首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Monensin inhibition of corticotropin releasing factor mediated ACTH release   总被引:1,自引:0,他引:1  
D O Sobel  K M Shakir 《Peptides》1988,9(5):1037-1042
Monensin is a sodium selective carboxylic ionophore that has been helpful in studying the intracellular mechanisms of protein secretion by its ability to inhibit transport of secretory proteins, particularly through the Golgi apparatus, and by its capacity to block intracellular posttranslational processing events. We studied in rat anterior pituitary cell culture the effects of monensin on: CRF stimulated ACTH release; presynthesized (stored) ACTH release; and on forskolin- (activator of adenylate cyclase) and KCl- (a membrane depolarizer which does not stimulate ACTH synthesis) induced ACTH release. Monensin inhibited CRF stimulated ACTH release in a dose-dependent fashion. The ED50 was 2.7 x 10(-8) M and maximal inhibition was 52% at 1.5 x 10(-7) M. Inhibition at 40 minutes of CRF incubation was similar to the percent inhibition noted at 1 hr 40 min and 2 hr 40 min. Monensin (1.5 x 10(-6) M) decreased the amount of ACTH release from cells incubated with cycloheximide plus CRF by 32% (p less than 0.01). Monensin individually inhibited forskolin (2 x 10(-6) M) and dibutyryl cyclic AMP (3 x 10(-3) M) mediated ACTH release in a dose-dependent fashion. The inhibition of forskolin and dibutyryl cyclic AMP mediated ACTH release by 1.5 x 10(-6) M monensin was 48% and 46% respectively. Monensin (1.5 x 10(-6) M) also reduced KCl (50 mM) stimulated ACTH release by 48%. This study demonstrates that monensin inhibits CRF mediated ACTH release.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
D O Sobel 《Peptides》1986,7(3):443-448
To investigate the role of calcium (Ca+2) in CRF stimulated ACTH release, we studied the effect of the following conditions on CRF (10 nM) mediated ACTH release in primary pituitary monolayer culture: different concentrations of Ca+2; EGTA; lanthanum (La+3) and nifedipine, blockers of calcium cell influx and penfluridol, trifluoperazine, and pimozide, inhibitors of calmodulin activation. Higher concentrations of Ca+2 in the culture medium led to greater amounts of CRF induced ACTH release. EGTA at 3 mM decreased the amount of CRF stimulated ACTH release by 60% but did not alter the spontaneous release of ACTH. At 0.5 mM and 1.0 mM La+3, ACTH release induced by CRF was inhibited by 23% and 35% respectively (p less than 0.01). Nifedipine (both 10(-5) and 10(-4) M) inhibited CRF stimulated ACTH release but only to a maximum of 30%. This inhibition was completely overcome by the addition of 12 mM calcium. Penfluridol, pimozide, and trifluoperazine blocked the release of ACTH induced by CRF by 63%, 26%, and 0% respectively. In conclusion, extracellular Ca+2, Ca+2 influx, and calmodulin play a role in the mechanism of CRF stimulated ACTH in vitro.  相似文献   

3.
The role of cyclic AMP in the stimulation of corticotropin (ACTH) release by corticotropin-releasing factor (CRF), angiotensin II (AII), vasopressin (VP), and norepinephrine (NE) was examined in cultured rat anterior pituitary cells. Synthetic CRF rapidly stimulated cyclic AMP production, from 4- to 6-fold in 3 min to a maximum of 10- to 15-fold at 30 min. Stimulation of ACTH release by increasing concentrations of CRF was accompanied by a parallel increase in cyclic AMP formation, with ED50 values of 0.5 and 1.3 nM CRF for ACTH and cyclic AMP, respectively. A good correlation between cyclic AMP formation and ACTH release was also found when pituitary cells were incubated with the synthetic CRF(15-41) fragment, which displayed full agonist activity on both cyclic AMP and ACTH release with about 0.1% of the potency of the intact peptide. In contrast, the CRF(21-41) and CRF(36-41) fragments were completely inactive. The other regulators were less effective stimuli of ACTH release and caused either no change in cyclic AMP (AII and VP) or a 50% decrease in cyclic AMP (NE). Addition of the phosphodiesterase inhibitor, methylisobutylxanthine, increased the sensitivity of the ACTH response to CRF but did not change the responses to AII, VP, and NE. In pituitary membranes, adenylate cyclase activity was stimulated by CRF in a dose-dependent manner with ED50 of 0.28 nM, indicating that the CRF-induced elevation of cyclic AMP production in intact pituitary cells is due to increased cyclic AMP biosynthesis. The intermediate role of cyclic AMP in the stimulation of ACTH release by CRF was further indicated by the dose-related increase in cyclic AMP-dependent protein kinase activity in pituitary cells stimulated by CRF with ED50 of 1.1 nM. These data demonstrate that the action of CRF on ACTH release is mediated by the adenylate cyclase-protein kinase pathway and that the sequence requirement for bioactivity includes the COOH-terminal 27 amino acid residues of the molecule. The other recognized regulators of ACTH release are less effective stimuli than CRF and do not exert their actions on the corticotroph through cyclic AMP-dependent mechanisms.  相似文献   

