首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The LAN-1 clone, a cell line derived from a human neuroblastoma, possesses muscarinic receptors. The stimulation of these receptors with increasing concentrations of carbachol (CCh; 1-1,000 microM) caused a dose-dependent increase of the intracellular free Ca2+ concentration ([Ca2+]i). This increase was characterized by an early peak phase (10 s) and a late plateau phase. The removal of extracellular Ca2+ reduced the magnitude of the peak phase to approximately 70% but completely abolished the plateau phase. The muscarinic-activated Ca2+ channel was gadolinium (Gd3+) blockade and nimodipine and omega-conotoxin insensitive. In addition, membrane depolarization did not cause any increase in [Ca2+]i. The CCh-induced [Ca2+]i elevation was concentration-dependently inhibited by pirenzepine and 4-diphenylacetoxy-N-methylpiperidine methiodide, two rather selective antagonists of M1 and M3 muscarinic receptor subtypes, respectively, whereas methoctramine, an M2 antagonist, was ineffective. The coupling of M1 and M3 receptor activation with [Ca2+]i elevation does not seem to be mediated by a pertussis toxin-sensitive guanine nucleotide-binding protein or by the diacylglycerol-protein kinase C system. The mobilization of [Ca2+]i elicited by M1 and M3 muscarinic receptor stimulation seems to be dependent on an inositol trisphosphate-sensitive intracellular store. In addition, ryanodine did not prevent CCh-induced [Ca2+]i mobilization, and, finally, LAN-1 cells appear to lack caffeine-sensitive Ca2+ stores, because the methylxanthine was unable to elicit intracellular Ca2+ mobilization, under basal conditions, after a subthreshold concentration of CCh (0.3 microM), or after thapsigargin.  相似文献   

2.
The effects of glucagon and vasopressin, singly or together, on cytosolic free Ca2+ concentration [( Ca2+]i) and on the 45Ca2+ efflux were studied in isolated rat liver cells. In the presence of 1 mM external Ca2+, glucagon and vasopressin added singly induced sustained increases in [Ca2+]i. The rate of the initial fast phase of the [Ca2+]i increase and the magnitude of the final plateau were dependent on the concentrations (50 pm-0.1 microM) of glucagon and vasopressin. Preincubating the cells with a low concentration of glucagon (0.1 nM) for 2 min markedly accelerated the fast phase and elevated the plateau of the [Ca2+]i increase caused by vasopressin. In the absence of external free Ca2+, glucagon and vasopressin transiently increased [Ca2+]i and stimulated the 45Ca2+ efflux from the cells, indicating mobilization of Ca2+ from internal store(s). Preincubating the cells with 0.1 nM-glucagon accelerated the rate of the fast phase of the [Ca2+]i rise caused by the subsequent addition of vasopressin. However, unlike what was observed in the presence of 1 mM-Ca2+, glucagon no longer enhanced the maximal [Ca2+]i response to vasopressin. In the absence of external free Ca2+, higher concentrations (1 nM-0.1 microM) of glucagon, which initiated larger increases in [Ca2+]i, drastically decreased the subsequent Ca2+ response to vasopressin (10 nM). At these concentrations, glucagon also decreased the vasopressin-stimulated 45Ca2+ efflux from the cells. It is suggested that, in the liver, glucagon accelerates the fast phase and elevates the plateau of the vasopressin-mediated [Ca2+]i increase respectively by releasing Ca2+ from the same internal store as that permeabilized by vasopressin, probably the endoplasmic reticulum, and potentiating the influx of extracellular Ca2+ caused by this hormone.  相似文献   

3.
Gonadotropin-releasing hormone (GnRH) stimulates rapid peak increases in [Ca2+]i and LH release, followed by lower but sustained elevations of both [Ca2+]i and hormone secretion. Omission of extracellular Ca2+ only slightly decreased the peak of [Ca2+]i, but reduced the peak LH response by 40% and prevented the prolonged increases in [Ca2+]i and LH release. Dihydropyridine calcium antagonists did not affect the peak [Ca2+]i and LH responses, but reduced the sustained increases by up to 50%. Whereas GnRH-induced mobilization of intracellular calcium initiates the LH peak, and Ca2+ entry through dihydropyridine-insensitive channels contributes to the peak and plateau phases of LH release, dihydropyridine-sensitive L-type Ca2+ channels participate only in the sustained phase of gonadotropin secretion.  相似文献   

