首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Benthic invertebrates, litter decomposition, andlitterbag invertebrates were examined in streamsdraining pine monoculture and undisturbed hardwoodcatchments at the Coweeta Hydrologic Laboratory in thesouthern Appalachian Mountains, USA. Bimonthlybenthic samples were collected from a stream draininga pine catchment at Coweeta during 1992, and comparedto previously collected (1989–1990) benthic data froma stream draining an adjacent hardwood catchment. Litter decomposition and litterbag invertebrates wereexamined by placing litterbags filled with pine ormaple litter in streams draining pine catchments andhardwood catchments during 1992–1993 and 1993–1994. Total benthic invertebrate abundance and biomass inthe pine stream was ca. 57% and 74% that of thehardwood stream, respectively. Shredder biomass wasalso lower in the pine stream but, as a result ofhigher Leuctra spp. abundance, shredderabundance was higher in the pine stream than thehardwood stream. Decomposition rates of both pine andred maple litter were significantly faster in pinestreams than adjacent hardwood streams (p<0.05). Total shredder abundance, biomass, and production weresimilar in maple bags from pine and hardwood streams. However, trichopteran shredder abundance and biomass,and production of some trichopteran taxa such asLepidostoma spp., were significantly higher in maplelitterbags from pine streams than hardwood streams(p<0.05). In contrast, plecopteran shredders(mainly Tallaperla sp.) were more important inmaple litterbags from hardwood streams. Shredderswere well represented in pine litterbags from pinestreams, but low shredder values were obtained frompine litterbags in hardwood streams. Resultssuggest conversion of hardwood forest to pinemonoculture influences taxonomic composition of streaminvertebrates and litter decomposition dynamics. Although the impact of this landscape-leveldisturbance on invertebrate shredder communitiesappeared somewhat subtle, significant differences indecomposition dynamics indicate vital ecosystem-levelprocesses are altered in streams draining pinecatchments.  相似文献   

2.
1. Urbanisation severely affects stream hydrology, biotic integrity and water quality, but relatively little is known about effects on organic matter dynamics. Coarse particulate organic matter (CPOM) is a source of energy and nutrients in aquatic systems, and its availability has implications for ecosystem productivity and aquatic communities. In undisturbed environments, allochthonous inputs from riparian zones provide critical energy subsidies, but the extent to which this occurs in urbanised streams is poorly understood. 2. We investigated CPOM inputs, standing stocks, retention rates and retention mechanisms in urban and peri‐urban streams in Melbourne, Australia. Six streams were chosen along a gradient of catchment urbanisation, with the presence of reach scale riparian canopy cover as a second factor. CPOM retention was assessed at baseflow via replicate releases of marked Eucalyptus leaves where the retention distance and mechanism were recorded. CPOM and small wood (>1 cm diameter) storage were measured via cores and direct counts, respectively, while lateral and horizontal CPOM inputs were assessed using riparian litter traps. Stream discharge, velocity, depth and width were also measured. 3. CPOM inputs were not correlated with urbanisation, but were significantly higher in ‘closed’ canopy reaches. Urbanisation and riparian cover altered CPOM retention mechanisms, but not retention distances. Urban streams showed greater retention by rocks; while in less urban streams, retention by small wood was considerably higher. CPOM and small wood storage were significantly lower in more urban streams, but we found only a weak effect of riparian cover. 4. These findings suggest that while riparian vegetation increases CPOM inputs and has modest/weak effects on storage, catchment scale urbanisation decreases organic matter availability. Using an organic matter budget approach, it appears likely that the increased frequency and magnitude of high flows associated with catchment urbanisation exerts an overriding influence on organic matter availability. 5. We conclude that to maintain both organic matter inputs and storage, the restoration and protection of streams in urban or rapidly urbanising environments relies on the management of both riparian vegetation and catchment hydrology.  相似文献   