4.
Radioimmunoassay of CRF-like material in rat hypothalamus   总被引:1,自引:0,他引:1  
Corticotropin releasing factor (CRF) was recently isolated from ovine hypothalami by its ability to stimulate adrenocorticotropin (ACTH) and β-endorphin release from dispersed rat pituitary cells. In order to study the physiology of this peptide, we have developed a sensitive and specific radioimmunoassay (RIA) for CRF. Synthetic CRF was conjugated to bovine thyroglobulin and emulsified with complete Freund's adjuvant. A suitable antiserum was obtained which showed no crossreactivity with eight naturally occurring peptides. N-Tyr-CRF was iodinated and used as tracer. With this assay, CRF-like immunoreactivity which coeluted with ovine CRF on Sephadex G50 was detected in rat hypothalami.  相似文献   

5.
Recent studies from our laboratory indicate a primary central site of action of Angiotensin II (AII) to release ACTH. The present studies were designed to test whether AII is able to release ACTH in vivo in a similar fashion in intact, cannulated, freely moving Long-Evans (LE) or in vasopressin (AVP)-deficient, Brattleboro (DI) female rats. The in vivo response to AII was compared with that elicited by synthetic CRF. AII injected i.v. (0.4 or 2 micrograms/100 g BW) induced a significant, dose-related increase in plasma ACTH values 5 and 15 min after injection, in both LE and DI rats. CRF given to LE and DI rats at 0.4 micrograms/100 g BW elicited a larger increase in ACTH plasma values than a similar dose of AII, 5 or 15 min after the injection. Moreover, ACTH levels after CRF in DI rats were significantly greater than those obtained in LE controls. In vitro studies using dispersed anterior pituitary cells indicate that the response of cells from either LE or DI rats to AII or AVP (both at 10(-9) and 10(-8)M) was similar. Cells from DI donors were hyperresponsive to CRF (2 X 10(-11) and 10(-10)M) in terms of ACTH release when compared with the response of cells from LE rats. The present results suggest that the presence of AVP is not essential to mediate the central response to AII and that AII may act centrally to stimulate CRF release from the hypothalamus in vivo, which would then enhance ACTH output. The results in the DI rat indicate that the increased response to CRF may be an important compensatory mechanism involved in the regulation of adrenocortical function in the DI rat.  相似文献   

6.
L C Saland  J A Carr  A Samora  D Tejeda 《Peptides》1992,13(5):913-917
Dopamine and gamma-aminobutyric acid (GABA) inhibit POMC peptide release from the pituitary intermediate lobe, via interaction with D2 or GABA-A/benzodiazepine receptors. Here, we examined the effects of an antianxiety triazolobenzodiazepine, adinazolam, on corticotropin-releasing factor (CRF)-stimulated POMC peptide secretion from the rat neurointermediate pituitary. Neurointermediate lobes (NILS) were incubated with CRF (10(-7) M), then adinazolam (10(-8) or (10(-9) M) was added, with CRF remaining in the medium. Aliquots were removed at 15-min intervals and frozen for radioimmunoassay of beta-endorphin. Adinazolam alone did not significantly affect secretion as compared to controls or CRF alone. Adinazolam incubated with CRF led to significant inhibition of beta-endorphin secretion, as compared to CRF alone. In addition, adinazolam was as effective as dopamine or the CRF antagonist, alpha-helical CRF, in preventing CRF-induced beta-endorphin release. Adinazolam appears to act directly on the pituitary to suppress hormone release induced by a stress-related hypothalamic peptide.  相似文献   

