首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The protective effect of Vitamins C, E and beta-carotene against gamma-ray-induced DNA damage in human lymphocytes in vitro was investigated. Cultured lymphocytes were exposed to increasing concentration of these vitamins either before or after irradiation with 2Gy of gamma-rays and DNA damage was estimated using micronucleus assay. A radioprotective effect was observed when antioxidant vitamins were added to cultured cells before as well after irradiation; the strongest effect was observed when they were added no later than 1h after irradiation. The radioprotective effect of vitamins also depended on their concentration; Vitamins C added at low concentration (1 microg/ml) before exposure of the cells to radiation prevented induction of micronuclei. Vitamin E at the concentration above 2 microg/ml decreased the level of radiation-induced micronuclei when compared to the cells irradiated without vitamin treatment. beta-Carotene was effective at all tested concentrations from 1 to 5 microg/ml and reduced the number of micronuclei in irradiated cells. The vitamins had no effect on radiation-induced cytotoxicity as measured by nuclear division index. The radioprotective action of antioxidant Vitamins C, E and beta-carotene was dependent upon their concentration as well as time and sequence of application.  相似文献   

2.
Exposure of cells to ionizing radiation leads to formation of reactive oxygen species, which are associated with radiation-induced cytotoxicity. Therefore, compounds that scavenge reactive oxygen species may confer radioprotective effects. Superoxide dismutase (SOD) mimetics have been shown to be protective against cell injury caused by reactive oxygen species. The objective of this study was to investigate the effects of manganese(III) tetrakis(N-methyl-2-pyridyl)porphyrin (MnTMPyP), a cell-permeable SOD mimetic, on radiation-dependent toxicity. We investigated the protective role of MnTMPyP against ionizing radiation in U937 cells and mice. On exposure to ionizing radiation, there was a distinct difference between control cells and cells pretreated with MnTMPyP with respect to viability, cellular redox status, and oxidative damage to cells. Lipid peroxidation, oxidative DNA damage, and protein oxidation were significantly lower in the cells treated with MnTMPyP when the cells were exposed to ionizing radiation. The [GSSG]/[GSH + GSSG] ratio and the generation of intracellular reactive oxygen species were higher and the [NADPH]/[NADP+ + NADPH] ratio was lower in control cells compared with MnTMPyP-treated cells. Ionizing radiation-induced mitochondrial damage, as reflected by the altered mitochondrial permeability transition, increase in accumulation of reactive oxygen species, reduction of ATP production, and morphological change, was significantly higher in control cells than in MnTMPyP-treated cells. MnTMPyP administration for 14 days at a daily dosage of 5 mg/kg provided substantial protection against killing and oxidative damage in mice exposed to whole-body irradiation. These data indicate that MnTMPyP may have great application potential as a new class of in vivo, non-sulfur-containing radiation protectors.  相似文献   

3.
Polyamines are ubiquitous polycations that participate in cellular processes such as growth, differentiation and cell death. Among the different functions ascribed to these organic cations, the polyamine spermine is known to protect DNA from the damage produced by reactive oxygen species (ROS) generated by different agents including copper ions. We have found that spermine exerts opposite effects on DNA strand breakage induced by Fenton reaction depending on metal concentration. Whereas at low concentration of the transition metals, 10 microM copper or 50 microM Fe(II), 1 mM spermine exerted a protective role, at metal concentrations higher than 25 microM copper or 100 microM Fe(II), spermine stimulated DNA strand breakage. The promotion of the damage induced by spermine was independent of DNA sequence but decreased by increasing the ionic concentration of the media or by the presence of metal-chelating agents. Moreover, spermine did not increase the oxidation of 2-deoxyribose by metal/H2O2 when DNA was substituted by 2-deoxyribose as a target for damage. Our results corroborate that spermine may protect DNA and 2-deoxyribose from the damage induced by ROS but also demonstrate that under certain conditions spermine may promote DNA strand breakage. The fact that this promoting effect of spermine on ROS-induced damage was observed only in the presence of DNA suggests that this polyamine under certain conditions may facilitate the interaction of copper and iron ions with DNA leading to the formation of ROS in close proximity to DNA.  相似文献   

