首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Proton block of unitary currents through BK channels was investigated with single-channel recording. Increasing intracellular proton concentration decreased unitary current amplitudes with an apparent pKa of 5.1 without discrete blocking events, indicating fast proton block. Unitary currents recorded at pH(i) 8.0 and 9.0 had the same amplitudes, indicating that 10(-8) M H(+) had little blocking effect. Increasing H(+) by recording at pH(i) 7.0, 6.0, and 5.0 then reduced the unitary currents by 13%, 25%, and 53%, respectively, at +200 mV. Increasing K(+)(i) relieved the proton block in a manner consistent with competitive inhibition of K(+)(i) action by H(+)(i). Proton block was voltage dependent, increasing with depolarization, indicating that block was coupled to the electric field of the membrane. Proton block was not described by the Woodhull equation for noncompetitive voltage-dependent block, but was described by an equation for cooperative competitive inhibition that included voltage-dependent block from the Woodhull equation. Proton block was still present after replacing the eight negative charges in the ring of charge at the entrance to the intracellular vestibule by uncharged amino acids. Thus, the ring of charge is not the site of proton block or of competitive inhibition of K(+)(i) action by H(+)(i). With 150 mM symmetrical KCl, unitary current amplitudes increased with depolarization, reaching 66 pA at +350 mV (pH(i) 7.0). The increase in amplitude with voltage became sublinear for voltages >100 mV. The sublinearity was unaffected by removing from the intracellular solutions Ca(2+) and Ba(2+) ions, the Ca(2+) buffers EGTA and HEDTA, the pH buffer TES, or by replacing Cl(-) with MeSO(3)(-). Proton block accounted for approximately 40% of the sublinearity at +200 mV and pH 7.0, indicating that factors in addition to proton block contribute to the sublinearity of the unitary currents through BK channels.  相似文献   

2.
3.
K channels mediate the selective passage of K+ across the plasma membrane by means of intimate interactions with ions at the pore selectivity filter located near the external face. Despite high conservation of the selectivity filter, the K+ transport properties of different K channels vary widely, with the unitary conductance spanning a range of over two orders of magnitude. Mutation of Pro475, a residue located at the cytoplasmic entrance of the pore of the small-intermediate conductance K channel Shaker (Pro475Asp (P475D) or Pro475Gln (P475Q)), increases Shaker’s reported ∼20-pS conductance by approximately six- and approximately threefold, respectively, without any detectable effect on its selectivity. These findings suggest that the structural determinants underlying the diversity of K channel conductance are distinct from the selectivity filter, making P475D and P475Q excellent probes to identify key determinants of the K channel unitary conductance. By measuring diffusion-limited unitary outward currents after unilateral addition of 2 M sucrose to the internal solution to increase its viscosity, we estimated a pore internal radius of capture of ∼0.82 Å for all three Shaker variants (wild type, P475D, and P475Q). This estimate is consistent with the internal entrance of the Kv1.2/2.1 structure if the effective radius of hydrated K+ is set to ∼4 Å. Unilateral exposure to sucrose allowed us to estimate the internal and external access resistances together with that of the inner pore. We determined that Shaker resistance resides mainly in the inner cavity, whereas only ∼8% resides in the selectivity filter. To reduce the inner resistance, we introduced additional aspartate residues into the internal vestibule to favor ion occupancy. No aspartate addition raised the maximum unitary conductance, measured at saturating [K+], beyond that of P475D, suggesting an ∼200-pS conductance ceiling for Shaker. This value is approximately one third of the maximum conductance of the large conductance K (BK) channel (the K channel of highest conductance), reducing the energy gap between their K+ transport rates to ∼1 kT. Thus, although Shaker’s pore sustains ion translocation as the BK channel’s does, higher energetic costs of ion stabilization or higher friction with the ion’s rigid hydration cage in its narrower aqueous cavity may entail higher resistance.  相似文献   