7.
D L Palazzolo  S K Quadri 《Life sciences》1992,51(23):1797-1802
During a 60-min incubation period, the in vitro release of serotonin (5-HT) from the hypothalami of control male rats decreased by 12.3 +/- 3.1%. In contrast, the presence of 25 ng of interleukin-1 beta (IL-1 beta) in the incubation medium more than doubled this decrease to 29.3 +/- 3.3% (P < 0.001), and the presence of 50 ng of IL-1 beta more than quadrupled this decrease to 53.7 +/- 7.4% (P < 0.001). The decrease produced by the higher dose of IL-1 beta was significantly greater than that produced by the lower dose (P < 0.01), indicating a dose response. During the next two 60-min periods when the hypothalami of the control as well as treatment groups were incubated without IL-beta, 5-HT release continued to decrease and then became stabilized in the control group. In contrast, 5-HT release in the treatment groups rebounded before becoming stabilized at levels that were not significantly different from those in the control group. It is concluded that IL-1 beta inhibits the release of serotonin from the hypothalamus in vitro.  相似文献   

8.
Effects of 1-(m-trifluoromethylphenyl)-piperazine, a serotonin agonist, were examined on rat plasma levels of adrenocorticotropin (ACTH) and arginine vasopressin (AVP), and on hypothalamic contents of corticotropin releasing factor (CRF) and AVP, to investigate the role of brain serotonin in ACTH regulation. Both plasma ACTH and AVP levels increased markedly 30 min after injection of the compound and were still elevated at 80 min. CRF and AVP contents in the median eminence decreased 30 min after injection but returned to the basal levels by 80 min. The AVP content in the supraoptic nucleus was elevated 80 min after injection. The CRF and aVP content did not significantly change in the paraventricular, suprachiasmatic and arcuate nuclei. Serotonin or 1-(m-trifluoromethylphenyl)-piperazine did not stimulate the release of ACTH in pituitary cell cultures. These results suggest that both CRF and AVP were secreted into the portal vessels by 1-(m-trifluoromethylphenyl)-piperazine to release ACTH from the anterior pituitary and that both the ACTH and AVP release were stimulated via the brain serotonergic mechanism.  相似文献   

9.
ACTH-release by primary cultures of rat anterior pituitary cells in response to CRF, vasopressin, epinephrine, norepinephrine and VIP is readily suppressible by dexamethasone. Rat hypothalamic extract-induced ACTH release is less sensitive to the inhibitory effect of dexamethasone than that elicited by CRF and the other secretagogues mentioned above. In studying the additive and potentiating effect on ACTH release of CRF in combination with vasopressin, VIP and the catecholamines it became evident that only the combination of micromolar concentrations of epinephrine or norepinephrine together with nanomolar concentrations of CRF will make ACTH release significantly less sensitive to the suppressive effect of dexamethasone. Other combinations of CRF and vasopressin or CRF and VIP will render ACTH release as suppressible to dexamethasone, as that elicited by each of these compounds by itself. This observation in the rat might explain at least in part the observation that a diminished suppressibility of the pituitary-adrenal axis to dexamethasone can be found in patients with psychiatric disease, especially depression.  相似文献   

10.
D M Gibbs  W Vale  J Rivier  S S Yen 《Life sciences》1984,34(23):2245-2249
The effects of CRF(41), oxytocin (OT), and arginine vasopressin (AVP) on ACTH secretion were studied alone and in combination in an in vitro system of superfused rat hemipituitaries. CRF(41) (10(-9)M) and AVP (10(-8)M) alone produced a significant increase in ACTH secretion while OT (10(-8)M) alone had no effect. However the same concentration of OT markedly potentiated the ACTH response to CRF(41) while having no effect on the ACTH response to AVP. The data support a physiologic role for OT in the regulation of ACTH secretion.  相似文献   

11.
The hormonal regulation of adenylate cyclase, cAMP-dependent protein kinase activation, and adrenocorticotropic hormone (ACTH) secretion was studied in AtT20 mouse pituitary tumor cells. Corticotropin releasing factor (CRF) stimulated cAMP accumulation and ACTH release in these cells. Maximal ACTH release was seen with 30 nM CRF and was accompanied by a 2-fold rise in intracellular cAMP. When cells were incubated with both 30 nM CRF and 0.5 mM 3-methylisobutylxanthine (MIX) cAMP levels were increased 20-fold, however, ACTH release was not substantially increased beyond release seen with CRF alone. The activation profiles of cAMP-dependent protein kinases I and II were studied by measuring residual cAMP-dependent phosphotransferase activity associated with immunoprecipitated regulatory subunits of the kinases. Cells incubated with CRF in the absence of MIX showed concentration-dependent activation of protein kinase I which paralleled stimulation of ACTH release. Protein kinase II was minimally activated. When cells were exposed to CRF in the presence of 0.5 mM MIX there was still a preferential activation of protein kinase I, although 50% of the cytosolic protein kinase II was activated. Complete activation of both protein kinases I and II was seen when cells were incubated with 0.5 mM MIX and 10 microM forskolin. Under these conditions cAMP levels were elevated 80-fold. CRF, isoproterenol, and forskolin stimulated adenylate cyclase activity in isolated membranes prepared from AtT20 cells. CRF and isoproterenol stimulated cyclase activity up to 5-fold while forskolin stimulated cyclase activity up to 15-fold. Our data demonstrate that ACTH secretion from AtT20 cells is mediated by small changes in intracellular levels of cAMP and activation of only a small fraction of the total cytosolic cAMP-dependent protein kinase in these cells is required for maximal ACTH secretion.  相似文献   

