首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Rates of oxygen uptake, growth and alkaloid production by hairy roots in submerged culture were investigated using a recirculation reactor allowing operation at high liquid velocities for removal of hydrodynamic boundary layers. Measurements were performed at dissolved oxygen tensions of 31-450% air saturation. Critical oxygen concentrations for Atropa belladonna hairy roots were above air saturation, viz. 100-125% air saturation for oxygen uptake and 150% air saturation for growth, demonstrating that these roots cultivated in reactors with air sparging are oxygen-limited. The critical oxygen tension for oxygen uptake by Solanum aviculare hairy roots was 75% air saturation. Both the specific oxygen uptake rate and specific growth rate of A. belladonna hairy roots were dependent on the mass (g dry weight) of roots present; even in the absence of boundary layers, growth did not remain exponential over the entire culture period. Cryo-scanning electron microscopy showed that hairy roots grown submerged in liquid medium were covered with thick layers of hydrated mucilage and root hairs, representing a significant additional barrier to oxygen transfer. Roots protruding out of the liquid medium showed no evidence of mucilage accumulation. The specific oxygen demand of A. belladonna root tips was 3.3-11.5 times higher than for the remainder of the roots, the ratio increasing as the dissolved oxygen tension was reduced. Specific growth rates, biomass yields from sugar, and atropine levels were maximum at around 150% air saturation, but decreased significantly with oxygen concentrations above ca. 200%.  相似文献   

2.
The effect of root hairiness on fluid flow and oxygen transfer in hairy root cultures was investigated using wild-type, transgenic and root-hair mutants of Arabidopsis thaliana. The root hair morphologies of the A. thaliana lines were hairless, short hairs, moderately hairy (wild-type) and excessively hairy, and these morphologies were maintained after transformation of seedlings with Agrobacterium rhizogenes. Filtration experiments were used to determine the permeability of packed beds of roots; permeability declined significantly with increasing root hairiness as well as with increasing biomass density. Hairy roots of wild-type A. thaliana grew fastest with a doubling time of 6.9 days, but the hairless roots exhibited the highest specific oxygen uptake rate. In experiments using a gradientless packed bed reactor with medium recirculation, the liquid velocity required to eliminate external mass transfer boundary layer effects increased with increasing root hairiness, reflecting the greater tendency towards liquid stagnation near the surface of roots covered with hairs. External critical oxygen tensions also increased with increasing root hairiness, ranging from 50% air saturation for hairless roots to ca. 150% air saturation for roots with excessive root hairs. These results are consistent with root hairs providing a significant additional resistance to oxygen transfer to the roots, indicating that very hairy roots are more likely than hairless roots to become oxygen-limited in culture. This investigation demonstrates that root hairiness is an important biological parameter affecting the performance of root cultures and suggests that control over root hair formation, either by use of genetically modified plant lines or manipulation of culture conditions, is desirable in large-scale hairy root systems.  相似文献   

3.
Overexpression of Arabidopsis thaliana genes for the fermentation enzymes, alcohol dehydrogenase and pyruvate decarboxylase, improved the tolerance of A. thaliana hairy roots to low oxygen conditions. Whereas the specific growth rate of untransformed hairy roots in shake flasks and in a multiple-tube recirculation bioreactor declined significantly with decreasing oxygen tension down to 25% air saturation, growth of the transformant root lines was maintained at rates similar to those achieved with full aeration. This work demonstrates that altering the expression of selected genes involved in anaerobic metabolism can alleviate the problems of oxygen deficiency in hairy root cultures caused by poor mixing and mass transfer conditions.  相似文献   

4.
Genetically transformed shooty teratomas of Atropa belladonna and a Duboisia leichhardtii x D. myoporoides hybrid were studied for biotransformation of tropane alkaloids in shake flasks and bioreactors. Although de novo synthesis of hyoscyamine and scopolamine was limited, shoots of both species were able to translocate and accumulate significant quantities of exogenous alkaloid. The maximum yield of scopolamine from hyoscyamine fed to the Duboisia hybrid shoots was 35% w/w; the yield of the scopolamine precursor, 6beta-hydroxyhyoscyamine, was 37% w/w. Biotransformation activity was poor in A. belladonna shooty teratomas provided with exogenous hyoscyamine; however, scopolamine levels comparable with those in leaves of the whole plant accumulated in shoots fed with hairy root extract. Coculture of A. belladonna shooty teratomas and hairy roots in the same hormone-free medium was investigated as a means of providing a continuous source of hyoscyamine for conversion to scopolamine. Of the biotransformation systems tested with A. belladonna, coculture produced the highest levels of scopolamine and the highest scopolamine: hyoscyamine ratios. Cocultured shoots accumulated up to 0.84 mg g(-1) dry weight scopolamine, or 3-11 times the average concentrations found in leaves of the whole plant. The scopolamine: hyoscyamine ratio in coculture ranged from 0.07 to 1.9, a significant improvement over levels of 0-0.03 normally found in A. belladonna hairy roots. Addition of Pluronic F-68 or copper sulfate to the medium and variation in initial medium pH did not improve hyoscyamine release from hairy roots. Scopolamine levels were increased using 1 muM copper sulfate or initial medium pH between 6.0 and 8.0; however, results from elicitation of hairy roots could not match the beneficial effect on scopolamine synthesis of root-shoot coculture. Addition of 0.001-1.0% (w/v) Pluronic F-68 to the roots reduced hyoscyamine release but postponed necrosis in the root tissue for up to 60 d. (c) 1996 John Wiley & Sons, Inc.  相似文献   

