首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The presence of cholesterol or phosphatidylethanolamine in sphingomyelin liposomes enhanced 2- to 10-fold the breakdown of sphingomyelin by sphingomyelinase from Bacillus cereus. On the other hand, the presence of phosphatidylcholine was either without effect or slightly stimulative at a higher molar ratio of phosphatidylcholine to sphingomyelin (3/1). In the bovine erythrocytes and their ghosts, the increase by 40-50% or the decrease by 10-23% in membranous cholesterol brought about acceleration or deceleration of enzymatic degradation of sphingomyelin by 50 or 40-50%, respectively. The depletion of ATP (less than 0.9 mg ATP/100 ml packed erythrocytes) enhanced K+ leakage from, and hot hemolysis (lysis without cold shock) of, bovine erythrocytes but decelerated the breakdown of sphingomyelin and hot-cold hemolysis (lysis induced by ice-cold shock to sphingomyelinase-treated erythrocytes), either in the presence of 1 mM MgCl2 alone or in the presence of 1 mM MgCl2 and 1 mM CaCl2. Also, ATP depletion enhanced the adsorption of sphingomyelinase onto bovine erythrocyte membranes in the presence of 1 mM CaCl2 up to 81% of total activity, without appreciable K+ leakage and hot or hot-cold hemolysis. These results suggest that the presence of cholesterol or phosphatidylethanolamine in biomembranes makes the membranes more susceptible to the attack of sphingomyelinase from B. cereus and that the segregation of lipids and proteins in the erythrocyte membranes by ATP depletion causes the deceleration of sphingomyelin hydrolysis despite the enhanced enzyme adsorption onto the erythrocyte membranes.  相似文献   

2.
The effects of membranotropic substances--nonionic detergent Tween-20 and EDTA--on the activity and some properties of Na,K-ATPase from mammalian erythrocytes were studied. It was shown that pretreatment of whole erythrocytes with Tween-20 (5 mg/ml) allows a detection of the enzyme activity, which cannot be detected in intact cells. It was also found that erythrocyte ghosts with a high and stable activity of Na,K-ATPase can be obtained by injections of EDTA (1-2 mM) into the hemolysis medium. Although the enzyme activity in whole erythrocytes and their ghosts was detected by the use of various membranotropic agents, the type of the dependence of the Na,K-ATPase activity on MgCl2 and EDTA concentration in the incubation medium was essentially the same for both cell preparations, the optimal concentrations of MgCl2 and EDTA being 3 and 1 mM, respectively. A rise in MgCl2 concentration above 3 mM caused a decrease of the enzymatic activity. Simple techniques have been developed for the detection of the Na,K-ATPase activity in mammalian erythrocytes which allow the determination of a higher enzymatic activity than those described in literature.  相似文献   

3.
Adverse drug reactions (ADR), especially intravenous hemolysis, have largely limited the application of puerarin injections in clinics. This study investigated the underlying mechanisms of puerarin-induced hemolysis. Our results show that puerarin induced concentration-dependent and time-dependent hemolysis when human erythrocytes were incubated in saline solution with more than 2 mM puerarin for over 2 h. However, incubation in PBS or addition of 1 mM of lidocaine to the saline solution completely abolished the hemolysis. Providing materials that could start ATP synthesis did not reverse the hemolysis, and puerarin did not affect Na+–K+–ATPase activity. In addition, puerarin (0.1–2 mM) did not cause calcium influx or exhibited pro-oxidant activity in erythrocytes. Puerarin exhibited different influences on the membrane microviscosity of erythrocytes in saline and PBS. Moreover, 1 mM lidocaine inhibited 8 mM puerarin-induced reduction of membrane microviscosity in saline solution. SDS–PAGE analysis of membrane proteins revealed that 2 mM puerarin treatment induced the appearance of several new protein bands but attenuated the expression of protein bands 2.1, 3, 4.1, 4.2 and 5. These results suggest that high concentrations of puerarin-induced hemolysis were associated with the changes of membrane lipids and of the composition of erythrocytes membrane proteins but not with ATP depletion, pro-oxidation and calcium influx. These changes could be related to the intercalation of amphiphilic puerarin at high concentration into the erythrocyte membrane in certain media, resulting in membrane disorganization and, eventually, cytolysis. Hence, in clinics, determining the optimal dose of puerarin is critical to avoid overdosing and ADR.  相似文献   