12.
G R Van Loon  A Shum  D Ho 《Peptides》1982,3(5):799-803
Catecholamine and serotonin neurons in the hypothalamus regulate the secretion of corticotropin releasing factor (CRF). We considered the possibility that CRF might in turn affect the activity of these aminergic neurons. We examined the effect of intracisternal administration of synthetic CRF on the synthesis turnover rates of dopamine and serotonin in the hypothalamus of adult male rats using two different methods to assess turnover. In one study, we measured the accumulation of L-dihydroxyphenylalanine (L-DOPA) or 5-hydroxytryptophan (5-HTP) in mediobasal hypothalamus after L-aromatic amino acid decarboxylase inhibition with m-hydroxybenzylhydrazine 20 min before sacrifice, and in the second study we measured the accumulation of dopamine, norepinephrine, epinephrine and serotonin after monoamine oxidase inhibition with pargyline 20 min before sacrifice. The commercial CRF which we administered intraarterially increased plasma ACTH and corticosterone concentrations. Intracerebral CRF 5 to 20 micrograms 20 min before sacrifice or 20 micrograms 110 min before sacrifice did not alter the m-hydroxybenzylhydrazine-induced accumulation of L-DOPA or 5-HTP when compared with saline vehicle-injected controls. CRF 20 micrograms did not alter basal concentration or pargyline-induced accumulation of the catecholamines or serotonin in whole hypothalamus when compared with saline vehicle-injected controls. Thus, intracisternal administration of CRF did not alter hypothalamic dopamine or serotonin synthesis rates as assessed by two nonsteady state turnover methods. The data suggest that the release of CRF from neurons in hypothalamus does not alter the activity of catecholamine or serotonin neurons in the hypothalamus of normal adult male rats.  相似文献   

13.
This study examined several in vivo and in vitro factors which influence the release of [Met5]-enkephalin (Met-ENK) from male rat hypothalamic slices superfused in vitro. Met-ENK release was significantly stimulated by corticotropin-releasing hormone (CRH; 10(-12)-10(-8) M), an effect which was abolished in the presence of the CRH-receptor antagonist, alpha-helical CRF9-41 (10(-6) M). The amount of Met-ENK release diminished with time in experiments in which the slices were continuously exposed to CRH. The opioid receptor antagonist naloxone (10(-6) M) stimulated Met-ENK release, even in the presence of the Na+ -channel blocker tetrodotoxin (10(-6) M), a result indicating presynaptic opioid feedback inhibition of Met-ENK release. The role of gonadal steroids in the control of Met-ENK release in vitro was also examined. It was found that the basal and CRH-induced release of Met-ENK was not changed 1 week after castration. However, a significant increase in the basal release of this peptide was observed 4 weeks after gonadectomy, and the Met-ENK-releasing efficacy of CRH was found to be reduced. The Met-ENK content of hypothalami from 1-week castrates was not significantly changed from control levels, but was significantly reduced in those from 4-week castrates. These long-term effects of castration could be overcome by the subcutaneous implantation of testosterone-containing capsules at the time of castration.  相似文献   