4.
Potassium channels are important contributors to membrane excitability in smooth muscles. There are regional differences in resting membrane potential and K(+)-channel density along the length of the feline circular smooth muscle esophagus. The aim of this study was to assess responses of K(+)-channel currents to cholinergic (ACh) stimulation along the length of the feline circular smooth muscle esophageal body. Perforated patch-clamp technique assessed K(+)-channel responses to ACh stimulation in isolated smooth muscle cells from the circular muscle layer of the esophageal body at 2 (distal)- and 4-cm (proximal) sites above the lower esophageal sphincter. Western immunoblots assessed ion channel and receptor expression. ACh stimulation produced a transient increase in outward current followed by inhibition of spontaneous transient outward currents. These ACh-induced currents were abolished by blockers of large-conductance Ca(2+)-dependent K(+) channels (BK(Ca)). Distal cells demonstrated a greater peak current density in outward current than cells from the proximal region and a longer-lasting outward current increase. These responses were abolished by atropine and the specific M(3) receptor antagonist 4-DAMP but not the M(1) receptor antagonist pirenzipine or the M(2) receptor antagonist methoctramine. BK(Ca) expression along the smooth muscle esophagus was similar, but M(3) receptor expression was greater in the distal region. Therefore, ACh can differentially activate a potassium channel (BK(Ca)) current along the smooth muscle esophagus. This activation probably occurs through release of intracellular calcium via an M(3) pathway and has the potential to modulate the timing and amplitude of peristaltic contraction along the esophagus.  相似文献   

5.
Time constants of slow inactivation were investigated in NH(2)-terminal deleted Shaker potassium channels using macro-patch recordings from Xenopus oocytes. Slow inactivation is voltage insensitive in physiological solutions or in simple experimental solutions such as K(+)(o)//K(+)(i) or Na(+)(o)//K(+)(i). However, when [Na(+)](i) is increased while [K(+)](i) is reduced, voltage sensitivity appears in the slow inactivation rates at positive potentials. In such solutions, the I-V curves show a region of negative slope conductance between approximately 0 and +60 mV, with strongly increased outward current at more positive voltages, yielding an N-shaped curvature. These changes in peak outward currents are associated with marked changes in the dominant slow inactivation time constant from approximately 1.5 s at potentials less than approximately +60 mV to approximately 30 ms at more than +150 mV. Since slow inactivation in Shaker channels is extremely sensitive to the concentrations and species of permeant ions, more rapid entry into slow inactivated state(s) might indicate decreased K(+) permeation and increased Na(+) permeation at positive potentials. However, the N-shaped I-V curve becomes fully developed before the onset of significant slow inactivation, indicating that this N-shaped I-V does not arise from permeability changes associated with entry into slow inactivated states. Thus, changes in the relative contributions of K(+) and Na(+) ions to outward currents could arise either: (a) from depletions of [K(+)](i) sufficient to permit increased Na(+) permeation, or (b) from voltage-dependent changes in K(+) and Na(+) permeabilities. Our results rule out the first of these mechanisms. Furthermore, effects of changing [K(+)](i) and [K(+)](o) on ramp I-V waveforms suggest that applied potential directly affects relative permeation by K(+) and Na(+) ions. Therefore, we conclude that the voltage sensitivity of slow inactivation rates arises indirectly as a result of voltage-dependent changes in the ion occupancy of these channels, and demonstrate that simple barrier models can predict such voltage-dependent changes in relative permeabilities.  相似文献   