4.
Brown spider venom phospholipase-D belongs to a family of toxins characterized as potent bioactive agents. These toxins have been involved in numerous aspects of cell pathophysiology including inflammatory response, platelet aggregation, endothelial cell hyperactivation, renal disorders, and hemolysis. The molecular mechanism by which these toxins cause hemolysis is under investigation; literature data have suggested that enzyme catalysis is necessary for the biological activities triggered by the toxin. However, the way by which phospholipase-D activity is directly related with human hemolysis has not been determined. To evaluate how brown spider venom phospholipase-D activity causes hemolysis, we examined the impact of recombinant phospholipase-D on human red blood cells. Using six different purified recombinant phospholipase-D molecules obtained from a cDNA venom gland library, we demonstrated that there is a correlation of hemolytic effect and phospholipase-D activity. Studying recombinant phospholipase-D, a potent hemolytic and phospholipase-D recombinant toxin (LiRecDT1), we determined that the toxin degrades synthetic sphingomyelin (SM), lysophosphatidylcholine (LPC), and lyso-platelet-activating factor. Additionally, we determined that the toxin degrades phospholipids in a detergent extract of human erythrocytes, as well as phospholipids from ghosts of human red blood cells. The products of the degradation of synthetic SM and LPC following recombinant phospholipase-D treatments caused hemolysis of human erythrocytes. This hemolysis, dependent on products of metabolism of phospholipids, is also dependent on calcium ion concentration because the percentage of hemolysis increased with an increase in the dose of calcium in the medium. Recombinant phospholipase-D treatment of human erythrocytes stimulated an influx of calcium into the cells that was detected by a calcium-sensitive fluorescent probe (Fluo-4). This calcium influx was shown to be channel-mediated rather than leak-promoted because the influx was inhibited by L-type calcium channel inhibitors but not by a T-type calcium channel blocker, sodium channel inhibitor or a specific inhibitor of calcium activated potassium channels. Finally, this inhibition of hemolysis following recombinant phospholipase-D treatment occurred in a concentration-dependent manner in the presence of L-type calcium channel blockers such as nifedipine and verapamil. The data provided herein, suggest that the brown spider venom phospholipase-D-induced hemolysis of human erythrocytes is dependent on the metabolism of membrane phospholipids, such as SM and LPC, generating bioactive products that stimulate a calcium influx into red blood cells mediated by the L-type channel.  相似文献   

5.
Effects of metal ions on sphingomyelinase activity of Bacillus cereus   总被引:5,自引:0,他引:5  
Some divalent metal ions were examined for their effects on sphingomyelinase activity of Bacillus cereus. The enzyme activity toward mixed micelles of sphingomyelin and Triton X-100 proved to be stimulated by Co2+ and Mn2+, as well as by Mg2+. Km's for Co2+ and Mn2+ were 7.4 and 1.7 microM, respectively, being smaller than the Km for Mg2+ (38 microM). Sr2+ proved to be a competitive inhibitor against Mg2+, with a Ki value of 1 mM. Zn2+ completely abolished the enzyme activity at concentrations above 0.5 mM. The concentration of Zn2+ causing 50% inhibition of the enzyme activity was 2.5 microM. Inhibition by Zn2+ was not restored by increasing concentrations of Mg2+ when the concentration of Zn2+ was above 10 microM. Ba2+ was without effect. When sphingomyelinase was incubated with unsealed ghosts of bovine erythrocytes at 37 degrees C, the enzyme was significantly adsorbed onto the membrane in the presence of Mn2+, Co2+, Sr2+ or Ba2+. Incubation with intact or Pronase-treated erythrocytes caused enzyme adsorption only in the presence of Mn2+. In the course of incubation, the enzyme was first adsorbed on the membranes of intact bovine erythrocytes in the presence of Mn2+; then sphingomyelin breakdown proceeded with ensuing desorption of adsorbed enzyme. Hot-cold hemolysis occurred in parallel with sphingomyelin breakdown. In this case, the hydrolysis of membranous sphingomyelin as well as the initial enzyme adsorption took place in the following order: unsealed ghosts greater than Pronase-treated erythrocytes greater than intact erythrocytes.  相似文献   