14.
Stressful treatments have long been associated with increased activity of brain catecholaminergic and serotonergic neurons. An intracerebroventricular (icv) injection of the corticotropin-releasing factor (CRF) also activates brain catecholaminergic neurons. Because brain CRF-containing neurons appear to be activated during stress, it is possible that CRF mediates the catecholaminergic activation. This hypothesis has been tested by assessing the responses in brain catecholamines and indoleamines to footshock in mice pretreated icv with a CRF receptor antagonist, and in mice lacking the gene for CRF (CRFko mice). Consistent with earlier results, icv administration of CRF increased catabolites of dopamine and norepinephrine, but failed to alter tryptophan concentrations or serotonin catabolism. A brief period of footshock increased plasma corticosterone and the concentrations of tryptophan and the catabolites of dopamine, norepinephrine and serotonin in several brain regions. Mice injected icv with 25 microg alpha-helical CRF(9-41) prior to footshock had neurochemical responses that were indistinguishable from controls injected with vehicle, while the increase in plasma corticosterone was slightly attenuated in some experiments. CRFko mice exhibited neurochemical responses to footshock that were indistinguishable from wild-type mice. However, whereas wild-type mice showed the expected increase in plasma corticosterone, there was no such increase in CRFko mice. Similarly, hypophysectomized mice also showed normal neurochemical responses to footshock, but no increase in plasma corticosterone. Hypophysectomy itself elevated brain tryptophan and catecholamine and serotonin metabolism. Treatment with ACTH icv or peripherally failed to induce any changes in cerebral catecholamines and indoleamines. These results suggest that CRF and its receptors, and ACTH and other pituitary hormones, are not involved in the catecholamine and serotonin responses to a brief period of footshock.  相似文献   

15.
V Giguere  G Lefevre  F Labrie 《Life sciences》1982,31(26):3057-3062
Synthetic ovine corticotropin-releasing factor (CRF) causes a 6- to 8-fold stimulation of ACTH release and cAMP accumulation in rat anterior pituitary cells in culture at ED50 values of 1 and 4 nM, respectively. Removal of Ca2+ from the incubation medium reduces CRF-induced ACTH release by 70% but have no effect on cyclic AMP accumulation. ACTH release induced by 8-Br-cAMP is inhibited by 65% in the absence of Ca2+. The Ca2+ ionophore A23187 does not alter spontaneous ACTH release. Verapamil, a pharmacological agent that blocks Ca2+ entry into cells, has no influence on spontaneous or CRF-induced ACTH release. The present data clearly demonstrate a role of Ca2+ in CRF action at a step subsequent to cAMP formation and suggest that Ca2+ is mobilized from intracellular stores during CRF stimulation.  相似文献   

16.
Iwabuchi M  Oki Y  Yoshimi T 《Life sciences》1999,64(12):1055-1062
Activation of protein kinase C (PKC) stimulates adrenocorticotropin (ACTH) release synergistically in the presence of corticotropin releasing factor (CRF). We examined the effect of a cyclic nucleotide-specific phosphodiesterase inhibitor, 1-isoamyl-3-isobutylxanthine (IIX), on arginine vasopressin (AVP)-induced ACTH release and intracellular cAMP accumulation in normal rat anterior pituitary cells. IIX alone elevated intracellular cAMP accumulation. IIX potentiated AVP-induced ACTH release synergistically without further increase in cAMP accumulation, suggesting that synergistic ACTH release has an alternative mechanism other than the synergistic elevation of intracellular cAMP accumulation which has been reported. Phorbol 12-myristate-13-acetate (PMA) also induced synergistic ACTH release when incubated with IIX. IIX had no additional effect on ACTH response when incubated with maximal dose of CRF, forskolin or 8-bromoadenosine 3',5'-cyclic monophosphate (8-Br-cAMP). Moreover, the combination of PMA and 8-Br-cAMP produced synergistic ACTH response. In conclusion, the synergistic ACTH release from rat pituitary corticotrophs occurs at least in the presence of directly activating events of PKC and PKA as well as PKC-induced inhibition of phosphodiesterase activity.  相似文献   

17.
Abstract— The loss of GABA, norepinephrine and serotonin and the uptake of GABA (in the presence of 1 mM-GABA) and the effect of GABA on the loss of norepinephrine and serotonin were investigated in rat midbrain slices incubated in media of various compositions. In a medium of low Na+ concentration the loss of serotonin from incubated slices was markedly inhibited while that of norepinephrine and GABA was significantly increased. Conversely the most pronounced loss of serotonin from slices was observed on the addition of ouabain to a medium of a balanced ionic composition. Whereas the loss of serotonin from slices increased in a medium of high K+ content, it was significantly reduced after 45 min incubation in a high K+-low Na+ medium. In all the modified media used, a significant loss of norepinephrine was observed while that of GABA was not affected by the omission of Ca2+ and was slightly reduced in the absence of K+. GABA enhanced the loss of norepinephrine and inhibited that of serotonin in a high-K+ medium and in one with a balanced ionic composition. A deficiency of Na+ in the medium had a differential effect on the loss of norepinephrine and serotonin similar to that observed with 1 mM-GABA. These results suggest that Na+ may be of crucial importance in the release of serotonin from midbrain slices and that an enhancement of the Na+ extrusion mechanism at the synaptosomal level may be involved in the effect of GABA on brain monoamines.  相似文献   