3.
In streams, coarse particulate organic matter (CPOM) acts as a substrate for microbial activity, which promotes nutrient retention. However, in urban areas, increased peak flows within streams lead to decreased retention of CPOM. The aim of this study was to investigate whether the reintroduction of CPOM, in the form of leaf litter, into a degraded urban stream would increase biofilm activity and phosphorus retention, two ecosystem functions that reflect the integrity of the ecosystem. Stream metabolism and nutrient retention were assessed in treated (T) and control (C) channels of the Torrens River Catchment, South Australia, before and after CPOM addition. Gross primary production and community respiration (CR) were measured as oxygen production and consumption within benthic chambers. Phosphorus retention was measured through a series of short-term filterable reactive phosphorus (FRP) addition experiments. Before CPOM addition, there were no differences in CR, but C retained 6.8% more FRP than T. After CPOM addition, CR was greater in T than in C (572 and 276 mg O2·m−2·day−1, respectively), and T retained 7.7% more FRP than C. The increase in FRP retention in T compared to C was attributed to phosphorus limitation of the CPOM and increased demand for phosphorus of the attached microbial heterotrophic community. The reintroduction of CPOM into degraded streams will be an important step in the restoration of stream metabolism and nutrient retention. Maintenance of CPOM may be achieved through restoration of riparian vegetation, a reduction in the increased peak flows, and rehabilitation of stream morphology.  相似文献   

4.
Jon Molinero  Jesus Pozo 《Hydrobiologia》2004,528(1-3):143-165
Litterfall inputs, benthic storage and the transport of coarse particulate organic matter (CPOM) were studied in two headwater streams, one flowing through a mixed deciduous forest and one through a plantation of Eucalyptus globulus. Vertical and lateral traps, transported CPOM and benthic CPOM were sampled monthly to biweekly and sorted into four categories: leaves, twigs and bark, fruits and flowers and debris. The litterfall inputs were about 20% lower at the eucalyptus site but this reduction was unevenly distributed among the litter categories. The reduction of the nitrogen and phosphorus inputs was larger (50%) than that of CPOM because of the low nutrient concentration of the CPOM at the eucalyptus site. Transported CPOM was also lower at the eucalyptus site. Although total CPOM inputs to the stream were reduced in the eucalyptus plantation, benthic storage of CPOM was 50% higher due to (1) high inputs of CPOM and low discharge during summer, (2) more twig and bark inputs, (3) eucalyptus leaves being retained more efficiently in the stream than deciduous leaves (4) a lower discharge, which may in part be attributable to eucalyptus-induced changes in the hydrological cycle. Increased retention balanced lower nitrogen and phosphorus content of CPOM, so benthic storage of nitrogen and phosphorus was similar at both sites. This work demonstrates that the timing, quality and quantity of inputs and benthic storage of CPOM in streams changes substantially because of the substitution of natural deciduous forest with eucalyptus plantation. Maintenance of buffer strips of natural vegetation may be the best way to protect ecological functioning of small, forested streams.  相似文献   

5.
SUMMARY. 1. The insecticide methoxychlor was applied seasonally to one of three small headwater streams in the southern Appalachian Mountains in North Carolina, U.S.A. The initial application caused massive invertebrate drift (>1,000,000 organisms/week) and resulted in a community with few shredders and reduced abundances of most insect taxa.
2. Bacterial densities and microbial respiration rates were not affected by treatment.
3. Disruption of the invertebrate community resulted in significant reductions in leaf litter processing rates (50–74% reduction depending on leaf species) and in the amount of leaf litter processed annually (reduction of 25–28%).
4. Reductions in leaf litter processing rates resulted in significant reductions in fine particulate organic matter (FPOM) export. Declines in both concentration and total export were detectable within 1 week of treatment. Annual FPOM export was reduced to 33% of pretreatment levels. Alteration to the invertebrate community had a much greater effect on FPOM export than a severe (50–200 year) drought.
6. Course particulate organic matter (CPOM) export was not significantly influenced by treatment but was influenced by hydrologic differences among years.  相似文献   