5.
The effect of medium dissolved-oxygen tension on the molar growth yield, respiration and cytochrome content of Beneckea natriegens in chemostat culture (D 0-37 H-1) was examined. The molar growth yield (Y), the specific rate of oxygen (qo2) and glucose consumption, and the specific rate of carbon dioxide evolution were independent of the dissolved-oxygen tension above a critical value (greatest than 2 mmHg). However, the potential respiration rate increased with reduction in the dissolved-oxygen tension at values of the dissolved-oxygen tension well above the critical value. Changes in the cytochrome content occurred at dissolved-oxygen tensions well above the critical value. An increase in cytochrome c relative to cytochrome b was observed as the dissolved-oxygen tension was decreased. Reduction of the dissolved-oxygen tension to less than I mmHg caused a switch to fermentative metabolism shown by the apparent rise in YO2 and decrease in the molar growth yield from glucose. At this point the potential respiration rate (qO2) increased to its highest value, while the cytochrome pattern reverted to that observed at dissolved-oxygen tensions above 96 mmHg. There appeared to be no correlation between cytochrome content, potential qO2, in situ qO2, and cyanide sensitivity of the organism at various dissolved-oxygen tensions.  相似文献   

6.
Aspergillus niger was grown in a 7-L chemostat at biomass levels of 7 to 9 gL(-1); dilution rates of 0.03, 0.05, 0.075, and 0.009 h(-1); and dissolved oxygen tensions of 7%, 12%, and 40% of air saturation. Broth rheological measurements were made on-line, while off-line image analysis was used to measure mycelial morphology, including characterization of mycelial aggregates (clumps). Under all conditions, more than 87% of the hyphase were in clumps, the shape of which determined the rheological characteristics of the broth. In particular, the power law consistency index could be correlated with the biomass concentration and the roughness factor of the clumps, which describes their hairiness. A decrease in specific growth rate decreased roughness, possibly due to changes in the amount of clump breakup. However, decreases of roughness with increasing dissolved oxygen tension might rather imply some effect on hyphal-hyphal interactions within the clumps. (c) 1993 John Wiley & Sons, Inc.  相似文献   

7.
This study demonstrates the effects of oxygen limitations on growth of Atropa belladonna hairy roots in 250-mL shake flasks. Exponential growth was observed only for the first 6-8 d culture; after this time, growth continued with declining specific rate. Increasing the shaking speed and decreasing the medium volume improved biomass production and, to some extent, the specific growth rate of the roots. Direct enhancement of oxygen delivery, either by periodic exposure of the roots to air or oxygen enrichment of the atmosphere, also increased growth rates and/or final biomass levels. These results show that oxygen limitations are likely to affect biomass production and kinetic measurements in shake flask cultures of hairy roots. (c) 1997 Wiley & Sons, Inc. Biotechnol Bioeng 55: 520-526, 1997.  相似文献   

8.
The tropane alkaloid scopolamine is synthesized in the pericycle of branch roots in certain species of the Solanaceae. The enzyme responsible for the synthesis of scopolamine from hyoscyamine is hyoscyamine 6 beta-hydroxylase (H6H). The gene for H6H was isolated from Hyoscyamus niger. It has an exon/intron organization very similar to those for ethylene-forming enzymes, suggesting a common evolutionary origin. The 827-bp 5' flanking region of the H6H gene was fused to the beta-glucuronidase (GUS) reporter gene and transferred to three solanaceous species by Agrobacterium-mediated transformation systems: H. niger and belladonna (Atropa belladonna), which have high and low levels, respectively, of H6H mRNA in the root, and tobacco (Nicotiana tabacum), which has no endogenous H6H gene. Histochemical analysis showed that GUS expression occurred in the pericycle and at the root meristem of transgenic H. niger hairy roots, but only at the root meristem of transgenic H. niger hairy roots, but only at the root meristem of hairy roots and plants of transgenic tobacco. In transgenic hairy roots and regenerated plants of belladonna, the root meristem was stained with GUS activity, except for a few transformants in which the vascular cylinder was also stained. These studies indicate that the cell-specific expression of the H6H gene is controlled by some genetic regulation specific to scopolamine-producing plants.  相似文献   

