首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S-Adenosyl-L-methionine (SAM): coclaurine N-methyltransferase (CNMT), which catalyzes the transfer of a methyl group from S-adenosyl-L-methionine to the amino group of the tetrahydrobenzylisoquinoline alkaloid coclaurine. was purified 340-fold from Coptis japonica cells in 1% yield to give an almost homogeneous protein. The purified enzyme, which occurred as a homotetramer with a native Mr of 160 kDa (gel-filtration chromatography) and a subunit Mr of 45 kDa (SDS-polyacrylamide gel electrophoresis), had an optimum pH of 7.0 and a pI of 4.2. Whereas (R)-coclaurine was the best substrate for enzyme activity, Coptis CNMT had broad substrate specificity and no stereospecificity CNMT methylated norlaudanosoline, 6,7-dimethoxyl-1,2,3,4-tetrahydroisoquinoline and 1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline. The enzyme did not require any metal ion. p-Chloromercuribenzoate and iodoacetamide did not inhibit CNMT activity, but the addition of Co2+, Cu2+ or Mn2+ at 5 mM severely inhibited such activity by 75, 47 and 57%, respectively. The substrate-saturation kinetics of CNMT for norreticuline and SAM were of the typical Michaelis-Menten-type with respective Km values of 0.38 and 0.65 mM.  相似文献   

2.
H W Lee  S Kim  W K Paik 《Biochemistry》1977,16(1):78-85
Protein methylase I (S-adenosylmethionine: protein-arginine methyltransferase, EC 2.1.1.23) has been purified from calf brain approximately 120-fold with a 14% yield. The final preparation is completely free of any other protein-specific methyltransferases and endogenous substrate protein. The enzyme has an optimum pH of 7.2 and pI value of 5.1. The Km values for S-adenosyl-L-methionine, histone H4, and an ancephalitogenic basic protein are 7.6 X 10(-6), 2.5 X 10(-5), and 7.1 X 10(-5) M, respectively, and the Ki value for S-adenosyl-L-homocysteine is 2.62 X 10(-6) M. The enzyme is highly specific for the arginine residues of protein, and the end products after hydrolysis of the methylated protein are NG,NG-di(asymmetric), NG,N'G-di(symmetric), and NG-monomethylarginine. The ratio of [14C]methyl incorporation into these derivatives by enzyme preparation at varying stages of purification remains unchanged at 40:5:55, strongly indicating that a single enzyme is involved in the synthesis of the three arginine derivatives. The kinetic mechanism of the protein methylase I reaction was studied with the purified enzyme. Initial velocity patterns converging at a point on the extended axis of abscissas were obtained with either histone H4 or S-adenosyl-L-methionine as the varied substrate. Product inhibition by S-adenosyl-L-homocysteine with S-adenosyl-L-methionine as the varied substrate was competitive regardless of whether or not the enzyme was saturated with histone H4. On the other hand, when histone H4 is the variable substrate, noncompetitive inhibition was obtained with S-adenosyl-L-homocysteine under conditions where the enzyme is not saturated with the other substrate, S-adenosyl-L-methionine. These results suggest that the mechanism of the protein methylase I reaction is a Sequential Ordered Bi Bi mechanism with S-adenosyl-L-methionine as the first substrate, histone H4 as the second substrate, methylated histone H4 as the first product, and S-adenosyl-L-homocysteine as the second product released.  相似文献   

3.
Benzylisoquinoline alkaloids are one of the most important secondary metabolite groups, and include the economically important analgesic morphine and the antimicrobial agent berberine. To improve the production of these alkaloids, we investigated the effect of the overexpression of putative rate-limiting step enzymes in benzylisoquinoline alkaloid biosynthesis. We introduced two O-methyltransferase [Coptis japonica norcoclaurine 6-O-methyltransferase (6OMT) and 3'-hydroxy-N-methylcoclaurine 4'-O-methyltransferase (4'OMT)] expression vectors into cultured California poppy cells to avoid the gene silencing effect of endogenous genes. We established 20 independent lines for 6OMT transformants and 15 independent lines for 4'OMT transformants. HPLC/liquid chromatography-mass spectrometry (LC-MS) analysis revealed that the overexpression of C. japonica 6OMT was associated with an average alkaloid content 7.5 times greater than that in the wild type, whereas the overexpression of C. japonica 4'OMT had only a marginal effect. Further characterization of 6OMT in California poppy cells indicated that a 6OMT-specific gene is missing and 4OMT catalyzes the 6OMT reaction with low activity in California poppy, which supports the notion that the 6OMT reaction is important for alkaloid biosynthesis in this plant species. We discuss the importance of 6OMT in benzylisoquinoline alkaloid biosynthesis and the potential for using a rate-limiting step gene to improve alkaloid production.  相似文献   