6.
1. Due to the hierarchical organization of stream networks, land use changes occurring at larger spatial scales (i.e. the catchment) can affect physical, chemical and biological characteristics at lower spatial scales, ultimately altering stream structure and function. Anthropogenic effects on streams have primarily been documented using structural metrics such as water chemistry, channel alteration and algal biomass. Functional parameters, including metrics of nutrient retention and metabolism, are now being widely used as indicators of stream condition. 2. Within this hierarchical context, we used a multivariate approach to examine how structural and functional (i.e. nutrient retention and metabolism) attributes of streams are related to catchment variables, including land use. The study was done in 13 streams located within a single Mediterranean catchment, but draining sub‐catchments with contrasting land use. 3. At the catchment scale, results showed two contrasting land use gradients: (i) from forested‐ to urban‐dominated catchments and (ii) from low to moderate agricultural‐dominated catchments. Variation in structural and functional parameters was strongly related to these land use gradients. Specifically, NH4+ demand (measured as the uptake velocity, Vf) decreased along the gradient from forested‐ to urban‐dominated catchments primarily in response to increases in stream nutrient concentrations [NH4+, dissolved organic nitrogen (DON) and carbon (DOC)]. Both primary production and respiration increased along the gradient of agricultural development in response to increases in algal biomass (chlorophyll a). Soluble reactive phosphorus demand was not related to any of the land use gradients. 4. Our results illustrate the connections among factors operating at different spatial scales (i.e. from catchments to streams) and their distinct influence on stream ecosystem function. Managers should take into consideration these connections when designing stream management and restoration plans. Because ecologically successful stream management and restoration is expected to restore function as well as structure to streams, the use of appropriate measures of functional processes is required. Nutrient retention and metabolism parameters are good candidates to fill this gap.  相似文献   

7.
凉水和帽儿山地区低级溪流生境和水质状况   总被引:2,自引:0,他引:2  
为研究不同植被景观土地利用下低级溪流的生境状况和水质差异,对凉水国家级自然保护区红松原始林内和帽儿山国家森林公园境内天然次生林植被和农田背景下各3条溪流生境和水质状况进行调查。对溪流生物特性(悬浮藻、附着藻)和理化性质(温度、混浊度、溶解氧(DO)、pH、NH4^+-N、NO3^-N、PO4^3-P、总氮(TN)和总磷(11P))以及细小颗粒有机物质(FPOM)和粗大有机物质(CPOM))进行测定。研究结果表明,凉水地区原始林溪流的生境状况好于帽儿山地区的次生林,帽儿山地区农田溪流生境最差。原始林溪流具有稳定的溪底生物生活基质,稳水区和急流区均匀分布,稳水区尺度变化大,受淀积物沉降干扰小,河道较弯曲,河岸稳定,河岸植被覆盖度高;次生林溪流以急流区为主,稳定基质相对较差,并受到一定程度的淀积物沉降干扰,河岸尚稳定,有一定程度的人为干扰;农田溪流基质不稳定,受到强烈淀积物沉降影响,渠道化严重,河岸带植被严重破坏。3种景观背景下溪流总磷(11P)、溶解氧(DO)、混浊度、温度、氮磷比值(N/P)(P〈0.05)存在显著差异。原始林溪流NH4^+、DO、TP、TN、悬浮藻浓度和pH较高、附着藻数量较多,温度较低、FPOM和CPOM的数量较少;次生林溪流的NO3^--N、N/P和TDIN较高。 浊度较低;农田溪流浊度、温度、PO4^3--P较高,DO和pH较低,附着藻数量较少。景观尺度上的土地利用对溪流生境具有深刻的影响,同时决定溪流的水质状况。  相似文献   