6.
Large-conductance Ca2+- and voltage-activated K+ (BK) channels have the largest conductance (250–300 pS) of all K+-selective channels. Yet, the contributions of the various parts of the ion conduction pathway to the conductance are not known. Here, we examine the contribution of the entrance to the inner cavity to the large conductance. Residues at E321/E324 on each of the four α subunits encircle the entrance to the inner cavity. To determine if 321/324 is accessible from the inner conduction pathway, we measured single-channel current amplitudes before and after exposure and wash of thiol reagents to the intracellular side of E321C and E324C channels. MPA increased currents and MTSET+ decreased currents, with no difference between positions 321 and 324, indicating that side chains at 321/324 are accessible from the inner conduction pathway and have equivalent effects on conductance. For neutral amino acids, decreasing the size of the entrance to the inner cavity by substituting large side-chain amino acids at 321/324 decreased outward single-channel conductance, whereas increasing the size of the entrance with smaller side-chain substitutions had little effect. Reductions in outward conductance were negated by high [K+]i. Substitutions had little effect on inward conductance. Fitting plots of conductance versus side-chain volume with a model consisting of one variable and one fixed resistor in series indicated an effective diameter and length of the entrance to the inner cavity for wild-type channels of 17.7 and 5.6 Å, respectively, with the resistance of the entrance ∼7% of the total resistance of the conduction pathway. The estimated dimensions are consistent with the structure of MthK, an archaeal homologue to BK channels. Our observations suggest that BK channels have a low resistance, large entrance to the inner cavity, with the entrance being as large as necessary to not limit current, but not much larger.  相似文献   

7.
Extracellular acidification is known to decrease the conductance of many voltage-gated potassium channels. In the present study, we investigated the mechanism of H(+)(o)-induced current inhibition by taking advantage of Na(+) permeation through inactivated channels. In hKv1.5, H(+)(o) inhibited open-state Na(+) current with a similar potency to K(+) current, but had little effect on the amplitude of inactivated-state Na(+) current. In support of inactivation as the mechanism for the current reduction, Na(+) current through noninactivating hKv1.5-R487V channels was not affected by [H(+)(o)]. At pH 6.4, channels were maximally inactivated as soon as sufficient time was given to allow activation, which suggested two possibilities for the mechanism of action of H(+)(o). These were that inactivation of channels in early closed states occurred while hyperpolarized during exposure to acid pH (closed-state inactivation) and/or inactivation from the open state was greatly accelerated at low pH. The absence of outward Na(+) currents but the maintained presence of slow Na(+) tail currents, combined with changes in the Na(+) tail current time course at pH 6.4, led us to favor the hypothesis that a reduction in the activation energy for the inactivation transition from the open state underlies the inhibition of hKv1.5 Na(+) current at low pH.  相似文献   

8.
Most voltage-gated K(+) currents are relatively insensitive to extracellular Na(+) (Na(+)(o)), but Na(+)(o) potently inhibits outward human ether-a-go-go-related gene (HERG)-encoded K(+) channel current (Numaguchi, H., J.P. Johnson, Jr., C.I. Petersen, and J.R. Balser. 2000. Nat. Neurosci. 3:429-30). We studied wild-type (WT) and mutant HERG currents and used two strategic probes, intracellular Na(+) (Na(+)(i)) and extracellular Ba(2+) (Ba(2+)(o)), to define a site where Na(+)(o) interacts with HERG. Currents were recorded from transfected Chinese hamster ovary (CHO-K1) cells using the whole-cell voltage clamp technique. Inhibition of WT HERG by Na(+)(o) was not strongly dependent on the voltage during activating pulses. Three point mutants in the P-loop region (S624A, S624T, S631A) with intact K(+) selectivity and impaired inactivation each had reduced sensitivity to inhibition by Na(+)(o). Quantitatively similar effects of Na(+)(i) to inhibit HERG current were seen in the WT and S624A channels. As S624A has impaired Na(+)(o) sensitivity, this result suggested that Na(+)(o) and Na(+)(i) act at different sites. Extracellular Ba(2+) (Ba(2+)(o)) blocks K(+) channel pores, and thereby serves as a useful probe of K(+) channel structure. HERG channel inactivation promotes relief of Ba(2+) block (Weerapura, M., S. Nattel, M. Courtemanche, D. Doern, N. Ethier, and T. Hebert. 2000. J. Physiol. 526:265-278). We used this feature of HERG inactivation to distinguish between simple allosteric and pore-occluding models of Na(+)(o) action. A remote allosteric model predicts that Na(+)(o) will speed relief of Ba(2+)(o) block by promoting inactivation. Instead, Na(+)(o) slowed Ba(2+) egress and Ba(2+) relieved Na(+)(o) inhibition, consistent with Na(+)(o) binding to an outer pore site. The apparent affinities of the outer pore for Na(+)(o) and K(+)(o) as measured by slowing of Ba(2+) egress were compatible with competition between the two ions for the channel pore in their physiological concentration ranges. We also examined the role of the HERG closed state in Na(+)(o) inhibition. Na(+)(o) inhibition was inversely related to pulsing frequency in the WT channel, but not in the pore mutant S624A.  相似文献   