4.
We investigated the radioprotective efficacy of quercetin (QN), a naturally occurring flavonoid against gamma radiation-induced damage in human peripheral blood lymphocytes and plasmid DNA. In plasmid study, QN at different concentrations (3, 6, 12, 24 and 48 microM) were pre-incubated with plasmid DNA for 1h followed by exposure of 6 Gy radiation. Among all concentrations of QN used, 24 microM showed optimum radioprotective potential. To establish the most effective protective concentration of QN in lymphocytes, the cells were pre-incubated with 3, 6, 12, 24 and 48 microM of QN for 30 min and then exposed to 4 Gy gamma-radiation. The concentration-dependent effects of QN were evaluated by scoring micronuclei (MN) frequencies. The results showed that QN decreased the MN frequencies dose dependently, but the effect was more pronounced at 24 microM. Thus, 24 microM of QN was selected as the optimum concentration and was further used to evaluate its radioprotective effect in lymphocytes. For that a separate experiment was carried out, in which lymphocytes were incubated with QN (24 microM) for 30 min and exposed to different doses of radiation (1, 2, 3 and 4 Gy). Genetic damage (MN, dicentric aberration and comet attributes) and biochemical changes were measured to evaluate the effect of QN on gamma-radiations (1-4 Gy). Radiation exposed showed significant increases in the genetic damage and thiobarbituric acid reactive substances (TBARS) accompanied by a significant decrease in the antioxidant status. QN pretreatment significantly decreased the genetic damage and TBARS and improved antioxidant status through its antioxidant potential. Altogether, our findings encourage further mechanistic and in vivo studies to investigate radioprotective efficacy of QN.  相似文献   

5.
Ionizing radiation induces the production of reactive oxygen species, which play an important causative role in apoptotic cell death. Therefore, compounds that scavenge reactive oxygen species may confer regulatory effects on apoptosis. Superoxide dismutase (SOD) mimetics have been shown to be protective against cell injury caused by reactive oxygen species. We investigated the effects of the manganese (III) tetrakis(N-methyl-2-pyridyl)porphyrin (MnTMPyP), a cell-permeable SOD mimetic, on ionizing radiation-induced apoptosis. Upon exposure to 2 Gy of gamma-irradiation, there was a distinct difference between the control cells and the cells pre-treated with 5 microM MnTMPyP for 2 h with regard to apoptotic parameters, cellular redox status, mitochondria function, and oxidative damage to cells. MnTMPyP effectively suppressed morphological evidence of apoptosis and DNA fragmentation in U937 cells exposed to ionizing radiation. The [GSSG]/[GSH+GSSG] ratio and the generation of intracellular reactive oxygen species were higher and the [NADPH]/[NADP(+)+NADPH] ratio was lower in control cells compared to MnTMPyP-treated cells. The ionizing radiation-induced mitochondrial damage reflected by the altered mitochondrial permeability transition, the increase in the accumulation of reactive oxygen species, and the reduction of ATP production were significantly higher in control cells compared to MnTMPyP-treated cells. MnTMPyP pre-treated cells showed significant inhibition of apoptotic features such as activation of caspase-3, up-regulation of Bax and p53, and down-regulation of Bcl-2 compared to control cells upon exposure to ionizing radiation. This study indicates that MnTMPyP may play an important role in regulating the apoptosis induced by ionizing radiation presumably through scavenging of reactive oxygen species.  相似文献   

6.
7.
Exposure of cells to γ-rays induces the production of reactive oxygen species (ROS) that play a main role in ionizing radiation damage. We have investigated the radioprotective effect of phloroglucinol (1,3,5-trihydroxybenzene), phlorotannin compound isolated from Ecklonia cava, against γ-ray radiation-induced oxidative damage in vitro and in vivo. Phloroglucinol significantly decreased the level of radiation-induced intracellular ROS and damage to cellular components such as the lipid, DNA and protein. Phloroglucinol enhanced cell viability that decreased after exposure to γ-rays and reduced radiation-induced apoptosis via inhibition of mitochondria mediated caspases pathway. Phloroglucinol reduced radiation-induced loss of the mitochondrial membrane action potential, reduced the levels of the active forms of caspase 9 and 3 and elevated the expression of bcl-2. Furthermore, the anti-apoptotic effect of phloroglucinol was exerted via inhibition of mitogen-activated protein kinase kinase-4 (MKK4/SEK1), c-Jun NH2-terminal kinase (JNK) and activator protein-1 (AP-1) cascades induced by radiation exposure. Phloroglucinol restored the level of reduced glutathione (GSH) and protein expression of a catalytically active subunit of glutamate-cysteine ligase (GCL), which is a rate-limiting enzyme in GSH biosynthesis. In in vivo study, phloroglucinol administration in mice provided substantial protection against death and oxidative damage following whole-body irradiation. We examined survival with exposure to various radiation doses using the intestinal crypt assay and determined a dose reduction factor (DRF) of 1.24. Based on our findings, phloroglucinol may be possibly useful as a radioprotective compound.  相似文献   