4.
TRH stimulates a biphasic increase in intracellular free calcium ion, [Ca2+]i. Cells stably transfected with TRH receptor cDNA were used to compare the response in lines with and without L type voltage-gated calcium channels. Rat pituitary GH-Y cells that do not normally express TRH receptors, rat glial C6 cells, and human epithelial Hela cells were transfected with mouse TRH receptor cDNA. All lines bound similar amounts of [3H][N3-Me-His2]TRH with identical affinities (dissociation constant = 1.5 nM). Both pituitary lines expressed L type voltage-gated calcium channels; depolarization with high K+ increased 45Ca2+ uptake 20- to 25-fold and [Ca2+]i 12- to 14-fold. C6 and Hela cells, in contrast, appeared to have no L channel activity. GH4C1 cells responded to TRH with a calcium spike (6-fold) followed by a sustained second phase. When TRH was added after 100 nM nimodipine, an L channel blocker, the initial calcium burst was unaffected but the second phase was abolished. GH-Y cells transfected with TRH receptor cDNA responded to TRH with a 6-fold [Ca2+]i spike followed by a plateau phase (>8 min) in which [Ca2+]i remained elevated or increased. Nimodipine did not alter the peak TRH response or resting [Ca2+]i but reduced the sustained phase, which was eliminated by chelation of extracellular Ca2+. In the transfected glial C6 and Hela cells without calcium channels, TRH evoked transient, monophasic 7- to 9-fold increases in [Ca2+]i, and [Ca2+]i returned to resting levels within 3 min. Thapsigargin stimulated a gradual, large increase in [Ca2+]i in transfected C6 cells, and subsequent addition of TRH caused no further rise. Removal of extracellular Ca2+ from transfected C6 cells shortened the [Ca2+]i responses to TRH, to endothelin 1, and to thapsigargin. The TRH responses were pertussis toxin-insensitive. In summary, TRH can generate a calcium spike in pituitary, C6, and Hela cells transfected with TRH receptor cDNA, but the plateau phase of the [Ca2+]i response is not observed when the receptor is expressed in a cell line without L channel activity.  相似文献   

5.
Intracellular free Ca2+ concentration ([Ca2+]i) in embryonic chick cerebellar granule cells loaded with fluo-3/AM and exposed to a single pulsed electric field was investigated using a confocal laser scanning microscope and fluorescent microscope equipped with CCD video imaging system.The results showed that [Ca2+]i increased immediately and rose to the peak rapidly as the cells exposed to a single pulsed electric field.The amplitude and rate of the increases of [Ca2+]i depend on the intensity of external electric field.In the presence of Ca2+ chelant EGTA or Ca2+ channels blocker La3+ in the pulsation solutions,the increase of [Ca2+]i was still observable.It was also observed that [Ca2+]i of different intracellular areas in the cell elevated simultaneously while the peak of the increase of [Ca2+]i in the poles of the cell preceded to the peak in its somata and recovered to a plateau within a short time.  相似文献   