9.
Chen M  Gan G  Wu Y  Wang L  Wu Y  Ding J 《PloS one》2008,3(5):e2114
The auxiliary beta subunits of large-conductance Ca(2+)-activated K(+) (BK) channels greatly contribute to the diversity of BK (mSlo1 alpha) channels, which is fundamental to the adequate function in many tissues. Here we describe a functional element of the extracellular segment of hbeta2 auxiliary subunits that acts as the positively charged rings to modify the BK channel conductance. Four consecutive lysines of the hbeta2 extracellular loop, which reside sufficiently close to the extracellular entryway of the pore, constitute three positively charged rings. These rings can decrease the extracellular K(+) concentration and prevent the Charybdotoxin (ChTX) from approaching the extracellular entrance of channels through electrostatic mechanism, leading to the reduction of K(+) inflow or the outward rectification of BK channels. Our results demonstrate that the lysine rings formed by the hbeta2 auxiliary subunits influences the inward current of BK channels, providing a mechanism by which current can be rapidly diminished during cellular repolarization. Furthermore, this study will be helpful to understand the functional diversity of BK channels contributed by different auxiliary beta subunits.  相似文献   

10.
The Kv2.1 potassium channel contains a lysine in the outer vestibule (position 356) that markedly reduces open channel sensitivity to changes in external [K(+)]. To investigate the mechanism underlying this effect, we examined the influence of this outer vestibule lysine on three measures of K(+) and Na(+) permeation. Permeability ratio measurements, measurements of the lowest [K(+)] required for interaction with the selectivity filter, and measurements of macroscopic K(+) and Na(+) conductance, were all consistent with the same conclusion: that the outer vestibule lysine in Kv2.1 interferes with the ability of K(+) to enter or exit the extracellular side of the selectivity filter. In contrast to its influence on K(+) permeation properties, Lys 356 appeared to be without effect on Na(+) permeation. This suggests that Lys 356 limited K(+) flux by interfering with a selective K(+) binding site. Combined with permeation studies, results from additional mutagenesis near the external entrance to the selectivity filter indicated that this site was located external to, and independent from, the selectivity filter. Protonation of a naturally occurring histidine in the same outer vestibule location in the Kv1.5 potassium channel produced similar effects on K(+) permeation properties. Together, these results indicate that a selective, functional K(+) binding site (e.g., local energy minimum) exists in the outer vestibule of voltage-gated K(+) channels. We suggest that this site is the location of K(+) hydration/dehydration postulated to exist based on the structural studies of KcsA. Finally, neutralization of position 356 enhanced outward K(+) current magnitude, but did not influence the ability of internal K(+) to enter the pore. These data indicate that in Kv2.1, exit of K(+) from the selectivity filter, rather than entry of internal K(+) into the channel, limits outward current magnitude. We discuss the implications of these findings in relation to the structural basis of channel conductance in different K(+) channels.  相似文献   

11.
Endothelial cells (EC) control vascular smooth muscle cell (VSMC) tone by release of paracrine factors. VSMC may also influence the EC layer, and therefore, the present study hypothesized that the opening of large-conductance Ca(2+) activated K(+) (BK(Ca)) channels may indirectly modulate EC hyperpolarization and nitric oxide (NO) release via myoendothelial gap junctions (MEGJ). To address this hypothesis 'in situ' EC ion current recordings, isolated VSMC patch clamp recordings, and simultaneous measurements of NO concentration and relaxation were conducted using segments of the rat superior mesenteric artery. In arteries constricted by α(1)-adrenoceptor activation, ACh (1 μM) evoked EC outward currents, vasorelaxation, and NO release. In contrast to preincubation with iberiotoxin (IbTx, 100nM) application of IbTx after ACh decreased EC outward currents, NO release and vasorelaxation. Furthermore, in phenylephrine (Phe)-contracted arteries treated with a gap junction uncoupler, cabenoxolone (CBX), IbTx failed to decrease ACh-evoked EC outward currents. In addition, CBX decreased EC outward currents, time constant of the capacitative transients, input capacitance, and increased input resistance. In isolated VSMC CBX did not affect BK(Ca) currents. Immunohistochemistry revealed only BK(Ca) channel positive staining in the VSMC layer. Therefore, the present results suggest that BK(Ca) channels are expressed in the VSMC, and that Phe by activation of VSMC BK(Ca) channels modulates ACh-evoked EC outward currents, NO release and vasorelaxation via MEGJ in rat superior mesenteric artery.  相似文献   