8.
Reactive oxygen species (ROS) and reactive carbonyl species (RCS) are the major causes of biological tissue damage during exposure to ionizing radiation (IR). The existing strategies to protect normal tissues from the detrimental effects of IR suffer from several shortcomings including highly toxic side effects, unfavorable administration routes, and low efficacy. These shortcomings emphasize a need for radioprotective treatments that combine effectiveness with safety and ease of use. In this paper, we demonstrate that pyridoxamine, a ROS and RCS scavenger with a very favorable safety profile, can inhibit IR-induced gastrointestinal epithelial apoptosis in cell culture and in an animal model. Pyridoxamine was more effective at protecting from radiation-induced apoptosis than amifostine, a synthetic thiol compound and the only FDA-approved radioprotector. We suggest that pyridoxamine has potential as an effective and safe radioprotective agent.  相似文献   

9.
Recent studies suggest that mangiferin aglycone (norathyriol) has great potential as a novel radioprotector without any known toxic side effects. In this study, we assessed the protective effects of mangiferin aglycone against radiation-induced injuries on normal human intestinal epithelial cells (HIECs), while using mangiferin as a reference compound. The in vitro experiments showed that pretreatment of either mangiferin aglycone or mangiferin could inhibit cytotoxic effects of ionizing irradiation (IR) on HIECs. Cellular changes were estimated by measuring cell viability, clonogenic surviving rate, and apoptotic rate. Compared to mangiferin, we found mangiferin aglycone had greater radioprotective effects of mangiferin aglycone on HIECs. It has been demonstrated that the cytotoxicity of ionizing radiation relates to its capacity to induce DNA damage. In view of this, we monitored DNA double-strand breaks (DSBs) using γH2AX foci formation to test whether mangiferin aglycone and mangiferin could modulate genotoxic effects of radiation. It shows that mangiferin aglycone could eliminate 46.8% of the total DSBs of the cells exposed to 2 Gy IR, which is significantly better than mangiferin. Complementing earlier results from our group, it appears possible to conclude that mangiferin aglycone presents potential useful effects on IR-induced damage and may be a better radioprotective agent than mangiferin therapeutically.  相似文献   

10.
To investigate the radioprotective potential of eckol, a component of the seaweed Ecklonia cava, against radiation in vivo, we evaluated the effect of eckol on cyto- and histo-protective capability of the lymphocytes and intestine against damage induced by a single whole body irradiation (WBI) in vivo. Here, we ascertained that eckol protected the lymphocytes’ viability and rescued intestinal cells from radiation-induced apoptosis by decreasing the amount of pro-apoptotic p53 and Bax and increasing that of anti-apoptotic Bcl-2. These findings indicate that the overexpression of anti-apoptotic protein, which may lead to resistance to DNA damage, is involved deeply in protection of gastrointestinal cells after irradiation. Thus, eckol that can protect cells and tissues against ionizing radiation may have considerable potential as adjuncts to successful radiotherapy.  相似文献   