6.
We characterized thromboxane A2/prostaglandin H2 (TXA2/PGH2) receptors and histamine H1 receptors in Guinea-pig cultured tracheal smooth-muscle cells (TSMC). [3H]SQ 29,548 (a TXA2 antagonist)-binding sites were saturable and a high affinity with a dissociation constant of 6.2 +/- 0.60 nM (mean +/- S.E.) and a receptor density of 46 +/- 4.6 fmol/10(6) cells. [3H]SQ 29548 binding was completely inhibited by TXA2 mimetics or antagonists. Intracellular calcium concentration ([Ca2+]i) in TSMC was increased with U46619 stimulation and the increase was attenuated by TXA2 antagonists, the potencies of which correlated with those inhibiting the activities of the [3H]SQ 29548 binding. [3H]Mepyramine (a H1 antagonist)-binding sites were also present in TSMC. [3H]Mepyramine had a single class of low-affinity-binding sites with a dissociation constant of 2.6 +/- 0.081 microM and a receptor density of 10.6 +/- 0.11 nmol/mg protein. [3H]Mepyramine binding in TSMC membrane was inhibited by H1 antagonists, but not by H2 antagonists. The inhibition constants of mepyramine in TSMC were 910-times lower than those in tracheal membranes. In contrast, the histamine-induced increase in [Ca2+]i in TSMC was inhibited in the presence of low concentrations of H1 antagonists. All these observations provide evidence that TXA2/PGH2 receptors, mepyramine-binding sites and/or H1 receptors are expressed in cultured TSMC.  相似文献   

7.
We have used phorbol esters, such as 12-O-tetradecanoyl phorbol 13-acetate (TPA), to study the actions of protein kinase C (a TPA receptor) on cytosolic free Ca2+ concentrations [( Ca2+]i) and hormone secretion in rat pituitary cells (GH cells), and to elucidate the role of diacylglycerol (a protein kinase C activator) in thyrotropin-releasing hormone (TRH) action. TPA had a dual action on [Ca2+]i, inducing a stimulatory phase from 300 (basal) to 420 nM, which was interrupted in 30-60 s by an inhibitory phase which transiently lowered [Ca2+]i to 240 nM and rose in 3-10 min to yield the stimulatory phase. TPA-mediated changes in [Ca2+]i were induced by other phorbol esters and mezerein but not by phorbol or activators of kinases different from protein kinase C. Both phases of TPA action on [Ca2+]i were abolished by 5-min pretreatment with ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) (1.33 mM) or Ca2+ channel antagonists (verapamil or nifedipine). TPA also enhanced the rate of sustained hormone secretion without inducing a burst of hormone release (unlike TRH). Also, stimulation of secretion by TPA was not inhibited by Ca2+ channel antagonists and was resistant (10%) to EGTA. Simultaneous addition of TPA with the ionophore ionomycin (100 nM) reconstituted a TRH-like spike, nadir and plateau of [Ca2+]i. Ionomycin generated the spike in [Ca2+]i by releasing TRH-sensitive Ca2+ stores, while TPA induced the nadir (inhibitory phase), and a nifedipine/verapamil-sensitive plateau of [Ca2+]i (stimulatory phase). Concurrent (but not separate) addition of ionomycin and TPA also reconstituted a TRH-like burst of hormone secretion. These and previous results indicate that activation of protein kinase C by TPA or diacylglycerol (which is elevated by TRH) and a simultaneous spike in [Ca2+]i are required for burst secretion. Diacylglycerol may also mediate the TRH-induced nadir and plateau of [Ca2+]i; the latter process contributes to Ca2+-dependent stimulation of steady secretion by TRH.  相似文献   

8.
1. Effects of Ca2+ agonist and antagonists on cytosolic free Ca2+ concentration [( Ca2+]i)were studied using quin2. 2. Nicardipine (NIC), diltiazem (DIL) and verapamil (VER) had no effect on the rise in [Ca2+]i evoked by carbachol. Methoxamine-elevated [Ca2+]i was inhibited by VER but not by NIC and DIL. 3. All Ca2+ antagonists tested produced a decline of [Ca2+]i elevated by isoproterenol to the resting level. 4. The addition of 30 mM K+ gradually elevated [Ca2+]i in normal and Ca2+-free media, but it did not increase 45Ca2+ uptake into cells. BAY K 8644 did not increase [Ca2+]i. 5. We suggest that voltage-sensitive Ca2+ channels are lacking and that at least 2 distinct receptor-operated Ca2+ channels exist in rat parotid cells.  相似文献   