8.
The effect of grazing on primary productivity and phosphorus cycling in autotrophic streams was studied using the snail Goniobasis clavaeformes. Snails were added to each of three replicate laboratory stream channels, receiving once-through flow of groundwater, in densities of 2.1, 3.0, and 4.2 g ash free dry mass (AFDM)/m2. A fourth channel received no snails and served as an ungrazed control. Presence of snail grazers resulted in a large reduction in aufwuchs biomass, primary productivity, and biotic phosphorus uptake; a modest reduction in fine particulate organic matter (FPOM); and an increase in the fraction of stream particulate organic matter (POM) exported as seston. Although primary production and aufwuchs biomass continued to decline with increasing snail density, phosphorus uptake increased. This increased phosphorus uptake is attributed to abiotic sorption to inorganic surfaces exposed as a result of efficient removal of aufwuchs at high snail densities. Although snail densities were chosen to bracket the density measured in a natural stream, the experimental densities may result in considerably higher grazing pressure on aufwuchs due to the absence of alternate food sources (e.g., coarse particulate organic matter) usually found in natural streams. Presence of snail grazers increased the spiralling length of phosphorus, primarily by reducing aufwuchs biomass and consequently reducing uptake of phosphorus from the water. Presence of snails also increased downstream transport velocity of phosphorus bound to organic particles. These results follow the patterns predicted in a previous theoretical analysis for mildly phosphorus-limited streams.  相似文献   

9.
1. We assessed the impacts of deforestation on the energy base of headwater food webs in seven headwater streams in the Upper Chattahoochee basin, GA, U.S.A where percentage forest in catchments ranged from 82 to 96%. We measured terrestrial organic matter standing crop and determined consumer (crayfish and insectivorous fish) dependence on terrestrial versus aquatic energy sources via gut content and stable isotope analyses. 2. Standing crop of coarse particulate organic matter (CPOM) declined with deforestation at large scales (i.e. catchment deforestation and riparian deforestation at the entire stream network scale). Terrestrial plant matter, the dominant component of crayfish guts, declined in crayfish guts with reductions in CPOM standing crop and with deforestation. 3. Crayfish and insectivorous fish δ13C showed enrichment trends with deforestation, indicating isotopic divergence from CPOM, the most 13C‐depleted basal resource, with reductions in catchment and riparian forest cover. Crayfish δ13C also exhibited enrichment with decreased instream CPOM standing crop. 4. A concentration‐dependent mixing model was used to calculate the relative dependence of crayfish and fish on terrestrial versus aquatic basal resources. Results suggested that both allochthonous CPOM and autochthonous production were important basal resources. Consumer dependence on CPOM decreased with reductions in canopy cover. 5. Our data suggest the importance of forest cover to headwater food webs at multiple scales, and that relatively low levels of riparian deforestation along headwater streams can lead to reductions in stream food web dependence on terrestrial subsidies.  相似文献   

10.
Benthic organic matter dynamics in Texas prairie streams   总被引:1,自引:1,他引:0  
Concentrations of benthic particulate organic matter (POM) in six Texas prairie streams (2nd–4th order, intermittent and perennial) were monitored over a 20 month period to determine temporal and spatial dynamics. Benthic POM mass was highly variable, having coefficients of variation (CV) in excess of 300%. Benthic POM mass in all streams was similar with the exception of the 4th order intermittent stream which had significantly higher concentrations. Benthic POM at all sites was dominated by coarse POM (CPOM), followed by fine POM (FPOM), ultrafine POM (UPOM), and medium POM (MPOM). The dominance by CPOM is especially noteworthy in the 4th order intermittent stream where it accounted for 83% of the annual POM mass. Seasonally, benthic POM was highest in summer and lowest in the fall.  相似文献   

