lifespan, to body mass. Similarly, Boltzmann or Q(10) factors are used to relate many organismal traits to body temperature. Allometric equations and Boltzmann factors are being applied increasingly to higher levels of biological organization in an attempt to describe aggregate properties of populations and ecosystems. They have been used previously for studies that analyse scaling relationships between populations and across latitudinal gradients. For these kinds of applications, it is crucial to be aware of the "fallacy of the averages", and it is often problematic or incorrect to simply substitute the average body mass or temperature for an entire population or ecosystem into allometric equations. We derive improved approximations to allometric equations and Boltzmann factors in terms of the central moments of body size and temperature, and we provide tests for the accuracy of these approximations. This framework is necessary for interpreting the predictions of scaling theories for large-scale systems and grants insight into which characteristics of a given distribution are important. These approximations and tests are applied to data for body size for several taxonomic groups, including groups with multiple species, and to data for temperature at locations of varying latitude, corresponding to ectothermic body temperatures. Based on these results, the accuracy and utility of these approximations as applied to biological systems are assessed. We conclude that approximations to allometric equations at the species level are extremely accurate. However, for systems with a large range in body size, evaluating the skewness and kurtosis is often necessary, so it may be advantageous to calculate the exact form for the averaged scaling relationships instead. Moreover, the improved approximation for the Boltzmann factor, which uses the average and standard deviation of temperature, is quite accurate and represents a significant improvement over previous approximations.  相似文献   

17.
Birds encompass a large range of body sizes, yet the importance of body size on feather morphology and mechanical properties has not been characterized. In this study, I examined the scaling relationships of primary flight feathers within a phylogenetically diverse sample of avian species varying in body size by nearly three orders of magnitude. I measured the scaling relationships between body mass and feather linear dimensions as well as feather flexural stiffness. The resnlts of an independent contrasts analysis to test the effects of phylogenetic history on the characters measured had no effect on the scaling relationships observed. There was slight, but not significant, positive allometry in the scaling of shaft diameter with respect to feather length across a range of body masses. The scaling of feather length and diameter against body mass was not significantly different from isometry. Flexural stiffness, however, exhibited strong negative allometry. Therefore, larger birds have relatively more flexible feathers than smaller birds. The more flexible primary feathers of large birds may reduce stresses on the wing skeleton during take-off and landing and also make these feathers less susceptible to mechanical failure. Conversely, the greater flexibility of these feathers may also reduce their capacity to generate aerodynamic lift.  相似文献   

18.
The present study determined the effect of body mass and acclimation temperature (15–28°C) on oxygen consumption rate (ṀO2) and the size dependency of preferred temperature in European perch Perca fluviatilis. Standard metabolic rate (SMR) scaled allometrically with body mass by an exponent of 0.86, and temperature influenced SMR with a Q10 of 1.9 regardless of size. Maximum metabolic rate (MMR) and aerobic scope (MMR-SMR) scaled allometrically with body mass by exponents of 0.75–0.88. The mass scaling exponents of MMR and aerobic scope changed with temperature and were lowest at the highest temperature. Consequently, the optimal temperature for aerobic scope decreased with increasing body mass. Notably, fish <40 g did not show a decrease aerobic scope with increasing temperature. Factorial aerobic scope (MMR × SMR−1) generally decreased with increasing temperatures, was unaffected by size at the lower temperatures, and scaled negatively with body mass at the highest temperature. Similar to the optimal temperature for aerobic scope, preferred temperature declined with increasing body mass, unaffectedly by acclimation temperature. The present study indicates a limitation in the capacity for oxygen uptake in larger fish at high temperatures. A constraint in oxygen uptake at high temperature may restrict the growth of larger fish with environmental warming, at least if food availability is not limited. Furthermore, behavioural thermoregulation may be contributing to regional changes in the size distribution of fish in the wild caused by global warming as larger individuals will prefer colder water at higher latitudes and at larger depths than smaller conspecifics with increasing environmental temperatures.  相似文献   

19.
1. An investigation of the influence of previous thermal and nutritional experience on body temperatures and metabolic rate has been carried out with growing piglets. Littermates were kept, from shortly after birth, at either 10 or 35 degrees C and fed either a high (H) or a low (L) energy intake. At 8 weeks of age the animals were exposed to a series of environmental temperatures of 10, 20, 27 and 35 degrees C for 1.5 hr and their rates of oxygen consumption were determined over the last 45 min. At the end of the session body temperatures were measured. 2. Rectal temperatures measured 24 hr after the start of the last meal were higher at each test temperature in piglets which had been living at 35 degrees C than in those at 10 degrees C. Also, rectal temperatures were higher in those on the H intake for animals which had been living in either the hot or the cold environment. 3. Skin temperature on the back was similar in all groups at any given test temperature although there was a tendency for those on an H intake to have the higher temperatures. Skin temperatures of the legs and ears were higher in the 10H and 10L groups than in the 35H or 35L groups at all the test environmental temperatures; energy intake had little effect. 4. Metabolic rate was greater for the animals on the H than the L intake, for those which had been living at either 10 or 35 degrees C at all the test environmental temperatures. The analysis did not reveal any significant difference related to the overall effect of living temperature, which was independent of energy intake. 5. At thermal neutrality (27 degrees C) there was a significant interaction, between energy intake and normal living temperature, on metabolic rate. Living temperature was found to modify the effect of intake: the difference between the two intakes was greater in those from the cold environment than from the hot.  相似文献   

20.
Macrofauna invertebrates of forest floors provide important functions in the decomposition process of soil organic matter, which is affected by the nutrient stoichiometry of the leaf litter. Climate change effects on forest ecosystems include warming and decreasing litter quality (e.g. higher C : nutrient ratios) induced by higher atmospheric CO2 concentrations. While litter-bag experiments unravelled separate effects, a mechanistic understanding of how interactions between temperature and litter stoichiometry are driving decomposition rates is lacking. In a laboratory experiment, we filled this void by quantifying decomposer consumption rates analogous to predator–prey functional responses that include the mechanistic parameters handling time and attack rate. Systematically, we varied the body masses of isopods, the environmental temperature and the resource between poor (hornbeam) and good quality (ash). We found that attack rates increased and handling times decreased (i) with body masses and (ii) temperature. Interestingly, these relationships interacted with litter quality: small isopods possibly avoided the poorer resource, whereas large isopods exhibited increased, compensatory feeding of the poorer resource, which may be explained by their higher metabolic demands. The combination of metabolic theory and ecological stoichiometry provided critically important mechanistic insights into how warming and varying litter quality may modify macrofaunal decomposition rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号