9.
The effects of membrane potential on resting and bradykinin-stimulated changes in [Ca2+]i were measured in fura-2 loaded cultured endothelial cells from bovine atria by spectrofluorimetry. The basal and bradykinin-stimulated release of endothelium-derived relaxing factor, monitored by bioassay methods, were dependent on extracellular Ca2+. Similarly, the plateau phase of the biphasic [Ca2+]i response to bradykinin stimulation exhibited a dependence on extracellular Ca2+, whereas the initial transient [Ca2+]i peak was refractory to the removal of extracellular Ca2+. The effect of membrane depolarization on the plateau phase of the bradykinin-induced change in [Ca2+]i was determined by varying [K+]o. The resting membrane potential measured under current clamp conditions was positively correlated with the extracellular [K+] (52 mV change/10-fold change in [K+]o). The observed decrease in resting and bradykinin-stimulated changes in [Ca2+]i upon depolarization is consistent with an ion transport mechanism where the influx is linearly related to the electrochemical gradient for Ca2+ entry (Em - ECa). The inhibition of bradykinin-stimulated Ca2+ entry by isotonic K+ was not due to the absence of extracellular Na+ since Li+ substitution did not inhibit the agonist-induced Ca2+ entry. In K(+)-free solutions and in the presence of ouabain, bradykinin evoked synchronized oscillations in [Ca2+]i in confluent endothelial cell monolayers. These [Ca2+]i oscillations between the plateau and resting [Ca2+]i levels were dependent on extracellular Ca2+ and K+ concentrations. Although the mechanism(s) underlying [Ca2+]i oscillations in vascular endothelial cells is unclear, these results suggest a role of the membrane conductance.  相似文献   

10.
The effect of 5-hydroxytryptamine (5-HT) on phospholipase C (PLC)-mediated phosphoinositide (PI) hydrolysis and intracellular Ca2+ ([Ca2+]i) changes was investigated in canine cultured aorta smooth muscle cells (ASMCs). 5-HT-stimulated inositol phosphate (IP) accumulation was time and concentration dependent with a half-maximal response (pEC50) and a maximal response at 6.4 and 10 microM, n = 6, respectively. Stimulation of ASMCs by 5-HT produced an initial transient peak followed by a sustained, concentration-dependent elevation in [Ca+]i. The half-maximal response (pEC50) values of 5-HT for the peak and sustained plateau were 7.1 and 6.9, respectively. Ketanserin and mianserin (1 and 3 nM), 5-HT2A antagonists, were equipotent and had high affinity in antagonising the 5-HT-induced IP accumulation and [Ca2+]i change with pK(B) values of 8.6-9.1 and 8.6-9.4, respectively. In contrast, the concentration-effect curves of 5-HT-induced IP and [Ca2+]i responses were not shifted until the concentrations of NAN-190 and metoctopramide (5-HT1A and 5-HT3 receptor antagonists, respectively) were increased to as high as 1 microM with pK(B) values of 5.7-6.3 and 6.1-6.6, respectively, indicating that the 5-HT receptor-mediated responses had low affinity for these antagonists. Pre-treatment of ASMCs with pertussis toxin (100 ng/mL, 24 h) caused a significant inhibition of 5-HT-induced IP accumulation and [Ca2+]i change in ASMCs. Depletion of external Ca2+ or removal of Ca2+ by addition of EGTA led to a significant attenuation of IP accumulation and [Ca2+]i change induced by 5-HT. Influx of external Ca2+ was required for the 5-HT-induced responses, because Ca2+-channel blockers--verapamil, nifedipine and Ni2+--partly inhibited the 5-HT-induced IP accumulation and Ca2+ mobilisation. The sustained elevation of [Ca2+]i response to 5-HT was dependent on the presence of external Ca2+. Removal of external Ca2+ by addition of 5 mM EGTA during the sustained phase caused a rapid decline in [Ca2+]i to lower than the resting level. The sustained elevation of [Ca2+]i could then be evoked by addition of 1.8 mM Ca2+ in the continued presence of 5-HT. These results demonstrate that 5-HT directly stimulates PLC-mediated PI hydrolysis and Ca2+ mobilisation, at least in part, through a pertussis toxin-sensitive G protein in canine ASMCs. 5-HT2A receptors may be predominantly mediating IP accumulation, and subsequently IP-induced Ca2+ mobilisation may function as the transducing mechanism for 5-HT-stimulated contraction of aorta smooth muscle.  相似文献   