6.
Myelin basic protein (MBP) dissociated from brain myelin membranes when they were incubated (37 degrees C; pH 7.4) at physiological ionic strength. Zinc ions inhibited, and calcium promoted, this process. Protease activity in the membrane preparations cleaved the dissociated MBP into both small (less than 4 kilodaltons) and large (greater than 8 kilodaltons) fragments. The latter were detected, together with intact MBP, by gel electrophoresis of incubation media. Zinc ions appeared to act in two distinct processes. In the presence or absence of added CaCl2, zinc ions in the range 0.1-1 mM inhibited MBP-membrane dissociation. This process was relatively insensitive to heat and Zn2+ could be substituted by either copper (II) or cobalt (II) ions. A second effect was evident only in the presence of added calcium ions, when lower concentrations of Zn2+ (less than 0.1 mM) inhibited MBP-membrane dissociation and the accumulation of intact MBP in incubation media. This process was heat sensitive and only copper (II), but not cobalt (II), ions could replace Zn2+. To determine whether endogenous zinc in myelin membranes is bound to MBP, preparations were solubilised in buffers containing Triton X-100/2 mM CaCl2 and subjected to gel filtration. Endogenous zinc, as indicated by a dithizone-binding method, eluted with fractions containing both MBP and proteolipid protein (PLP). Thus, one means whereby zinc stabilises association of MBP with brain myelin membranes may be by promoting its binding to PLP.  相似文献   

7.
Sphingomyelinase of Bacillus cereus proved to be specifically adsorbed onto mammalian erythrocyte membranes in the presence of either Ca2+ or Ca2+ plus Mg2+ in the order of sphingomyelin content; i.e., sheep, bovine greater than porcine greater than rat erythrocytes. No appreciable adsorption was observed in the presence of Mg2+ alone nor in the absence of divalent metal ions. The enzyme adsorption onto bovine erythrocytes was dependent upon the incubation temperature. By shifting the temperature from 37 to 0 degrees C, sphingomyelinase once adsorbed onto the surface of bovine erythrocytes was released into the supernatant. Ca2+ proved to be an essential factor for the enzyme adsorption: The addition of 1 mM Ca2+ enhanced the adsorptive process, but inhibited sphingomyelin hydrolysis and hot or hot-cold hemolysis of erythrocytes, while the addition of 1 mM Ca2+ plus 1 mM Mg2+ enhanced sphingomyelin breakdown and hemolysis as well as the enzyme adsorption. However, when the amount of sphingomyelin fell off to 0.2-0.7 nmol/ml or less by the action of sphingomyelinase, the enzyme once adsorbed was completely released from the surface of erythrocytes. The result indicates that the major binding site for sphingomyelinase is sphingomyelin. In the presence of 1 mM Mg2+ alone, the enzymatic hydrolysis of sphingomyelin and hemolysis proceeded whereas the enzyme adsorption was not encountered during 60 min incubation at 37 degrees C. The change in the molar ratio of Ca2+ to Mg2+ affected the enzyme adsorption and sphingomyelin breakdown; the higher Ca2+ enhanced the adsorption whereas the higher Mg2+ stimulated sphingomyelin hydrolysis.  相似文献   

8.
A good conformity if demonstrated of the kinetics of calcium ions effect on ATPase activity of human and rat erythrocyte ghosts. The increase of calcium concentration in the rat errythrocytes hemolysis medium (above 50-100 micrometer) results in a considerable aggregation of reconstructed vesicles. An activation of ouabaine-sensitive component of Mg2+-dependent ATPase under the increase of intracellular Ca2+ in reconstructed human erythrocytes is observed.  相似文献   