12.
The internal vestibule of large-conductance Ca(2+) voltage-activated K(+) (BK) channels contains a ring of eight negative charges not present in K(+) channels of lower conductance (Glu386 and Glu389 in hSlo) that modulates channel conductance through an electrostatic mechanism (Brelidze, T.I., X. Niu, and K.L. Magleby. 2003. Proc. Natl. Acad. Sci. USA. 100:9017-9022). In BK channels there are also two acidic amino acid residues in an extracellular loop (Asp326 and Glu329 in hSlo). To determine the electrostatic influence of these charges on channel conductance, we expressed wild-type BK channels and mutants E386N/E389N, D326N, E329Q, and D326N/E329Q channels on Xenopus laevis oocytes, and measured the expressed currents under patch clamp. Contribution of E329 to the conductance is negligible and single channel conductance of D326N/E329Q channels measured at 0 mV in symmetrical 110 mM K(+) was 18% lower than the control. Current-voltage curves displayed weak outward rectification for D326N and the double mutant. The conductance differences between the mutants and wild-type BK were caused by an electrostatic effect since they were enhanced at low K(+) (30 mM) and vanished at high K(+) (1 M K(+)). We determine the electrostatic potential change, Deltaphi, caused by the charge neutralization using TEA(+) block for the extracellular charges and Ba(2+) for intracellular charges. We measured 13 +/- 2 mV for Deltaphi at the TEA(+) site when turning off the extracellular charges, and 17 +/- 2 mV for the Deltaphi at the Ba(2+) site when the intracellular charges were turned off. To understand the electrostatic effect of charge neutralizations, we determined Deltaphi using a BK channel molecular model embedded in a lipid bilayer and solving the Poisson-Boltzmann equation. The model explains the experimental results adequately and, in particular, gives an economical explanation to the differential effect on the conductance of the neutralization of charges D326 and E329.  相似文献   

13.
Wood MJ  Korn SJ 《Biophysical journal》2000,79(5):2535-2546
Elevation of external [K(+)] potentiates outward K(+) current through several voltage-gated K(+) channels. This increase in current magnitude is paradoxical in that it occurs despite a significant decrease in driving force. We have investigated the mechanisms involved in K(+)-dependent current potentiation in the Kv2.1 K(+) channel. With holding potentials of -120 to -150 mV, which completely removed channels from the voltage-sensitive inactivated state, elevation of external [K(+)] up to 10 mM produced a concentration-dependent increase in outward current magnitude. In the absence of inactivation, currents were maximally potentiated by 38%. At more positive holding potentials, which produced steady-state inactivation, K(+)-dependent potentiation was enhanced. The additional K(+)-dependent potentiation (above 38%) at more positive holding potentials was precisely equal to a K(+)-dependent reduction in steady-state inactivation. Mutation of two lysine residues in the outer vestibule of Kv2.1 (K356 and K382), to smaller, uncharged residues (glycine and valine, respectively), completely abolished K(+)-dependent potentiation that was not associated with inactivation. These mutations did not influence steady-state inactivation or the K(+)-dependent potentiation due to reduction in steady-state inactivation. These results demonstrate that K(+)-dependent potentiation can be completely accounted for by two independent mechanisms: one that involved the outer vestibule lysines and one that involved K(+)-dependent removal of channels from the inactivated state. Previous studies demonstrated that the outer vestibule of Kv2.1 can be in at least two conformations, depending on the occupancy of the selectivity filter by K(+) (Immke, D., M. Wood, L. Kiss, and S. J. Korn. 1999. J. Gen. Physiol. 113:819-836; Immke, D., and S. J. Korn. 2000. J. Gen. Physiol. 115:509-518). This change in conformation was functionally defined by a change in TEA sensitivity. Similar to the K(+)-dependent change in TEA sensitivity, the lysine-dependent potentiation depended primarily (>90%) on Lys-356 and was enhanced by lowering initial K(+) occupancy of the pore. Furthermore, the K(+)-dependent changes in current magnitude and TEA sensitivity were highly correlated. These results suggest that the previously described K(+)-dependent change in outer vestibule conformation underlies the lysine-sensitive, K(+)-dependent potentiation mechanism.  相似文献   