11.
The influence of extracellular Ca2+ on hormone-mediated increases of cytosolic free Ca2+ [( Ca2+]i) and phosphorylase activity was studied in isolated hepatocytes. In the presence of 1.3 mM extracellular Ca2+, the stimulation of phosphorylase activity produced by vasopressin or phenylephrine was maintained for 20-30 min. In contrast, the change in [Ca2+]i under these conditions was more transient and declined within 3-4 min to steady state values only 70 +/- 8 nM above the resting [Ca2+]i. Removal of the hormone from its receptor with specific antagonists caused a decline in [Ca2+]i back to the original resting values. Subsequent addition of a second hormone elicited a further Ca2+ transient. If the antagonist was omitted, the second hormone addition did not increase [Ca2+]i indicating that the labile intracellular Ca2+ pool remains depleted during receptor occupation. When extracellular Ca2+ was omitted, both the changes of [Ca2+]i and phosphorylase a caused by vasopressin were transient and returned exactly to resting values within 3-4 min. The subsequent readdition of Ca2+ to these cells produced a further increase of [Ca2+]i and phosphorylase activity which was larger than the changes observed upon Ca2+ addition to untreated cells. This reactivation of phosphorylase showed saturation kinetics with respect to extracellular [Ca2+], was maximally stimulated within 1 min of vasopressin addition and was inhibited by high concentration of diltiazem. We conclude that entry of extracellular Ca2+ into the cell is required in order to obtain a sustained hormonal stimulation of phosphorylase activity and is responsible for the maintenance of a small steady state elevation of [Ca2+]i.  相似文献   

12.
Endothelin (ET) caused transient and sustained elevations of cytosolic free Ca2+ concentrations ([Ca2+]i) in cultured rat and rabbit vascular smooth muscle cells (VSMC). Specific platelet activating factor (PAF) antagonists (CV-6209 and WEB-2086) and arachidonic acid (AA) cascade blockers (chlorpromazine, indomethacin, CV-4151 and AA-2414) potently inhibited the ET-induced increase in [Ca2+]i. Additionally, these compounds inhibited the PAF-induced increase in [Ca2+]i. These results suggest that PAF and thromboxane A2 (TXA2) may be involved in the mechanism of ET-induced mobilization of Ca2+ in cultured rat and rabbit VSMC.  相似文献   

13.
In stomach, Helicobacter pylori (Hp) adheres to gastric mucous epithelial cells (GMEC) and initiates several different signal transduction events. Alteration of intracellular Ca2+ concentration ([Ca2+]i) is an important signaling mechanism in numerous bacteria-host model systems. Changes in [Ca2+]i induced by Hp in normal human GMEC have not yet been described; therefore, we examined effects of Hp on [Ca2+]i in normal human GMEC and a nontransformed GMEC line (HFE-145). Cultured cells were grown on glass slides, porous filters, or 96-well plates and loaded with fura 2 or fluo 4. Hp wild-type strain 60190 and vacA-, cagA-, and picB-/cagE- isogenic mutants were incubated with cells. Changes in [Ca2+]i were recorded with a fluorimeter or fluorescence plate reader. Wild-type Hp produced dose-dependent biphasic transient [Ca2+]i peak and plateau changes in both cell lines. Hp vacA- isogenic mutant produced changes in [Ca2+]i similar to those produced by wild type. Compared with wild type, cagA- and picB-/cagE- isogenic mutants produced lower peak changes and did not generate a plateau change. Preloading cultures with intracellular Ca2+ chelator BAPTA blocked all Hp-induced [Ca2+]i changes. Thapsigargin pretreatment of cultures to release Ca2+ from internal stores reduced peak change. Extracellular Ca2+ removal reduced plateau response. Hp-induced peak response was sensitive to G proteins and PLC inhibitors. Hp-induced plateau change was sensitive to G protein inhibitors, src kinases, and PLA2. These findings are the first to show that H. pylori alters [Ca2+]i in normal GMEC through a Ca2+ release/influx mechanism that depends on expression of cagA and picB/cagE genes.  相似文献   