18.
The ability of arginine vasopressin (AVP) to potentiate the actions of synthetic ovine corticotropin-releasing factor (CRF) was examined using anterior pituitary fragments. Marked potentiation of ACTH release was observed upon incubating the fragments with a combination of 2 nM AVP and 1 nM CRF. Potentiation of CRF-induced ACTH release was also observed when the fragments were incubated with a combination of 1 nM AVP and 0.5 nM CRF. These results suggest that AVP may play a role in the release of ACTH from the adenohypophysis.  相似文献   

19.
The immunologic patterns of 3 human pituitary adenomas of Cushing's disease have been studied after gel exclusion chromatography (Sephadex G-50). The immunologic characteristics were examined with three radioimmunoassays specific for human corticotropin (ACTH), lipotropin (LPH) and beta-endorphin (beta-End). In cell tumor extracts, chromatographic peaks corresponding to beta-LPH, gamma-LPH, beta-End and ACTH were identified. The ACTH/beta-LP-beta-End ratio was 1 in the 3 cases. Additionally, in the 3 cases, a chromatographic peak, partially cross-reacting in the beta-End assay, was eluted after beta-End, thus suggesting the presence of a fragment of the molecule. In 1 case, a peak of large molecular weight material with N- and C-terminal beta-LPH and ACTH immunoreactivity was observed, which corresponded to the precursor material. The release and the effects of various stimuli were studied on dispersed tumor cells in primary culture. The tumor cells had a biphasic basal secretion rate with a rapid increase of ACTH/beta-LPH-beta-End in the culture medium during the first 2 h. Then the release, studied during 2 days, was slower. Chromatographic studies showed that the beta-LPH/beta-End ratio was 0.8 in the cells and 0.3 in the medium, due essentially to the release of beta-End and beta-End-like materials. The cells released ACTH and beta-LPH-beta-End in equimolar ratio after stimulation with arginine vasopressin (AVP). The maximum effect was obtained with 10(-6) M AVP (D50 = 1 10(-9) M). Dibutyryl cyclic AMP (2. 10(-3) M) induced maximal release of ACTH/beta-LPH-beta-End. This stimulation was suppressed by a 48-hour preincubation with dexamethasone (10(-8)-10(-6) M). There was no effect of TRH and LH-RH on cell release. Dopamine (10(-6) M) specifically blocked the release of ACTH/beta-LPH-beta-End in 1 case. These data showed (a) heterogeneity of chromatographic profiles from case to case; (b) the presence of material in the tumor, cell extracts and culture medium corresponding to fragment(s) of beta-End; (c) culture studies demonstrated that tumor cells remain responsive to AVP stimulation and dexamethasone suppression, and (d) the dopamine inhibition of ACTH and beta-End release needs further investigation.  相似文献   

20.
Primary anterior pituitary cell cultures were utilized to study the influence of serotonin (5-HT) directly on the pituitary. Cells incubated with 10(-5) and 10(-4) M 5-HT exhibited a significant prolactin (Prl) release, whereas cells incubated with 10(-10) to 10(-6) M 5-HT did not. Cells incubated with 10(-10) to 10(-4) M quipazine (5-HT agonist) or methysergide (MES; 5-HT antagonist) did not release Prl in amounts greater/less (P greater than 0.01) than spontaneous release. Luteinizing hormone (LH) release from cells incubated in the presence of 5-HT, quipazine, or MES was similar to spontaneous release. The hypothalamic extract-induced Prl and LH release from cells was not influenced by quipazine, but Prl release was diminished in a dose-related fashion by MES. The influence of 5-HT on hypothalamic induction of Prl and LH release was investigated utilizing in vitro culture of hypothalamic fragments (HF). Media samples from HF incubated with 10(-6) and 10(-4) M 5-HT induced a release of Prl. Media samples from HF incubated with 10(-4) M MES induced less Prl release than media samples from control fragments. When HF were incubated with both 10(-4) M 5-HT and 10(-4) M MES, the expected 5-HT-mediated Prl release was not evident. These culturing situations had no influence on LH release. In vitro Prl release from pituitary cells of the young turkey was stimulated through 5-HT activity at the hypothalamus, but not by direct 5-HT action on the pituitary cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号