14.
Previously, we demonstrated that maternal diabetes reduced the excitability and increased small-conductance Ca(2+)-activated K(+) (SK) currents of parasympathetic cardiac motoneurons (PCMNs) in the nucleus ambiguus (NA). In addition, blockade of SK channels with apamin completely abolished this reduction. In the present study, we examined whether maternal diabetes affects large-conductance Ca(2+)-activated K(+) (BK) channels and whether BK channels contribute to the attenuation of PCMN excitability observed in neonates of diabetic mothers. Neonatal mice from OVE26 diabetic mothers (NMDM) and normal FVB mothers (control) were used. The pericardial sac of neonatal mice at postnatal days 7-9 was injected with the tracer X-rhodamine-5 (and 6)-isothiocyanate 2 days prior to the experiment to retrogradely label PCMNs in the NA. Whole cell current- and voltage-clamps were used to measure spike frequency, action potential (AP) repolarization (half-width), afterhyperpolarization potential (AHP), transient outward currents, and afterhyperpolarization currents (I(AHP)). In whole cell voltage clamp mode, we confirmed that maternal diabetes increased transient outward currents and I(AHP) compared with normal cells. Using BK channel blockers charybdotoxin (CTx) and paxilline, we found that maternal diabetes increased CTx- and paxilline-sensitive transient outward currents but did not change CTx- and paxilline-sensitive I(AHP). In whole cell current-clamp mode, we confirmed that maternal diabetes increased AP half-width and AHP, and reduced excitability of PCMNs. Furthermore, we found that after blockade of BK channels with CTx or paxilline, maternal diabetes induced a greater increase of AP half-width but similarly decreased fast AHP without affecting medium AHP. Finally, blockade of BK channels decreased spike frequency in response to current injection in both control and NMDM without reducing the difference of spike frequency between the two groups. Therefore, we conclude that although BK transient outward currents, which may alter AP repolarization, are increased in NMDM, BK channels do not directly contribute to maternal diabetes-induced attenuation of PCMN excitability. In contrast, based on evidence from our previous and present studies, reduction of PCMN excitability in neonates of diabetic mothers is largely dependent on altered SK current associated with maternal diabetes.  相似文献   