11.
12.
The influence of predatory fish on the structure of stream food webs may be altered by the presence of forest canopy cover, and consequent differences in allochthonous inputs and primary production. Eight sites containing introduced brown trout (Salmo trutta) and eight sites that did not were sampled in the Cass region, South Island, New Zealand. For each predator category, half the sites were located in southern beech (Nothofagus) forest patches (range of canopy cover, 65–90%) and the other half were in tussock grassland. Food resources used by two dominant herbivores-detritivores were assessed using stable isotopes. 13C/12C ratios were obtained for coarse particulate organic matter (CPOM), fine particulate organic matter (FPOM), algal dominated biofilm from rocks, and larvae of Deleatidium (Ephemeroptera) and Olinga (Trichoptera). Total abundance and biomass of macroinvertebrates did not differ between streams with and without trout, but were significantly higher at grassland sites than forested sites. However, taxon richness and species composition differed substantially between trout and no-trout sites, irrespective of whether streams were located in forest or not. Trout streams typically contained more taxa, had low biomass of predatory invertebrates and large shredders, but a high proportion of consumers with cases or shells. The standing stock of CPOM was higher at forested sites, but there was less FPOM and more algae at sites with trout, regardless of the presence or absence of forest cover. The stable carbon isotope range for biofilm on rocks was broad and encompassed the narrow CPOM and FPOM ranges. At trout sites, carbon isotope ratios of Deleatidium, the most abundant invertebrate primary consumer, were closely related to biofilm values, but no relationship was found at no-trout sites where algal biomass was much lower. These results support a role for both bottom-up and top-down processes in controlling the structure of the stream communities studied, but indicate that predatory fish and forest cover had largely independent effects.  相似文献   

13.
Dissolved organic carbon (DOC) and total and inorganic nitrogen and phosphorus concentrations were determined over 3 years in headwater streams draining two adjacent catchments. The catchments are currently under different land use; pasture/grazing vs plantation forestry. The objectives of the work were to quantify C and nutrient export from these landuses and elucidate the factors regulating export. In both catchments, stream water dissolved inorganic nutrient concentrations exhibited strong seasonal variations. Concentrations were highest during runoff events in late summer and autumn and rapidly declined as discharge increased during winter and spring. The annual variation of stream water N and P concentrations indicated that these nutrients accumulated in the catchments during dry summer periods and were flushed to the streams during autumn storm events. By contrast, stream water DOC concentrations did not exhibit seasonal variation. Higher DOC and NO3 concentrations were observed in the stream of the forest catchment, reflecting greater input and subsequent breakdown of leaf-litter in the forest catchment. Annual export of DOC was lower from the forested catchment due to the reduced discharge from this catchment. In contrast however, annual export of nitrate was higher from the forest catchment suggesting that there was an additional NO3 source or reduction of a NO3 sink. We hypothesize that the denitrification capacity of the forested catchment has been significantly reduced as a consequence of increased evapotranspiration and subsequent decrease in streamflow and associated reduction in the near stream saturated area.  相似文献   

14.
Since litter input and availability of leaves in many streams is highly seasonal in Portugal, we investigated whether Sericostoma vittatum, a typical shredder, was able to grow using alternative food sources. To test this hypothesis we fed S. vittatum with Alnus glutinosa (alder, CPOM, coarse particulate organic matter), leaf powder from A. glutinosa and Acacia dealbata and FPOM (fine particulate organic matter) from a 5th and a >6th order river, the macrophyte Myriophyllum aquaticum and biofilm. Growth in S. vittatum was significantly influenced by the food item given (ANOVA, P = 0.0082). The food item promoting the highest growth was A. glutinosa, in the form of FPOM (6.48% day−1) and CPOM (4.24% day−1); all other forms of FPOM and biofilm provided relatively low growth rates (0.77–1.77% day−1). The macrophyte M. aquaticum was also used as food source by S. vittatum and promoted intermediate growth (1.96% day−1). Neither nitrogen, phosphorus nor caloric content was correlated with growth. However, since higher growth was achieved with alder, in the form of CPOM and FPOM, we concluded that the chemical content of food was more important for S. vittatum than the physical form of such food. This may partially explain why shredders are able to survive when leaves are scarce in streams. Handling editor: K. Martens  相似文献   