9.
The ATPase activities were studied in rat erythrocytes permeabilized with saponin. The concentrations of calcium and magnesium ions were varied within the range of 0.1-60 microM and 50-370 microM, respectively, by using EGTA-citrate buffer. The maximal activity of Ca2(+)-ATPase of permeabilized erythrocytes was by one order of magnitude higher, whereas the Ca2(+)-binding affinity was 1.5-2 times higher than that in erythrocyte ghosts washed an isotonic solution containing EGTA. Addition of the hemolysate restored the kinetic parameters of ghost Ca2(+)-ATPase practically completely, whereas in the presence of exogenous calmodulin only part of Ca2(+)-ATPase activity was recovered. Neither calmodulin nor R24571, a highly potent specific inhibitor of calmodulin-dependent reactions, influenced the Ca2(+)-ATPase activity of permeabilized erythrocytes. At Ca2+ concentrations below 0.7 microM, ouabain (0.5-1 mM) activated whereas at higher Ca2+ concentrations it inhibited the Ca2(+)-ATPase activity. Taking this observation into account the Na+/K(+)-ATPase was determined as the difference of between the ATPase activities in the presence of Na+ and K+ and in the presence of K+ alone. At physiological concentration of Mg2+ (370 microM), the addition of 0.3-1 microM Ca2+ increased Na+/K(+)-ATPase activity by 1.5-3-fold. Higher concentrations of this cation inhibited the enzyme. At low Mg2+ concentration (e.g., 50 microM) only Na+/K(+)-ATPase inhibition by Ca2+ was seen. It was found that at [NaCl] less than 20 mM furosemide was increased ouabain-inhibited component of ATPase in Ca2(+)-free media. This activating effect of furosemide was enhanced with a diminution of [Na+] upto 2 mM and did not reach the saturation level unless the 2 mM of drug was used. The activating effect of furosemide on Na+/K(+)-ATPase activity confirmed by experiments in which the ouabain-inhibited component was measured by the 86Rb+ influx into intact erythrocytes.  相似文献   

10.
T F Shevchenko 《Biofizika》1976,21(2):321-323
Changes in the activity of calcium ions in the medium containing outer fragments suspension of bovine eye retina rods have been studied by the method of calcium-selective electrodes. Illumination of the suspension increases calcium ion activity in the incubation medium. Photoinduced yield of calcium ions depends on Ca+2 concentration: it equals 0.11+/-0.015 M Ca2+/1m rodopsin in the medium containing 0.1 mM CaCl2 and 0.046+/-0.002Ca2+/1M rodopsin in the medium containing 0.05 mM CaCl2. In the medium containing more than 10(-4) M CaCl2 both an increase and a decrease of Ca2+ ions have been observed.  相似文献   

11.
Human erythrocytes express cation channels which contribute to the background leak of Ca(2+), Na(+) and K(+). Excessive activation of these channels upon energy depletion, osmotic shock, Cl(-) depletion, or oxidative stress triggers suicidal death of erythrocytes (eryptosis), characterized by cell-shrinkage and exposure of phosphatidylserine at the cell surface. Eryptotic cells are supposed to be cleared from circulating blood. The present study aimed to identify the cation channels. RT-PCR revealed mRNA encoding the non-selective cation channel TRPC6 in erythroid progenitor cells. Western blotting indicated expression of TRPC6 protein in erythrocytes from man and wildtype mice but not from TRPC6(-/-) mice. According to flow-cytometry, Ca(2+) entry into human ghosts prepared by hemolysis in EGTA-buffered solution containing the Ca(2+) indicator Fluo3/AM was inhibited by the reducing agent dithiothreitol and the erythrocyte cation channel blockers ethylisopropylamiloride and amiloride. Loading of the ghosts with antibodies against TRPC6 or TRPC3/6/7 but neither with antibodies against TRPM2 or TRPC3 nor antibodies pre-adsorbed with the immunizing peptides inhibited ghost Ca(2+) entry. Moreover, free Ca(2+) concentration, cell-shrinkage, and phospholipid scrambling were significantly lower in Cl(-)-depleted TRPC6(-/-) erythrocytes than in wildtype mouse erythrocytes. In conclusion, human and mouse erythrocytes express TRPC6 cation channels which participate in cation leak and Ca(2+)-induced suicidal death.  相似文献   