15.
Wong CM  Tsang SY  Yao X  Chan FL  Huang Y 《Steroids》2008,73(3):272-279
HYPOTHESIS: Potassium (K(+)) channel activation contributes in part to estrogen-mediated vasorelaxation. However, the underlying mechanism is still unclear. We hypothesize that estrogen increases K(+) currents via membrane-associated, non-genomic interaction and that steroid hormones have differential effects on different types of K(+) channels. EXPERIMENTAL: Human large-conductance Ca(2+)-activated K(+) channels (BK(Ca)) and human voltage-gated K(+) channels (K(V1.5)) were expressed in Xenopus oocytes, and K(+) currents elicited by voltage clamp were measured. RESULTS: Both 17beta-estradiol and BSA-conjugated 17beta-estradiol increased the BK(Ca) current in a concentration-dependent manner and this effect was abolished by tetraethylammonium ions and iberiotoxin (putative BK(Ca) channel blockers). 17beta-estradiol-stimulated increase in the BK(Ca) current was unaffected by treatment with ICI 182,780 (classic estrogen receptor antagonist), tamoxifen (estrogen receptor agonist/antagonist), actinomycin D (RNA synthesis inhibitor), or cycloheximide (protein synthesis inhibitor). In contrast, progesterone reduced the BK(Ca) current in the absence or presence of NS 1619 (BK(Ca) channel activator). Progesterone also inhibited 17beta-estradiol-stimulated increase in the BK(Ca) current. Finally, progesterone but not 17beta-estradiol reduced the K(V1.5) current. CONCLUSIONS: The present results show that 17beta-estradiol stimulates BK(Ca) channels without affecting K(V1.5) channels. This effect is ICI 182,780-insensitive and is likely mediated via a membrane-bound binding site. Progesterone inhibits both BK(Ca)- and K(V1.5)-encoded currents. The present results suggest that inhibition of K(+) channels may contribute in part to its reported antagonism against 17beta-estradiol-mediated vascular relaxation via BK(Ca) channels.  相似文献   

16.
Auxiliary beta-subunits associated with pore-forming Slo1 alpha-subunits play an essential role in regulating functional properties of large-conductance, voltage- and Ca(2+)-activated K(+) channels commonly termed BK channels. Even though both noninactivating and inactivating BK channels are thought to be regulated by beta-subunits (beta1, beta2, beta3, or beta4), the molecular determinants underlying inactivating BK channels in native cells have not been extensively demonstrated. In this study, rbeta2 (but not rbeta3-subunit) was identified as a molecular component in rat lumbar L4-6 dorsal root ganglia (DRG) by RT-PCR responsible for inactivating large-conductance Ca(2+)-dependent K(+) currents (BK(i) currents) in small sensory neurons. The properties of native BK(i) currents obtained from both whole-cell and inside-out patches are very similar to inactivating BK channels produced by co-expressing mSlo1 alpha- and hbeta2-subunits in Xenopus oocytes. Intracellular application of 0.5 mg/ml trypsin removes inactivation of BK(i) channels, and the specific blockers of BK channels, charybdotoxin (ChTX) and iberiotoxin (IbTX), inhibit these BK(i) currents. Single BK(i) channel currents derived from inside-out patches revealed that one BK(i) channel contained three rbeta2-subunits (on average), with a single-channel conductance about 217 pS under 160 K(+) symmetrical recording conditions. Blockade of BK(i) channels by 100 nM IbTX augmented firing frequency, broadened action potential waveform and reduced after-hyperpolarization. We propose that the BK(i) channels in small diameter DRG sensory neurons might play an important role in regulating nociceptive input to the central nervous system (CNS).  相似文献   

17.
The bronchial vasculature plays an important role in airway physiology and pathophysiology. We investigated the ion currents in canine bronchial smooth muscle cells using patch-clamp techniques. Sustained outward K(+) current evoked by step depolarizations was significantly inhibited by tetraethylamonium (1 and 10 mM) or by charybdotoxin (10(-6) M) but was not significantly affected by 4-aminopyridine (1 or 5 mM), suggesting that it was primarily a Ca(2+)-activated K(+) current. Consistent with this, the K(+) current was markedly increased by raising external Ca(2+) to 4 mM but was decreased by nifedipine (10(-6) M) or by removing external Ca(2+). When K(+) currents were blocked (by Cs(+) in the pipette), step depolarizations evoked transient inward currents with characteristics of L-type Ca(2+) current as follows: 1) activation that was voltage dependent (threshold and maximal at -50 and -10 mV, respectively); 2) inactivation that was time dependent and voltage dependent (voltage causing 50% maximal inactivation of -26 +/- 22 mV); and 3) blockade by nifedipine (10(-6) M). The thromboxane mimetic U-46619 (10(-6) M) caused a marked augmentation of outward K(+) current (as did 10 mM caffeine) lasting only 10-20 s; this was followed by significant suppression of the K(+) current lasting several minutes. Phenylephrine (10(-4) M) also suppressed the K(+) current to a similar degree but did not cause the initial transient augmentation. None of these three agonists elicited inward current of any kind. We conclude that bronchial arterial smooth muscle expresses Ca(2+)-dependent K(+) channels and voltage-dependent Ca(2+) channels and that its excitation does not involve activation of Cl(-) channels.  相似文献   