4.
(S)-Norcoclaurine is the entry compound in benzylisoquinoline alkaloid biosynthesis and is produced by the condensation of dopamine and 4-hydroxyphenylacetaldehyde (4-HPAA) by norcoclaurine synthase (NCS) (EC 4.2.1.78). Although cDNA of the pathogenesis-related (PR) 10 family, the translation product of which catalyzes NCS reaction, has been isolated from Thalictrum flavum, its detailed enzymological properties have not yet been characterized. We report here that a distinct cDNA isolated from Coptis japonica (CjNCS1) also catalyzed NCS reaction as well as a PR10 homologue of C. japonica (CjPR10A). Both recombinant proteins stereo-specifically produced (S)-norcoclaurine by the condensation of dopamine and 4-HPAA. Because a CjNCS1 cDNA that encoded 352 amino acids showed sequence similarity to 2-oxoglutarate-dependent dioxygenases of plant origin, we characterized the properties of the native enzyme. Sequence analysis indicated that CjNCS1 only contained a Fe(2+)-binding site and lacked the 2-oxoglutarate-binding domain. In fact, NCS reaction of native NCS isolated from cultured C. japonica cells did not depend on 2-oxoglutarate or oxygen, but did require ferrous ion. On the other hand, CjPR10A showed no specific motif. The addition of o-phenanthroline inhibited NCS reaction of both native NCS and recombinant CjNCS1, but not that of CjPR10A. In addition, native NCS and recombinant CjNCS1 accepted phenylacetaldehyde and 3,4-dihydroxyphenylacetaldehyde, as well as 4-HPAA, for condensation with dopamine, whereas recombinant CjPR10A could use 4-hydroxyphenylpyruvate and pyruvate in addition to the above aldehydes. These results suggested that CjNCS1 is the major NCS in C. japonica, whereas native NCS extracted from cultured C. japonica cells was more active and formed a larger complex compared with recombinant CjNCS1.  相似文献   

5.
S-adenosyl-L-methionine:coclaurine N-methyltransferase (CNMT) converts coclaurine to N-methylcoclaurine in isoquinoline alkaloid biosynthesis. The N-terminal amino acid sequence of Coptis CNMT was used to amplify the corresponding cDNA fragment and later to isolate full-length cDNA using 5'- and 3'-rapid amplification of cDNA ends (RACE). The nucleotide sequence and predicted amino acid sequence showed that the cDNA encoded 358 amino acids, which contained a putative S-adenosyl-L-methionine binding domain and showed relatively high homology to tomato phosphoethanolamine-N-methyltransferase. A recombinant protein was expressed in Escherichia coli, and its CNMT activity was confirmed. Recombinant CNMT was purified to homogeneity, and enzymological characterization confirmed that Coptis CNMT has quite broad substrate specificity, i.e. not only for 6-O-methylnorlaudanosoline and norreticuline but also for 6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline. The evolution of N-methyltransferases in secondary metabolism is discussed based on sequence similarity.  相似文献   

6.
7.
8.
9.
The steady-state kinetic behavior of three position-specific O-methyltransferases (3-, 4'-, and 6-OMTs) was compared with reference to substrate inhibition patterns in Chrysosplenium americanum. The 6-OMT was severely inhibited by the flavonoid substrate at concentrations close to Km, whereas the other two enzymes were less affected by their respective flavonoid substrates. Substrate interaction kinetics for the 6-OMT gave converging lines consistent with a sequential binding mechanism, whereas the data generated for the 3- and 4'-OMTs could be fitted to the equation for a ping-pong mechanism or to that of a sequential binding mechanism where Kia was much smaller Ka. More information on the mechanism of reaction was obtained from product inhibition studies. The three enzymes exhibited competitive inhibition patterns between S-adenosyl-L-methionine (SAM) and S-adenosyl-L-homocysteine (SAH), whereas other patterns were either noncompetitive or uncompetitive. The steady-state kinetic properties of the 3-, 4'-, and 6-OMTs were consistent with a sequential ordered reaction mechanism, in which SAM and SAH were leading reaction partners and included an abortive EQB complex. Product inhibition constants were sufficiently low to suggest that these may be important in regulating the pathway of polymethylated flavonoid synthesis. It was suggested that due to their greater sensitivity to inhibition by SAH, the OMTs involved in earlier steps of the methylation sequence may regulate the rate of synthesis of final products in Chrysosplenium.  相似文献   