14.
Gonadotropin-releasing hormone (GnRH) stimulates characteristic biphasic increases in cytosolic calcium concentration ([Ca2+]i) and in luteinizing hormone (LH) release in cultured gonadotrophs, with an early peak followed by a prolonged plateau in both responses. Analysis of [Ca2+]i by dual-wavelength fluorimetric assay and of LH release at 5-sec intervals in perifused pituitary cells revealed increases in both responses within a few seconds of exposure to GnRH. The maximum elevation of [Ca2+]i occurred within 20 sec, and the peak gonadotropin release in 35 sec; the total duration of the spike phase for both [Ca2+]i and LH release was 2.5 min. Under extracellular Ca2(+)-deficient conditions, the GnRH-induced peak in [Ca2+]i was reduced by about 20% and the plateau phase was abolished. Concomitantly, the magnitude of the acute phase of LH release was reduced by 40% and that of the second phase by about 90%. Recovery of the plateau phase of LH release occurred within 25 sec after addition of 1.25 mM Ca2+ to Ca2(+)-deficient medium. In a dose-dependent manner, the non-selective Ca2+ channel blockers Co2+ and Cd2+ reduced the Ca2+ current measured by whole-cell recording in pituitary gonadotrophs and abolished the extracellular Ca2(+)-dependent component of LH release. The selective calcium channel blocker, nifedipine, decreased the magnitude of the Ca2+ current and reduced the plateau phase of LH release by 50%; conversely, the dihydropyridine agonist methyl, 1,4,dihydro-2,6-dimethyl 3-nitro-4-(2-trifluorome) (Bay K 8644) consistently enhanced the amplitudes of both Ca2+ current and GnRH-induced LH release. These data reveal a close temporal correlation between changes in [Ca2+]i and LH release during GnRH action, with Ca2+ mobilization during the spike phase and Ca2+ influx through dihydropyridine-sensitive and insensitive sets of receptor-operated calcium channels during the spike and plateau phases. In addition, analysis of the magnitudes of the [Ca2+]i and LH responses to a wide range of GnRH concentrations in the presence and absence of extracellular Ca2+ is consistent with amplification of the [Ca2+]i signal in agonist-stimulated gonadotrops.  相似文献   

15.
Regulation of cytosolic free calcium in fura-2-loaded rat parotid acinar cells   总被引:17,自引:0,他引:17  
In order to analyze the factors regulating agonist-stimulated Ca2+ mobilization, cytosolic free [Ca2+] ([Ca2+]i) was measured directly in fura-2-loaded rat parotid acinar cells. Stimulation of muscarinic receptors by carbachol produced a dose-dependent rise in [Ca2+]i. In the presence of external Ca2+, the initial transient rise was followed by a maintained elevation. The maintained elevation is dependent on the presence of external Ca2+. Removal of Ca2+ by addition of EGTA caused a rapid decline in [Ca2+]i back to base line. In the absence of external Ca2+, only an initial transient peak in [Ca2+]i was seen which then declined to base line; the maintained elevation in [Ca2+]i could then be evoked by addition of Ca2+ in the continued presence of carbachol. Muscarinic receptor occupation by carbachol is required to maintain the elevated level of [Ca2+]i; addition of the muscarinic antagonist, atropine, caused [Ca2+]i to decline back to the basal level. The maintained elevation in [Ca2+]i, but not the initial transient peak, can also be blocked by Ni2+ but was unaffected by the organic Ca2+ antagonists. Total substitution of external Na+ with the impermeant cation, N-methyl-D-glucamine, had no effect on either the initial or the maintained response to carbachol; however, total substitution of Na+ with K+ attenuated the maintained response while not affecting the initial peak. Refilling of the intracellular Ca2+ store was also studied and found to take place in the absence of agonist and with no substantial elevation in [Ca2+]i. These experiments also showed that not all of the intracellular vesicular Ca2+ stores can be released by agonists. From these results, we propose a model for the regulation of [Ca2+]i.  相似文献   