12.
The effect of perfringolysin O on the lipid metabolism of human erythrocyte membranes was investigated. Erythrocytes were prelabeled with [3H]arachidonic acid and [32P]inorganic phosphate. In the presence of calcium ion(5.5 mM), the effect of perfringolysin O on lipid metabolism was very similar to that of an calcium-ionophore A23187. In the absence of calcium ion, the accumulation of phosphatidic acid and its following decreasing trend were observed during the reaction with the toxin. Such changes were not caused by filipin. These results suggest that perfringolysin O causes the activation of a diglyceride-phosphatidic acid cycle, which might be involved in the calcium transport.  相似文献   

13.
When human erythrocytes were preincubated at 37-52 degrees C under atmospheric pressure before exposure to a pressure of 200 MPa at 37 degrees C, the value of hemolysis was constant (about 43%) up to 45 degrees C but became minimal at 49 degrees C. The results from anti-spectrin antibody-entrapped red ghosts, spectrin-free vesicles, and N-(1-pyrenyl)iodoacetamide-labeled ghosts suggest that the denaturation of spectrin is associated with such behavior of hemolysis at 49 degrees C. The vesicles released at 200 MPa by 49 degrees C-preincubated erythrocytes were smaller than those released by the treatment at 49 degrees C or 200 MPa alone. The size of vesicles released at 200 MPa was independent of preincubation temperature up to 45 degrees C, and the vesicles released from 49 degrees C-preincubated erythrocytes became smaller with increasing pressure up to 200 MPa. Thus, hemolysis and vesiculation under high pressure are greatly affected by the conformation of spectrin before compression. Since spectrin remains intact up to 45 degrees C, the compression of erythrocytes at 200 MPa induces structural changes of spectrin followed by the release of large vesicles and hemolysis. On the other hand, in erythrocytes that are undergoing vesiculation due to spectrin denaturation at 49 degrees C, compression produces smaller vesicles, so that the hemolysis is suppressed.  相似文献   

14.
M Wasserman  N Zakal  A Loyter  R G Kulka 《Cell》1976,7(4):551-556
Improvements in the technique of ultramicroinjection of macromolecules into animal cells are described. The method is based on the Sendai virus-induced fusion of animal cells with erythrocyte ghosts containing trapped macromolecules. Fusion of hepatoma tissue culture (HTC) cells with ghosts prepared by hemolysis of erythrocytes in the presence of cytochrome C is much more efficient than fusion with ghosts prepared in the presence of bovine serum albumin (BSA) as in previous investigations. La+++ is more fficient in promoting fusion and less toxic to cells than Mn++, which was used previously. Thus in all subsequent experiments, erythrocytes were hemolyzed in the presence of cytochrome C plus other macromolecules to be trapped, and the resultant ghosts fused in the presence of La+++. The percentage of HTC cells which fused with ghosts reached 80% in many experiments. Ghosts containing 125I-BSA were used to measure the number of BSA molecules injected into HTC cells. About 10(6) BSA molecules were injected per fused cell. The overall efficiency of injection was low (about 0.02% of the starting material).  相似文献   

15.
Changes in intracellular free calcium content ([Ca2+]i) in human erythrocytes treated with the cryoprotective medium based on low toxic polymer--polyethylene glycol 1500 (PEG-1500) and then transferred to physiologic salt solution containing 2 mM CaCl2 were studied using fluorescent calcium probe--fura-2. A method of [Ca2+]i calculation with allowance for haemolysis of the cells during the experiment was proposed. It was shown that ignorance of the cell haemolysis resulted in significantly higher [Ca2+]i values obtained. Significant time-dependent increase of [Ca2+]i in the cells treated with PEG-1500 cryoprotective medium at +4 degrees C as well as at +22 degrees C (without freezing) and then transferred in the 2 mM CaCl2 containing physiological salt solution at +37 degrees C was observed. Freezing-thawing of the cells treated with the PEG-1500 cryoprotective medium enhanced haemolysis and further accumulation of calcium in the cells. The results of the study prove that the use of PEG-1500-based cryoprotective medium which does not require washing for human erythrocytes will be accompanied by progressive destruction (haemolysis) of the cells in the blood vessels and may have some negative consequences connected with [Ca2+]i increase in the cryopreserved erythrocytes.  相似文献   