10.
11.
The gene rif orf14 in the rifamycin biosynthetic gene cluster of Amycolatopsis mediterranei S699, producer of the antitubercular drug rifamycin B, encodes a protein of 272 amino acids identified as an AdoMet: 27-O-demethylrifamycin SV methyltransferase. Frameshift inactivation of rif orf14 generated a mutant of A. mediterranei S699 that produces no rifamycin B, but accumulates 27-O-demethylrifamycin SV (DMRSV) as the major new metabolite, together with a small quantity of 27-O-demethyl-25-O-desacetylrifamycin SV (DMDARSV). Heterologous expression of rif orf14 in Escherichia coli yielded a 33.8-kDa polyhistidine-tagged polypeptide, which efficiently catalyzes the methylation of DMRSV to rifamycin SV, but not that of DMDARSV or rifamycin W. 27-O-Demethylrifamycin S was methylated poorly, if at all, by the enzyme to produce rifamycin S. The purified enzyme does not require a divalent cation for catalytic activity. While Ca(2+) or Mg(2+) inhibits the enzyme activity slightly, Zn(2+), Ni(2+), and Co(2+) are strongly inhibitory. The K(m) values for DMRSV and S-adenosyl-L-methionine (AdoMet) are 18.0 and 19.3 microM, respectively, and the K(cat) is 87s(-1). The results indicate that DMRSV is a direct precursor of rifamycin SV and that acetylation of the C-25 hydroxyl group must precede the methylation reaction. They also suggest that rifamycin S is not the precursor of rifamycin SV in rifamycin B biosynthesis, but rather an oxidative shunt-product.  相似文献   

12.
Human protein arginine N-methyltransferase 6 (PRMT6) transfers methyl groups from the co-substrate S-adenosyl-L-methionine to arginine residues within proteins, forming S-adenosyl-L-homocysteine as well as omega-N(G)-monomethylarginine (MMA) and asymmetric dimethylarginine (aDMA) residues in the process. We have characterized the kinetic mechanism of recombinant His-tagged PRMT6 using a mass spectrometry method for monitoring the methylation of a series of peptides bearing a single arginine, MMA, or aDMA residue. We find that PRMT6 follows an ordered sequential mechanism in which S-adenosyl-L-methionine binds to the enzyme first and the methylated product is the first to dissociate. Furthermore, we find that the enzyme displays a preference for the monomethylated peptide substrate, exhibiting both lower K(m) and higher V(max) values than what are observed for the unmethylated peptide. This difference in substrate K(m) and V(max), as well as the lack of detectable aDMA-containing product from the unmethylated substrate, suggest a distributive rather than processive mechanism for multiple methylations of a single arginine residue. In addition, we speculate that the increased catalytic efficiency of PRMT6 for methylated substrates combined with lower K(m) values for native protein methyl acceptors may obscure this distributive mechanism to produce an apparently processive mechanism.  相似文献   

13.
14.
Phytanoyl-CoA hydroxylase is a peroxisomal alpha-oxidation enzyme that catalyzes the 2-hydroxylation of 3-methyl-branched acyl-CoAs. A polyhistidine-tagged human phytanoyl-CoA hydroxylase was expressed in E. coli and subsequently purified as an active protein. The recombinant enzyme required GTP or ATP and Mg(2+), in addition to its known cofactors Fe(2+), 2-oxoglutarate, and ascorbate. The enzyme was active towards phytanoyl-CoA and 3-methylhexadecanoyl-CoA, but not towards 3-methylhexadecanoic acid. Racemic, R- and S-3-methylhexadecanoyl-CoA were equally well hydroxylated. Hydroxylation of R- and S-3-methylhexadecanoyl-CoA yielded the (2S, 3R) and (2R,3S) isomers of 2-hydroxy-3-methylhexadecanoyl-CoA, respectively. Human phytanoyl-CoA hydroxylase did not show any activity towards 2-methyl- and 4-methyl-branched acyl-CoAs or towards long and very long straight chain acyl-CoAs, excluding a possible role for the enzyme in the formation of 2-hydroxylated and odd-numbered straight chain fatty acids, which are abundantly present in brain. In conclusion, we report the unexpected requirement for ATP or GTP and Mg(2+) of phytanoyl-CoA hydroxylase in addition to the known hydroxylation cofactors. Due to the fact that straight chain fatty acyl-CoAs are not a substrate for phytanoyl-CoA hydroxylase, 2-hydroxylation of fatty acids in brain can be allocated to a different enzyme/pathway.  相似文献   