9.
Summary The formation and subsequent growth of roots by cuttings of poinsettia, hydrangea, rose and azalea in various propagation media, Jiffy-7, Jiffy-9 and Grodan under different conditions of aeration was investigated. The interrelationships of the effects of air content of the media, temperature and light intensity on the rooting of poinsettia cuttings was also studied.With low air contents (0 cm moisture tension) in the propagation media the formation and growth of roots was strongly inhibited. The rooting performance of rose appeared to be less affected by the poor aeration. Increasing air content improved rooting but best results were obtained at moisture tensions of 4 to 8 cm. Rooting seems to be better correlated with oxygen diffusion rate (ODR) than with air content.For poinsettia cuttings the optimum temperature for rooting was 24 to 28°C. At low temperatures rooting was delayed while at higher temperatures it was almost completely inhibited. Callus formation increased with temperature but decreased with increasing moisture tension. Conditions which induced large callus formation inhibited root formation.High light intensity during rooting reduced overall rooting performance and the inhibition was most pronounced in conjunction with high moisture tensions.Report No. 255.  相似文献   

10.
The AbH6H gene for hyoscyamine 6-hydroxylase (H6H), which converts hyoscyamine to scopolamine, was isolated from Atropa belladonna. This plant also possesses a related sequence, AbH6H, which appears to be a non-functional pseudo-gene. AbH6H RNA was detected in cultured root, native root and anther, but not in stem, leaf, pistil, petal, and sepal tissues. In situ hybridization, immunohistochemistry and promoter::GUS transgene analysis showed that AbH6H is expressed specifically in root pericycle cells, and in tapetum and pollen mother cells. A 671 bp 5-upstream region from AbH6H was sufficient for pericycle-specific expression in hairy roots of A. belladonna and Hyoscyamus niger, which both produce scopolamine, but cell-specific regulation was severely compromised in tobacco hairy roots, which do not produce scopolamine.  相似文献   

11.
Various strategies aimed at improving IgG(1) antibody accumulation in transgenic tobacco cell and organ cultures were tested. The form of tissue had a significant effect on antibody levels; shooty teratomas were less productive than hairy roots or suspended cells. Although there were several disadvantages associated with hairy roots compared with suspensions, such as slower growth, slower antibody production, and formation of a greater number of antibody fragments, the roots exhibited superior long-term culture stability. Antibody accumulation in hairy root cultures was improved by increasing the dissolved oxygen tension to 150% air saturation, indicating the need for effective oxygen transfer in root reactors used for antibody production. Preventing N-linked glycosylation using tunicamycin or inhibition of subsequent glycan processing by castanospermine reduced antibody accumulation in the biomass and/or medium in cell suspensions. Loss of antibody from the cultures after its secretion and release into the medium was identified as a major problem. This effect was minimized by inhibiting protein transport in the secretory pathway using Brefeldin A, resulting in antibody accumulation levels up to 2.7 times those in untreated cells. Strategies for protecting secreted antibody, such as addition of poly(vinylpyrrolidone) and periodic harvesting from the medium using hydroxyapatite resin, also increased antibody titers. The mechanisms responsible for the disappearance of antibody from plant culture media were not clearly identified; degradation by proteases and conformational modification of the antibody, such as formation of aggregates, provided an explanation for some but not all the phenomena observed. This work demonstrates that the manipulation and control of culture conditions and metabolic processes in plant tissue cultures can be used to improve the production of foreign proteins. However, loss of secreted antibody from plant culture medium is a significant problem that may limit the feasibility of using product recovery from the medium to reduce downstream processing costs relative to agricultural systems.  相似文献   