11.
Modulating the amount of radiation-induced apoptosis by administering antioxidant vitamins offers a possible way to influence radiation-induced side effects in normal tissues. Therefore, we investigated the effect of beta-carotene, vitamin C and alpha-tocopherol on radiation-induced apoptosis in cells in culture. Human T-lymphoblastic MOLT-3 cells were irradiated with a dose of 3 Gy 1 h after or immediately prior to the addition of vitamins in three concentrations (0.01 microM, 1 microM and 100 microM). Eight hours later, apoptosis was scored morphologically by staining the nuclear DNA with Hoechst 33342. When given prior to irradiation, beta-carotene and vitamin E reduced the amount of radiation-induced apoptosis significantly at concentrations of 0.01 microM and 1 microM. In contrast, vitamin C did not show any protective effect when given at these two concentrations and caused a slight but significant radiosensitization at 100 microM. At 0.01 microM, all combinations of two vitamins showed a protective effect. This was also observed for the combination of all three vitamins at concentrations of 0.01 and 1 microM. When given immediately after irradiation, each of the three vitamins showed a protective effect at 0.01 microM. In addition, the combination of alpha-tocopherol and vitamin C reduced radiation-induced apoptosis slightly when given at 1 microM. In all other cases, no statistically significant modulation of radiation-induced apoptosis was observed. In our experimental system, the protective effect of beta-carotene and vitamin E was dependent on concentration and occurred only in the micromolar and sub-micromolar concentration range, while vitamin C alone, but not in combinations, had a sensitizing effect, thus arguing for a careful consideration of vitamin concentrations in clinical settings.  相似文献   

12.
Genotoxicity of anticancer drugs is of a special interest due to the risk of inducing secondary malignancies. Vitamin C (ascorbic acid) is a recognized antioxidant and, since human diet can be easily supplemented with vitamin C, it seems reasonable to check whether it can protect against DNA-damaging effects of antitumor drugs. In the present work the ability of vitamin C to modulate cytotoxic and genotoxic effects of a cisplatin analog, conjugate (NH3)2Pt(SeO3), in terms of cell viability, DNA damage and repair in human lymphocytes was examined using the trypan blue exclusion test and the alkaline comet assay, respectively. The conjugate evoked a concentration-dependent decrease in the cell viability, reaching nearly 50% at 250 microM. (NH3)2Pt(SeO3) at 1, 10 and 30 microM caused DNA strand breaks, measured as the increase in the comet tail moment of the lymphocytes. The treated cells were able to recover within a 30-min incubation in a drug-free medium at 37 degrees C. Vitamin C at 10 and 50 microM diminished the extent of DNA damage evoked by (NH3)2Pt(SeO3) but had no effect on the kinetics of DNA repair. The vitamin did not directly inactivate the conjugate. Lymphocytes treated with endonuclease III, which recognises oxidised pyrimidines, displayed a greater tail moment than those untreated with the enzyme, suggesting that the damages induced by the drug have, at least in part, an oxidative origin. Vitamin C can be considered a potential protective agent against side effects of antitumor drugs, but further research with both normal and cancer cells are needed to clarify this point.  相似文献   

13.
The ability of vitamin C to affect genetic damage was reviewed in human studies that used molecular epidemiology methods, including analysis of DNA adducts, DNA strand breakage (using the Comet assay), oxidative damage measured as levels of 8-oxo-7,8-dihydroxy-2'-deoxyguanosine (8-oxodG), cytogenetic analysis of chromosomal aberrations and micronuclei, and the induction of DNA repair proteins. The protective effect of vitamin C was observed at plasma levels>50μmol/l. Vitamin C supplementation decreased the frequency of chromosomal aberrations in groups with insufficient dietary intake who were occupationally exposed to mutagens, and also decreased the sensitivity to mutagens as assessed using the bleomycin assay. High vitamin C levels in plasma decreased the frequency of genomic translocations in groups exposed to ionizing radiation or c-PAHs in polluted air. The frequency of micronuclei was decreased by vitamin C supplementation in smokers challenged with γ-irradiation, and higher vitamin C levels in plasma counteracted the damage induced by air pollution. The prevalence of DNA adducts inversely correlated with vitamin C levels in groups environmentally exposed to high concentrations of c-PAHs. Increased vitamin C levels decreased DNA strand breakage induced by air pollution. Oxidative damage (8-oxodG levels) was decreased by vitamin C supplementation in groups with plasma levels>50μmol/l exposed to PM2.5 and c-PAHs. Modulation of DNA repair by vitamin C supplementation was observed both in poorly nourished subjects and in groups with vitamin C plasma levels>50μmol/l exposed to higher concentrations of c-PAHs. It is possible that the impact of vitamin C on DNA damage depends both on background values of vitamin C in the individual as well as on the level of exposure to xenobiotics or oxidative stress.  相似文献   