15.
Halohydrin dehalogenase (HheC) from Agrobacterium radiobacter AD1 catalyzes the reversible intramolecular nucleophilic displacement of a halogen by a hydroxyl group in vicinal haloalcohols, producing the corresponding epoxides. The enzyme displays high enantioselectivity toward some aromatic halohydrins. To understand the kinetic mechanism and enantioselectivity of the enzyme, steady-state and pre-steady-state kinetic analysis was performed with p-nitro-2-bromo-1-phenylethanol (PNSHH) as a model substrate. Steady-state kinetic analyses indicated that the k(cat) of the enzyme with the (R)-enantiomer (22 s(-1)) is 3-fold higher than with the (S)-enantiomer and that the K(m) for the (R)-enantiomer (0.009 mM) is about 45-fold lower than that for the (S)-enantiomer, resulting in a high enantiopreference for the (R)-enantiomer. Product inhibition studies revealed that HheC follows an ordered Uni Bi mechanism for both enantiomers, with halide as the first product to be released. To identify the rate-limiting step in the catalytic cycle, pre-steady-state experiments were performed using stopped-flow and rapid-quench methods. The results revealed the existence of a pre-steady-state burst phase during conversion of (R)-PNSHH, whereas no such burst was observed with the (S)-enantiomer. This indicates that a product release step is rate-limiting for the (R)-enantiomer but not for the (S)-enantiomer. This was further examined by doing single-turnover experiments, which revealed that during conversion of the (R)-enantiomer the rate of bromide release is 21 s(-1). Furthermore, multiple turnover analyses showed that the binding of (R)-PNSHH is a rapid equilibrium step and that the rate of formation of product ternary complex is 380 s(-1). Taken together, these findings enabled the formulation of an ordered Uni Bi kinetic mechanism for the conversion of (R)-PNSHH by HheC in which all of the rate constants are obtained. The high enantiopreference for the (R)-enantiomer can be explained by weak substrate binding of the (S)-enantiomer and a lower rate of reaction at the active site.  相似文献   

16.
17.
Growing pharmaceutical interest in benzylisoquinoline alkaloids (BIA) coupled with their chemical complexity make metabolic engineering of microbes to create alternative platforms of production an increasingly attractive proposition. However, precise knowledge of rate‐limiting enzymes and negative feedback inhibition by end‐products of BIA metabolism is of paramount importance for this emerging field of synthetic biology. In this work we report the structural characterization of (S)‐norcoclaurine‐6‐O‐methyltransferase (6OMT), a key rate‐limiting step enzyme involved in the synthesis of reticuline, the final intermediate to be shared between the different end‐products of BIA metabolism, such as morphine, papaverine, berberine and sanguinarine. Four different crystal structures of the enzyme from Thalictrum flavum (Tf 6OMT) were solved: the apoenzyme, the complex with S‐adenosyl‐l ‐homocysteine (SAH), the complexe with SAH and the substrate and the complex with SAH and a feedback inhibitor, sanguinarine. The Tf 6OMT structural study provides a molecular understanding of its substrate specificity, active site structure and reaction mechanism. This study also clarifies the inhibition of Tf 6OMT by previously suggested feedback inhibitors. It reveals its high and time‐dependent sensitivity toward sanguinarine.  相似文献   

18.
The substrate oxidation profiles of Sphingomonas yanoikuyae B1 biphenyl-2,3-dioxygenase and cis-biphenyl dihydrodiol dehydrogenase activities were examined with 1,2-dihydronaphthalene and various cis-diols as substrates. m-Xylene-induced cells of strain B1 oxidized 1,2-dihydronaphthalene to (-)-(1R,2S)-cis-1,2-dihydroxy-1,2-3,4-tetrahydronaphthalene as the major product (73% relative yield). Small amounts of (+)-(R)-2-hydroxy-1,2-dihydronaphthalene (15%), naphthalene (6%), and alpha-tetralone (6%) were also formed. Strain B8/36, which lacks an active cis-biphenyl dihydrodiol dehydrogenase, formed (+)-(1R,2S)-cis-1,2-dihydroxy-1,2-dihydronaphthalene (51%), in addition to (-)-(1R,2S)-cis-1,2-dihydroxy-1,2,3,4-tetrahydronaphthalene (44%) and (+)-(R)-2-hydroxy-1,2-dihydronaphthalene (5%). The cis-biphenyl dihydrodiol dehydrogenase of strain B1 oxidized both enantiomers of cis-1,2-dihydroxy-1,2-dihydronaphthalene, but only the (+)-(1S,2R)-enantiomers of cis-1,2-dihydroxy-1,2,3,4-tetrahydronaphthalene and cis-1,2-dihydroxy-3-phenylcyclohexa-3,5-diene. The results show that biphenyl dioxygenase expressed by S. yanoikuyae catalyzes dioxygenation, monooxygenation, and desaturation reactions with 1,2-dihydronaphthalene as the substrate, and cis-biphenyl dihydrodiol dehydrogenase catalyzes the enantioselective dehydrogenation of (+)-(1S,2R)-cis-1,2-dihydroxy-1,2,3,4-tetrahydronaphthalene and (+)-(1S,2R)-cis-1,2-dihydroxy-3-phenylcyclohexa-3,5-diene.  相似文献   