16.
The addition of bradykinin to NG115-401L cells grown on coverslips results in the generation of rapid transient increases in intracellular [Ca2+] and inositol phosphates. Changes in intracellular Ca2+, measured using the fluorescent indicator dye Fura-2, show two components; an initial rapid peak in [Ca2+]i which is essentially independent of extracellular Ca2+, and a sustained plateau dependent on the presence of extracellular Ca2+. Analysis of bradykinin stimulated production of [3H]inositol phosphates, by h.p.l.c., shows a rapid biphasic production of inositol 1,4,5-trisphosphate, inositol tetrakisphosphate and inositol bisphosphates, followed by a sustained rise in inositol 1,3,4-trisphosphate production. Quantitative measurements have indicated the presence of other, more polar, [3H]inositol-labelled metabolites which do not show major changes on bradykinin stimulation. The initial phase of inositol phosphate production parallels the rapid transient increase in intracellular [Ca2+], however, the second phase of inositol phosphate production occurs when intracellular [Ca2+] is declining and implies a complex series of regulatory events following receptor stimulation. Similar time courses of inositol 1,4,5-trisphosphate and Ca2+ signals provides supporting evidence that inositol 1,4,5-trisphosphate is the second messenger coupling bradykinin receptor stimulation to release of Ca2+ from intracellular stores.  相似文献   

17.
Here we report that a Ca2+ antagonist mibefradil (Ro 40-5967) which has been shown to be a selective inhibitor of T-type calcium channels increases free calcium concentration ([Ca2+]i) in the cytoplasm of cultured smooth muscle cells isolated from porcine coronary artery. Smooth muscle cells were loaded with Fura 2 and a videoimage system was used to follow the [Ca2+]i responses. It was shown that at a concentration of 1 nM mibefradil induced a transient [Ca2+]i elevation in individual cells and at a concentration of 100 nM this compound stimulated almost all the cells in monolayer. The [Ca2+]i response did not change with the further increase of the mibefradil concentration up to 10 microM. The half-maximal effect was observed at 10 nM. The increase in [Ca2+]i strongly depended on the presence of Ca in the extracellular medium. Calcium antagonists belonging to three different classes--verapamil (phenylalkylamines), diltiazem (benzothiazepines) and amlodipin (dihydropyridines) neither suppressed the mibefradil effect nor mimicked it. These data indicate that mibefradil increased [Ca2+]i acting via a distinct receptor site. We suggest that these receptors are coupled to calcium channels of plasma membrane.  相似文献   

18.
The effects of thapsigargin on intracellular Ca2+ concentration ([Ca2+]i) and progesterone production were determined in granulosa cells from the two largest preovulatory follicles of laying hens. [Ca2+]i was measured in cells loaded with the Ca(2+)-responsive fluorescent dye Fura-2. Thapsigargin stimulated a 4.6 +/- 0.2-fold increase in [Ca2+]i from a resting level of 55 +/- 6 nM up to 233 +/- 23 nM (n = 8) in 100% of the cells tested (n = 86). However, two different response patterns were observed. Dependent on the cell populations, a maximally effective concentration of thapsigargin (100 nM) stimulated either a rapid (within 16 +/- 2 s) transient increase in [Ca2+]i or a slowly (99 +/- 20 s) developing and sustained increase in [Ca2+]i. Both [Ca2+]i responses were concentration (0.001-1 microM)-dependent with an EC50 around 40 nM. The transient [Ca2+]i response occurred in the absence of extracellular Ca2+ and was unaffected by pretreating the cells with the Ca2+ channel blockers methoxyverapamil (50 microM) or lanthanum (1 mM). The plateau phase of the sustained [Ca2+]i response returned to resting level in the absence of extracellular Ca2+, but remained elevated in the presence of methoxyverapamil (50 microM) or lanthanum (1 mM). Despite its ability to cause transient or prolonged increases in [Ca2+]i, thapsigargin (0.001-1 microM) did not affect basal or luteinizing hormone-stimulated progesterone production by chicken granulosa cells.  相似文献   