18.
Bupivacaine is a local anesthetic compound belonging to the amino amide group. Its anesthetic effect is commonly related to its inhibitory effect on voltage-gated sodium channels. However, several studies have shown that this drug can also inhibit voltage-operated K(+) channels by a different blocking mechanism. This could explain the observed contractile effects of bupivacaine on blood vessels. Up to now, there were no previous reports in the literature about bupivacaine effects on large conductance voltage- and Ca(2+) -activated K(+) channels (BK(Ca)). Using the patch-clamp technique, it is shown that bupivacaine inhibits single-channel and whole-cell K(+) currents carried by BK(Ca) channels in smooth muscle cells isolated from human umbilical artery (HUA). At the single-channel level bupivacaine produced, in a concentration- and voltage-dependent manner (IC(50) 324 μM at +80 mV), a reduction of single-channel current amplitude and induced a flickery mode of the open channel state. Bupivacaine (300 μM) can also block whole-cell K(+) currents (~45% blockage) in which, under our working conditions, BK(Ca) is the main component. This study presents a new inhibitory effect of bupivacaine on an ion channel involved in different cell functions. Hence, the inhibitory effect of bupivacaine on BK(Ca) channel activity could affect different physiological functions where these channels are involved. Since bupivacaine is commonly used during labor and delivery, its effects on umbilical arteries, where this channel is highly expressed, should be taken into account.  相似文献   

19.
The effects of endothelin on the transient outward K(+) currents were compared between Kv1.4 and Kv4.3 channels in Xenopus oocytes expression system. Both transient outward K(+) currents were decreased by stimulation of endothelin receptor ET(A) coexpressed with the K(+) channels. Transient outward current of Kv1.4 was decreased by about 85% after 10(-8) M ET-1, while that of Kv4.3 was decreased by about 60%. By mutagenesis experiments we identified two phosphorylation sites of PKC and CaMKII in Kv1.4 responsible for the decrease in I(to) by ET-1. In Kv4.3 a PKC phosphorylation site was identified which is in part responsible for the decrease in I(to). Differences in the suppression of I(to) could be ascribed to the difference in intracellular signaling including the number of phosphorylation sites. These findings might give clues for the understanding of molecular mechanism of ventricular arrhythmias in heart failure, in which endothelin is involved in the pathogenesis.  相似文献   

20.
Electrophysiological events are of central importance during the phagocyte respiratory burst, because NADPH oxidase is electrogenic and voltage sensitive. We investigated the recent suggestion that large-conductance, calcium-activated K(+) (BK) channels, rather than proton channels, play an essential role in innate immunity (Ahluwalia, J., A. Tinker, L.H. Clapp, M.R. Duchen, A.Y. Abramov, S. Page, M. Nobles, and A.W. Segal. 2004. Nature. 427:853-858). In PMA-stimulated human neutrophils or eosinophils, we did not detect BK currents, and neither of the BK channel inhibitors iberiotoxin or paxilline nor DPI inhibited any component of outward current. BK inhibitors did not inhibit the killing of bacteria, nor did they affect NADPH oxidase-dependent degradation of bacterial phospholipids by extracellular gIIA-PLA(2) or the production of superoxide anion (O(2*)(-)). Moreover, an antibody against the BK channel did not detect immunoreactive protein in human neutrophils. A required role for voltage-gated proton channels is demonstrated by Zn(2+) inhibition of NADPH oxidase activity assessed by H(2)O(2) production, thus validating previous studies showing that Zn(2+) inhibited O(2*)(-) production when assessed by cytochrome c reduction. In conclusion, BK channels were not detected in human neutrophils or eosinophils, and BK inhibitors did not impair antimicrobial activity. In contrast, we present additional evidence that voltage-gated proton channels serve the essential role of charge compensation during the respiratory burst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号