19.
Ikezawa N  Iwasa K  Sato F 《The FEBS journal》2007,274(4):1019-1035
(S)-stylopine is an important intermediate in the biosynthesis of benzophenanthridine alkaloids, such as sanguinarine. Stylopine biosynthesis involves the sequential formation of two methylenedioxy bridges. Although the methylenedioxy bridge-forming P450 (CYP719) involved in berberine biosynthesis has been cloned from Coptis japonica[Ikezawa N, Tanaka M, Nagayoshi M, Shinkyo R, Sakaki T, Inouye K & Sato F (2003) J Biol Chem278, 38557-38565], no information is available regarding the genes for methylenedioxy bridge-forming enzymes in stylopine biosynthesis. Two cytochrome P450 cDNAs involved in stylopine biosynthesis were isolated using degenerate primers designed for C. japonica CYP719 from cultured Eschscholzia californica cells. Heterologous expression in Saccharomyces cerevisiae showed that both CYP719A2 and CYP719A3 had stylopine synthase activity to catalyze methylenedioxy bridge-formation from cheilanthifoline to stylopine, but not cheilanthifoline synthase activity to convert scoulerine to cheilanthifoline. Functional differences and expression patterns of CYP719A2 and CYP719A3 were examined to investigate their physiological roles in stylopine biosynthesis. Enzymatic analysis showed that CYP719A2 had high substrate affinity only toward (R,S)-cheilanthifoline, whereas CYP719A3 had high affinity toward three similar substrates (R,S)-cheilanthifoline, (S)-scoulerine, and (S)-tetrahydrocolumbamine. An expression analysis in E. californica plant tissues showed that CYP719A2 and CYP719A3 exhibited expression patterns similar to those of three stylopine biosynthetic genes (CYP80B1, berberine bridge enzyme, and S-adenosyl-l-methionine : 3'-hydroxy-N-methylcoclaurine 4'-O-methyltransferase), whereas the specific expression of CYP719A3 in root was notable. Treatment of E. californica seedlings with methyl jasmonate resulted in the coordinated induction of CYP719A2 and CYP719A3 genes. The physiological roles of CYP719A2 and CYP719A3 in stylopine biosynthesis are discussed.  相似文献   

20.
Two cytochrome P450 (P450) cDNAs involved in the biosynthesis of berberine, an antimicrobial benzylisoquinoline alkaloid, were isolated from cultured Coptis japonica cells and characterized. A sequence analysis showed that one C. japonica P450 (designated CYP719) belonged to a novel P450 family. Further, heterologous expression in yeast confirmed that it had the same activity as a methylenedioxy bridge-forming enzyme (canadine synthase), which catalyzes the conversion of (S)-tetrahydrocolumbamine ((S)-THC) to (S)-tetrahydroberberine ((S)-THB, (S)-canadine). The other P450 (designated CYP80B2) showed high homology to California poppy (S)-N-methylcoclaurine-3'-hydroxylase (CYP80B1), which converts (S)-N-methylcoclaurine to (S)-3'-hydroxy-N-methylcoclaurine. Recombinant CYP719 showed typical P450 properties as well as high substrate affinity and specificity for (S)-THC. (S)Scoulerine was not a substrate of CYP719, indicating that some other P450, e.g. (S)-cheilanthifoline synthase, is needed in (S)-stylopine biosynthesis. All of the berberine biosynthetic genes, including CYP719 and CYP80B2, were highly expressed in selected cultured C. japonica cells and moderately expressed in root, which suggests coordinated regulation of the expression of biosynthetic genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号