19.
Chou KJ  Tseng LL  Cheng JS  Wang JL  Fang HC  Lee KC  Su W  Law YP  Jan CR 《Life sciences》2001,69(13):1541-1548
The effect of CP55,940, a presumed CB1/CB2 cannabinoid receptor agonist, on intracellular free Ca2+ levels ([Ca2+]i) in Madin-Darby canine kidney cells was examined by using the fluorescent dye fura-2 as a Ca2+ indicator. CP55,940 (2-50 microM) increased [Ca2+]i concentration-dependently with an EC50 of 8 microM. The [Ca2+]i signal comprised an initial rise and a sustained phase. Extracellular Ca2+ removal decreased the maximum [Ca2+]i signals by 32+/-12%. CP55,940 (20 microM)-induced [Ca2+]i signal was not altered by 5 microM of two cannabinoid receptor antagonists, AM-251 and AM-281. CP55,940 (20 microM)-induced [Ca2+]i increase in Ca2+-free medium was inhibited by 86+/-3% by pretreatment with 1 microM thapsigargin, an endoplasmic reticulum Ca2+ pump inhibitor. Conversely, pretreatment with 20 microM CP55,940 in Ca2+-free medium for 6 min abolished thapsigargin-induced [Ca2+]i increases. CP55,940 (20 microM)-induced intracellular Ca2+ release was not inhibited when inositol 1,4,5-trisphosphate formation was abolished by suppressing phospholipase C with 2 microM U73122. Collectively, this study shows that CP,55940 induced significant [Ca2+]i increases in canine renal tubular cells by releasing stored Ca2+ from the thapsigargin-sensitive pools in an inositol 1,4,5-trisphosphate-independent manner, and also by causing extracellular Ca2+ entry. The CP55,940's action appears to be dissociated from stimulation of cannabinoid receptors.  相似文献   

20.
The study was undertaken to explore the effect of CP55,940 ((-)-cis-3-[2-Hydroxy4-(1,1-dimethylheptyl) phenyl]-trans-4-(3-hydroxypropyl)cyclohexanol), a drug commonly used as a CB1/CB2 cannabinoid receptor agonist, on intracellular free Ca2+ levels ([Ca2+]i) in several cell types [Ca2+]i was measured in suspended cells by using the fluorescent dye fura-2 as an indicator. At concentrations between 1-50 microM, CP55,940 increased [Ca2+]i in a concentration-dependent manner with an EC50 of 8 microM. The [Ca2+]i signal comprised an initial rise, a slow decay, and a sustained phase. CP55940 (10 microM)-induced (Ca2+]i signal was not altered by 5 microM of two cannabinoid receptor antagonists (AM-251, N-(Piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide; AM-281, 1-(2,4-Dichlorophenyl)-5-(4-iodophenyl)-4-m3thyl-N-4-morpholinyl-1H-pyrazole-3-carboxamide). Extracellular Ca2+ removal decreased the maximum value of the Ca2+ signals by 50%. CPS5,940 (10 microM)-induced [Ca2+]i increase in Ca2+-free medium was inhibited by 80% by pretreatment with 1 microM thapsigargin, an endoplasmic reticulum Ca2+ pump inhibitor. Conversely, pretreatment with 10 microM CP55,940 in Ca2+-free medium for 6 min abolished thapsigargin-induced [Ca2+]i increase. Nifedipine (10 microM) and verapamil (10 microM) did not alter CP55,940 (10 microM)-induced [Ca2+]i increase. CP55, 940 (10 microM)-induced Ca2+ release was not affected when phospholipase C was inhibited by 2 microM U73122 (1-(6-((17beta-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione). CP55,940 (5 microM) also increased [Ca22+] in Madin-Darby canine kidney cells, MG63 human osteosarcoma cells, and IMR-32 neuroblastoma cells. Collectively, CP,55940 induced significant [Ca2+]i increases in several cell types by releasing store Ca2+ from thapsigargin-sensitive pools and by causing Ca2+ entry. The CP55,940's action appears to be dissociated from stimulation of cannabinoid receptors  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号