12.
Oxygen modulates the growth of skin fibroblasts   总被引:4,自引:0,他引:4  
Elevated oxygen tensions are inhibitory to the growth of skin fibroblasts. Skin fibroblasts grow better at oxygen tensions below 137 mm Hg regardless of seeding density. A wide range of oxygen tensions, including those in the physiological range, strongly modulate the growth of human skin fibroblasts. There were no significant differences between the responses of fetal and postnatal cell lines to changes in ambient oxygen tension. In all cases, higher oxygen tensions significantly impeded cell growth. Seeding cells at 10(4) cells/cm(2) afforded some protection from the deleterious effects of hyperoxia. Oxygen tensions exceeding the amount present in ambient room air also impeded cell growth at this higher seeding density, but the effect did not become significant until the oxygen partial pressure reached 241 mm Hg. At lower oxygen tensions, cells seeded at 10(3) cells/cm(2) grew more rapidly than did cells seeded at 10(4) cells/cm(2). These findings may have implications for the treatment of poorly healing wounds with hyperbaric oxygen.  相似文献   

13.
Summary The air content in three types of propagation media, Jiffy-7 and Jiffy-9 which are Sphagnum peat and Grodan which is rockwool, were investigated when they were held at moisture tensions of 0,6 and 12 cm measured from the base of the media. At 0 cm tension the air content (vol. %) was highest in Jiffy-9 and lowest in Jiffy-7. At 12 cm tension the air content was higher in Grodan than in Jiffy-9 and Jiffy-7. Oxygen diffusion coefficients (ODC) and oxygen diffusion rates (ODR) were measured at the different air contents. At air contents below 20 vol. % ODC was about the same for Jiffy-9 and Grodan but at air contents above 20 vol.% it was larger for Jiffy-9 than for Grodan. The oxygen diffusion rate was measured at 0, 4 and 8 cm moisture tension. At all tensions it was approximately 20% higher in Jiffy-9 than in Grodan and Jiffy-7. The ODR in Jiffy-7 and Grodan were affected equally at the same tension, although Grodan contained more air. Report no 253  相似文献   

14.
Atropa belladonna leaf disks were infected by a wild strain Agrobacterium rhizogenes 15834 harboring the Ri-TL-DNA and by a disarmed Agrobacterium tumefaciens strain harboring a construction with only rol ABC and npt II genes. Thirteen root lines were established and examined for their growth rate and alkaloid productivity to evaluate the possible role of rol genes in morphological differentiation and in tropane alkaloid formation. A great diversity has been observed in the growth rate of these 13 root lines. The root biomass increased up to 75 times. The total alkaloid contents were similar in the root lines obtained by infection with A. rhizogenes 15834 and A. tumefaciens rol ABC. The last ones accumulated between 4 (1.1 mg g(-1) DW) and 27 (8 mg g(-1) DW) times more alkaloids than the intact roots (0.3 mg g(-1) DW). This work has shown that the rol ABC genes were sufficient to increase tropane alkaloid production in A. belladonna hairy root cultures.  相似文献   

15.
Hairy roots obtained by transformation via Agrobacterium rhizogenes provide an artificial plant material devoid of aerial parts with high growth on hormone-free media. Fundamental knowledge of hairy root physiology is essential to develop and control its culture. In contrast to shake-flask cultures, a bioreactor set-up combined with on-line data logging provides an efficient tool to study rapid physiological variations in hairy root cultures. Datura innoxia hairy roots were grown in a bioreactor equipped with on-line data analyses of pH, dissolved oxygen (pO2), conductivity, oxygen, and carbon dioxide. The experiments were done at a constant temperature and in the absence of light cues. The results obtained showed that the carbon dioxide evolution rate (CER) presented regular oscillations during the culture. Similar oscillations were also observed for the oxygen uptake rate (OUR). These signals were treated mathematically to look for the existence of a rhythm. An autocorrelation function was used to detect any periodic components. The results demonstrate that hairy root respiration exhibited peaks of 1 day. These oscillations, having a period of about 24 h, were also observed in pH and conductivity signals, although not for the pO2 signal. The data acquired in the absence of hairy roots showed that the observed periodic behavior was not an artifact. No effect on rhythms was observed by the imposition of an external "day/night" cycle. The fact that oscillations persisted in the absence of external stimuli, with a free-running period of 24 h, suggests that a circadian rhythm exists in hairy roots of D. innoxia.  相似文献   

16.
In Atropa belladonna hairy roots, exogeneously added salicylic acid (SA) is converted to methyl salicylate (MSA) through the reaction, which might be catalysed by S-adenosyl-L-methionine: salicylic acid carboxyl methyltransferase (SAMT). Here we cloned a cDNA for A. belladonna SAMT (AbSAMT1), which consisted of 357 aa residues. It was expressed in E. coli, and the recombinant AbSAMT1 showed SAMT activity. When A. belladonna hairy roots were exposed to a high concentration of SA, AbSAMT1 mRNA begins to be expressed 12 h after the exposure, and steady expression continued over 144 h.  相似文献   