14.
Naturally occurring compounds capable of protecting DNA against ionizing radiation and chemical mutagens have considerable potential for prevention of mutation-based health impairment including cancer and other degenerative diseases. Chlorophyllin (CHL), a water-soluble derivative of chlorophyll, has been examined for its ability to protect DNA against radiation induced strand breaks using an in vitro plasmid DNA system. Gamma-radiation, up to a dose of 6 Gy (dose rate 1.25 Gy/min), induced a dose-dependent increase in single-strand breaks (ssbs) in plasmid pBR322 DNA. CHL per se did not induce, but inhibited radiation-induced ssbs in a concentration-dependent manner; 500 microM giving about 90% protection. The protection afforded by CHL was comparatively less than that of trolox, a water-soluble analogue of alpha-tocopherol. To elucidate the underlying mechanism(s), reaction of CHL with the radiation-derived hydroxyl radical (.OH) and deoxyribose peroxyl radical (ROO.) was studied by pulse radiolysis. CHL exhibited a rate constant of 6.1+/-0.4x109 M-1 s-1 with.OH and 5.0+/-1.3x107 M-1 s-1 with ROO. To our knowledge, this is the first report providing direct evidence of free radical-scavenging properties of CHL. The results showed that CHL, effectively protects plasmid DNA against ionizing radiation, in an in vitro system independent of DNA repair or other cellular defense mechanisms. The ability of CHL to scavenge. OH and ROO., may contribute to its protective effects against radiation induced DNA damage in the pBR322 system.  相似文献   

15.
The mechanism underlying copper hepatotoxicity was investigated in primary cultures of rainbow trout hepatocytes maintained in Leibovitz-15 media. CuSO4 treatment (0, 25, 50, 100 and 200 microM) resulted in a dose-dependent elevation in heat shock protein 70 (hsp70) expression at 24 and 48 h post-exposure. There was no effect of copper (200 microM CuSO4) on hepatotoxicity at 24 h, whereas longer exposures (48 h) resulted in increased lactate dehydrogenase (LDH) leakage and apoptosis, demonstrated by fluorescence nuclear staining and DNA fragmentation. Vitamin C (1 mM), a free radical scavenger, inhibited this copper-induced apoptosis implying a role for reactive oxygen species in copper toxicity. However, no parallel inhibition of either LDH leakage or hsp70 protein expression was observed with vitamin C suggesting that at least two independent mechanisms are involved in the cellular response to copper. Also, copper exposed (24 h) cells were unable to mount an hsp70 response to a standardized heat shock (+15 degrees C for 1 h), even in the presence of vitamin C. Together, these results suggest that hepatotoxicity of copper includes impairment of hsp70 response to subsequent stressors and/or signals, which is crucial for protecting cells from proteotoxicity.  相似文献   

16.
To study the radioprotective effects of vitamin C and famotidine against radiation-induced apoptosis in human peripheral blood leukocytes, peripheral blood was obtained from six healthy volunteers including three males and three females. Twelve microlitres of blood sample diluted in 1 ml complete RPMI-1640 medium was irradiated with various doses of gamma-rays (4, 8 and 12 Gy) in the presence or absence of various doses of vitamin C and famotidine. After 48 and 72 h incubation in a 37 degrees C CO(2) incubator, neutral comet assay was performed for all samples. At least 1000 cells were analyzed for each sample for presence of apoptosis. Data were statistically evaluated using Mann-Whitney non-parametric and ANOVA tests. Results show a significant increase in apoptosis induction following gamma-irradiation with a dose dependent manner compared to controls (p<0.001). Presence of famotidine at 200 microg/ml produced a significant protective effect against radiation-induced apoptosis for various doses of radiation. Similar effects were observed for vitamin C at much lower doses (10 microg/ml). Dose reduction factor (DRF) calculated for famotidine treatment was about 1.5, and above 2 for vitamin C treatment. These results suggest that both vitamin C and famotidine suppresses radiation-induced apoptosis when used with various doses of gamma-irradiation (4-12 Gy) probably via *OH radical scavenging and an intracellular antioxidation mechanism.  相似文献   