15.
SUMMARY 1. Paraleptophlehia gregalis and P. temporalis were abundant throughout a flow-controlled section of stream that contained large quantities of fine particulate organic matter (FPOM; 0.45 μm to 1 mm in diameter), and in upstream and downstream areas.
2. In laboratory studies, Paraleptophlebia spp. fed and grew on FPOM and CPOM (coarse particulate organic matter; greater than 1 mm in diameter); growth rate was not related to the particle size of food. In addition, these animals were able to survive and grow on various sizes of faecal material produced by shredders.
3. Paraleptopblehia spp. consumed relatively large amounts (0.16±0.09 mg per mg animal dry mass) of detrital material daily.
4. The mayflies had short gut content passage times (2–3 h) and low efficiencies of conversion of ingested food to body substance (0.08±0.07%). They egested relatively small, amorphous faeces,
5. The overall pattern exhibited by Paraleptophlebia spp. involved rapid processing and partial recycling, through relatively simple alimentary tracts, of large amounts of detrital material from a wide range of sources.  相似文献   

16.
We examined the impact of small-scale commercial forestry on the structure and function of 6 headwater streams in the North Carolina Piedmont. During 2001–2003 terrestrial organic matter inputs, temperature, macroinvertebrate community composition and tolerance, leaf breakdown rate, and food web structure were quantified for 2 streams draining mature stands of managed loblolly pine, 2 streams draining mature hardwood forests, and 2 streams draining 3-year-old clear cuts, which had been replanted with loblolly pine. Streams in the clear-cuts and pine plantations were bordered by a 15 m hardwood buffer. Despite differences in watershed land-use, there were no significant differences in the organic matter supply or temperature between streams draining different forest types. However, algal biomass was significantly higher in clear-cut sites than forested sites, and was also higher in hardwood sites than pine sites. Streams draining the clear-cut sites contained lower macroinvertebrate richness and diversity, and fewer intolerant species, than streams draining pine and hardwood stands. Despite the differences in macroinvertebrates community composition, there was no difference among forest types in leaf-pack breakdown rates. Analysis of δ15N and δ13C natural abundance of functional feeding group indicated that the shredders and predators collected from streams draining clear-cuts had a δ15N value that was enriched relative to the macroinvertebrates of streams draining pine and hardwood forests. This difference in δ15N signature appears to be the result of the incorporation of riparian grass species in the clear-cuts, which have a higher δ15N, into the diet of shredders. Pine sites had similar food webs to natural hardwood sites. Our results suggest that clear-cutting changes both the trophic dynamics and macroinvertebrate composition of low-order Piedmont streams in North Carolina despite the presence of hardwood buffers. However, large differences were not found between older pine and hardwood stands, indicating rapid recovery following re-growth of forest vegetation, when hardwood buffer strips were present.  相似文献   

17.
1. Stream ecosystems are the products of interactions between hydrology, geomorphology and ecology, but examining all three components simultaneously is difficult and rarely attempted. Frequently, either geomorphology or hydrology is treated as invariable or static. 2. To examine the validity of treating either hydrology or geomorphology as static, we studied the individual and combined effects of hydrology and channel geomorphology on coarse particulate organic matter (CPOM) storage. Using data from an experimental leaf release in a hydrologically regulated stream we created a simple numerical model. This allowed us to quantify the relative influence of CPOM trapping and CPOM retention on total long‐term CPOM storage under variable regimes of flood frequency and geomorphic structure. 3. CPOM storage is a function of supply, flood frequency and the type and frequency of in‐stream structures. In‐stream structures perform two distinct functions, trapping and retention, whose relative importance in leaf storage changes with stream hydrology. Trapping is more important for CPOM storage in streams with few floods, while retention is more important in streams with frequent floods. Different structures (e.g. boulders, large wood, small wood) perform these functions at different efficiencies. We found that large wood trapped two to three times more leaves than the bank, but that the bank retained leaves two to three times more efficiently. 4. A modelled channel with five times the amount of large wood as the study channel (a ‘wood restoration’) initially stored 14% more leaves than the modelled ‘natural’ channel. After six floods, however, the modelled wood restoration channel stored 50% less CPOM than the natural channel as the large wood had high trapping but poor retention. The modelled natural channel contained structures that could both trap and retain. Thus, as different structures performed different functions, the structural complexity buffered the stream allochthonous energy base against changes in hydrology through its balance of trapping and retention. 5. As the frequency of floods increased, the spatial distribution of CPOM became increasingly patchy as storage was driven entirely by structures with high retention. Thus, the coupling of flood frequency and geomorphic structure influenced CPOM availability, which in turn has ramifications for the entire stream food web.  相似文献   