17.
Hairy roots were used to investigate nickel uptake by the hyperaccumulator species, Alyssum bertolonii, A. tenium, and A. troodii. The Ni biosorption capacity of A. tenium hairy roots was lower than for other types of biomass such as bacteria and algae; in short-term (9-h) equilibrium studies, the highest Ni content measured in the roots was 17 500 microg g(-1) dry weight at a liquid concentration of about 4000 ppm. Using long-term hairy root cultures, it was demonstrated that Ni tolerance and hyperaccumulation do not necessarily depend on the presence of shoots or root-shoot translocation. A. bertolonii hairy roots remained healthy in appearance and continued to grow in the presence of 20-100 ppm Ni, accumulating up to 7200 microg g(-1) dry weight Ni. In contrast, hairy roots of Nicotiana tabacum turned dark brown at 20 ppm Ni and growth was negligible. The ability to grow at high external Ni concentrations allowed hyperaccumulator hairy roots to remove much greater amounts of heavy metals from the culture liquid than nonhyperaccumulator hairy roots, even though biomass Ni concentrations were similar. Although hairy roots proved to be a useful tool for investigating Ni hyperaccumulation, there were significant differences in the Ni uptake capacity of hairy roots and whole plants. Regenerated plants of A. tenium were much more tolerant of Ni and capable of accumulating higher Ni concentrations than hairy roots of this species.  相似文献   

18.
The growth, the alkaloid production, as well as the scopolamine/hyoscyamine ratio of two clones of belladonna hairy roots were studied. The effects of nitrate and ammonium concentrations on these cultures were investigated. A rise in ammonium concentration caused the decline of the hairy roots, while nitrate had a marked effect on the alkaloid content. The alkaloid production obtained with 15.8 mM of NO3- and 20.5 mM of NH4+ was 1.2-1.4 times higher than that obtained when the roots were grown in the standard Murashige and Skoog medium (MS medium, 39.5 mM of NO3- and 20.5 mM of NH4+). The nitrate and ammonium concentrations in the culture medium also had a strong influence on the scopolamine/hyoscyamine ratio. When nitrate or ammonium concentrations were raised, that ratio also was increased 2-3-fold. The hairy root clones originating from transformations with two distinct strains of Agrobacterium had similar responses.  相似文献   

19.
Previously, increased partitioning of the natural product nicotine from tobacco hairy roots into the culture media was achieved by altering the expression of the nicotine uptake permease gene. The present study demonstrated that further increases in nicotine yield in the media were attained by using surfactant-stabilized microbubbles. Compared to other non-ionic surfactants (Tween 20 and Tween 80) and the ionic surfactant SDS, Triton X-100 (TX100) both increased total nicotine production and exudation into the hairy root culture media. In comparison to surfactant-free medium, TX100 at 10, 25, and 50 mg l?1 did not show strong inhibition of hairy root growth. At 4,000 rpm shear speed, microbubbles stabilized by 10, 25, and 50 mg l?1 TX100 had k L a of 22.3, 36.2, and 44.1 h?1 in Gamborg’s B5 medium, respectively, in comparison to 16.4 h?1 with conventional air sparging. In a 1-l bioreactor, microbubbles stabilized by TX100 were applied to hairy roots after the inoculated root tips were self-immobilized by branching. With microbubble dispersion, dissolved oxygen rapidly increased from 60 to 85 %, and hairy root growth rate increased. Nicotine accumulation in culture medium with microbubbles reached 146 mg l?1 after 30 days cultivation. These results show that combining genetic modification with surfactant-stabilized microbubble dispersion can substantially increase levels of nicotine in the media of hairy root cultures.  相似文献   

20.
The bacterial copolyester poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) was produced with Alcaligenes eutrophus DSM 545 from glucose and sodium propionate in a fed-batch fermentation with both nitrogen limitation and low dissolved-oxygen concentrations. When the dissolved-oxygen content was kept between 1 and 4% of air saturation during the polymer accumulation phase, the yield of 3-hydroxybutyrate (3HB) monomer from glucose was not affected, but the propionate-to-3-hydroxyvalerate (3HV) monomer yield was two to three times (0.48 to 0.73 mol of 3HV mol of propionate consumed(sup-1)) that observed in a control experiment (0.25 mol mol(sup-1)), where the accumulation-phase dissolved-oxygen concentration was 50 to 70% of air saturation. The overall polymer productivity of the fermentation was somewhat decreased by low dissolved-oxygen contents, owing to a slower 3HB production rate. The effect of a low dissolved-oxygen concentration is probably attributable to a reduction of the oxygen-requiring decarbonylation of propionyl-coenzyme A (CoA) to acetyl-CoA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号