17.
Many studies suggest that exogenous antioxidants may protect cells against DNA damage caused with ionizing radiation. One of the most powerful antioxidants is lycopene (LYC), a carotenoid derived from tomatoes. The aim of this study was to investigate, using the comet assay, whether LYC can act as protectors/modifiers and prevent DNA damage induced in human blood lymphocytes, as well as to mitigate the effects of radiation exposure. In this project, LYC, dissolved in DMSO at a concentration of 10, 20 or 40 μM/ml of cell suspension, was added to the isolated lymphocytes from human blood at appropriate intervals before or after the X-irradiation at doses of 0.5, 1 and 2 Gy. Cell viability in all groups was maintained at above 70%. The results showed the decrease of DNA damage in cells treated with various concentrations of LYC directly and 1 h before exposure to X-rays compared to the control group exposed to irradiation alone. Contrary results were observed in cells exposed to LYC immediately after exposure to ionizing radiation. The studies confirmed the protective effect of LYC against DNA damage induced by ionizing radiation, but after irradiation the carotenoid did not stimulate of DNA repair and cannot act as modifier. However, supplementation with LYC, especially at lower doses, may be useful in protection from radiation-induced oxidative damage.  相似文献   

18.
The development of radioprotective agents has been the subject of intense research, especially in the field of radiotherapy. In this study, we examined the radioprotective activity of the total triterpenes isolated from Ganoderma lucidum (Fr.) P. Karst in mouse splenic lymphocytes in vitro. Using the MTT assay, Ganoderma triterpenes were found to have no effect on cell viability, indicating that they are non-toxic to splenic lymphocytes. The effect of the total triterpenes on DNA damage and apoptosis induced by radiation was analyzed using the comet assay, DNA ladder assay and flow cytometric analysis. Total triterpenes were found to be highly effective in preventing DNA laddering, even at low concentrations (25μg/ml). The comet assay demonstrated that the G. triterpenes effectively prevented DNA damage, and flow cytometry revealed a reduction in apoptotic cells. The effect of the total triterpenes on intracellular reactive oxygen species (ROS) level and endogenous antioxidant enzyme activity in splenic lymphocytes were determined to elucidate possible radioprotective mechanisms. Total triterpenes successfully reduced the formation of intracellular ROS and enhanced endogenous antioxidant enzyme activity in splenic lymphocytes following irradiation. Thus, these findings indicate that the total triterpenes isolated from G. lucidum have a remarkable ability to protect normal cells from radiation-induced damage, which suggests therapeutic potential.  相似文献   

19.
The effects of thiamine (vitamin B1) on the level of spontaneous or radiation-induced genetic changes in human lymphocytes in vitro were studied. Cultured lymphocytes were exposed to increasing concentrations of thiamine (0-500 microg/ml) and irradiated with X-rays. The DNA damage was estimated as the frequency of micronuclei and apoptotic or necrotic morphological changes in fixed cells. The results show that thiamine alone did not induce genetic changes. A significant decrease in the fraction of apoptotic and necrotic cells was observed in lymphocytes irradiated in the presence of vitamin B1 at concentrations between 1-100 microg/ml compared to those irradiated in the absence of thiamine. Vitamin B1 at 1 and 10 microg/ml decreased also the extent of radiation-induced formation of micronuclei. Vitamin B1 had no effect on radiation-induced cytotoxicity as measured by nuclear division index. The results indicate that vitamin B1 protects human cells from radiation-induced genetic changes.  相似文献   

20.
The cytotoxic and mutagenic effects of X irradiation on a human lymphoblast cell line were examined in the presence of two radioprotective agents which modulate damage to DNA. The cells were treated with X rays alone or in the presence of either dimethyl sulfoxide or cysteamine. Surviving fraction and mutation to trifluorothymidine resistance (tk locus) and to 6-thioguanine resistance (hgprt locus) were measured. Survival was enhanced when the cells were irradiated in the presence of dimethyl sulfoxide; the D0 rose from 58 to 107 rad. However, at both genetic loci the induced mutant fractions were identical in the presence or absence of dimethyl sulfoxide. Survival was enhanced to a greater degree when the cells were irradiated in the presence of cysteamine; the D0 rose from 58 to 200 rad. Cysteamine also protected the cells from X-ray-induced mutation; the frequencies of X-ray-induced mutation at both the tk and hgprt loci were reduced by 50-75%. No protective effects were observed unless dimethyl sulfoxide or cysteamine was present during irradiation. These findings are discussed in terms of the hypothesis that, unlike for cell killing, radiation-induced mutagenesis in human lymphoblast cells is not mediated by the actions of aqueous free radicals, but rather by the direct effects of ionizing radiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号