18.
1. Agriculture is a major contributor of non‐point source pollution to surface waters in the midwestern United States, resulting in eutrophication of freshwater aquatic ecosystems and development of hypoxia in the Gulf of Mexico. Agriculturally influenced streams are diverse in morphology and have variable nutrient concentrations. Understanding how nutrients are transformed and retained within agricultural streams may aid in mitigating increased nutrient export to downstream ecosystems. 2. We studied six agriculturally influenced streams in Indiana and Michigan to develop a more comprehensive understanding of the factors controlling nutrient retention and export in agricultural streams using nutrient addition and isotopic tracer studies. 3. Metrics of nutrient uptake indicated that nitrate uptake was saturated in these streams whereas ammonium and phosphorus uptake increased with higher concentrations. Phosphorus uptake was likely approaching saturation as evidenced by decreasing uptake velocities with concentration; ammonium uptake velocity also declined with concentration, though not significantly. 4. Higher whole‐stream uptake rates of phosphorus and ammonium were associated with the observed presence of stream autotrophs (e.g. algae and macrophytes). However, there was no significant relationship between measures of nutrient uptake and stream metabolism. Water‐column nutrient concentrations were positively correlated with gross primary production but not community respiration. 5. Overall, nutrient uptake and metabolism were affected by nutrient concentrations in these agriculturally influenced streams. Biological uptake of ammonium and phosphorus was not saturated, although nitrate uptake did appear to be saturated in these ecosystems. Biological activity in agriculturally influenced streams is higher relative to more pristine streams and this increased biological activity likely influences nutrient retention and transport to downstream ecosystems.  相似文献   

19.
Inputs and outputs of allochthonous particulate organic matter were measured during 15 months in the upper part of a beech forest headwater stream. Inputs were estimated to 716 g m−2 yr−1, and leaves made up 71%. Outputs were estimated to 535 g m−2 yr−1 and consisted mainly of FPOM (92%). Therefore, a significant transformation of CPOM into FPOM took place. The mean FPOM concentration varied between 0.6 and 3.4 mg 1−1, but the daily variations greatly surpassed the seasonal variations. As discharge was rather constant, the observed variations were due to external disturbances, especially precipitation.
A tentative scheme for leaf processing is established from the present data and previous studies in the area, indicating that a significant part takes place in the MPOM pool and that microbial and invertebrate processing make up about 50% each of total intra-system processing.  相似文献   

20.
Predictability of stream discharge and particulate organic matter (POM) in the water column was estimated, using Colwell's indices of constancy and contingency, for 6 Texas prairie streams (1 each of 2nd, 3rd, and 4th order with intermittent or perennial discharge). Stream discharge in these 6 prairie streams varied between 0 and 36000 1 s–1, depending on the stream and season. Predictability (P) of discharge in these streams ranged from 0.45 to 0.62, within the range of values expected for North American streams. Predictability of stream discharge was not significantly different between streams. Particulate organic matter concentrations in these prairie streams are relatively low, ranging from 0.25 to 4.00 mg AFDM 1–1. Predictability of POM concentration in these streams was high, ranging from 0.75 to 0.85, and was largely the result of constancy of POM concentrations. Within the different POM size classes, Fine POM (FPOM) had the highest predictability (P = 0.89–0.96). In spite of relatively unpredictable stream discharge, POM remained fairly constant providing a measure of habitat predictability and stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号