16.
The temperature-dependence of water diffusion across human erythrocyte membrane was studied on isolated erythrocytes and resealed ghosts by a doping nuclear magnetic resonance technique. The conclusions are the following: (1) The storage of suspended erythrocytes at 2 degrees C up to 24 h or at 37 degrees C for 30 min did not change the water exchange time significantly, even if Mn2+ was present in the medium. This indicates that no significant penetration of Mn2+ is taking place under such conditions. (2) In case of cells previously incubated at 37 degrees C for longer than 30 min with concentrations of p-chloromercuribenzene sulfonate (PCMBS) greater than 0.5 mM, the water-exchange time gradually decreased if the cells were stored in the presence of Mn2+ for more than 10 min at 37 degrees C. (3) When the Arrhenius plot of the water-exchange time was calculated on the basis of measurements performed in such a way as to avoid a prolonged exposure of erythrocytes to Mn2+ no discontinuity occurred, regardless of the treatment with PCMBS. (4) No significant differences between erythrocytes and resealed ghosts regarding their permeability and the activation energy of water diffusion (Ea,d) were noticed. The mean value of Ea,d obtained on erythrocytes from 35 donors was 24.5 kJ/mol. (5) The value of Ea,d increased after treatment with PCMBS, in parallel with the percentage inhibition of water diffusion. A mean value of 41.3 kJ/mol was obtained for Ea,d of erythrocytes incubated with 1 mM PCMBS for 60 min at 37 degrees C and 28.3 kJ/mol for ghosts incubated with 0.1 mM PCMBS for 15 min, the values of inhibition being 46% and 21% respectively.  相似文献   

17.
The Ca2+ affinity of (Mg2+ + Ca2+)-ATPase in human red blood cells is regulated by a number of intracellular factors, including the association of the enzyme with the cytosolic Ca2+ binding protein, calmodulin. Ghosts prepared by hypotonic lysis in the presence of 0.1 mM CaCl2, or by a gradual stepwise hemolysis procedure, contain an EDTA-extractable protein whose effects are mimicked by calmodulin, whereas ghosts prepared by extensive washes in the absence of added CaCl2 lack calmodulin and contain only a high molecular weight heat stable activator. Purified calmodulin from human red cells or bovine brain shifts the apparent Ca2+ affinity of (Mg2+ + Ca2+)-ATPase activity in extensively washed ghosts to a high Ca2+ affinity state. The shift was most apparent in ghosts in which the Ca2+ affinity was decreased by EDTA treatment. Calmodulin increased the velocity of (Mg2+ + Ca2+)-ATPase in the EDTA-treated ghosts about 36-fold at a low (1.4 microM) Ca2+ concentration, compared with 6-fold before EDTA treatment. The maximum shift in apparent Ca2+ affinity occurred only in the presence of saturating concentrations of calmodulin. It is concluded that red cell calmodulin confers to the Ca2+ transport ATPase the ability to increase its apparent Ca2+ affinity, as well as its maximum velocity, in response to increases in intracellular Ca2+.  相似文献   

18.
The Erythrocyte Ghost Is a Perfect Osmometer   总被引:3,自引:0,他引:3  
The osmotic swelling of intact erythrocytes in hypotonic solutions was measured using microhematocrit tubes, Van Allen tubes, and a calibrated Coulter counter. In agreement with earlier workers the intact cells did not behave as perfect osmometers, the cells swelling less than predicted by the Boyle-van't Hoff law. Erythrocyte ghosts were prepared from fresh intact erythrocytes by one-step hemolysis in 0.25% NaCl at an extremely dilute concentration of cells and the membranes were sealed at 37°. The ghosts were mixed with NaCl solutions of different osmolarities and the MCV (mean cell volume) of the shrunken cells immediately monitored by a calibrated Coulter counter. It was found that the MCV values of the shrunken ghosts were accurately predicted by the Boyle-van't Hoff law. These results indicate that these erythrocyte ghosts behaved as perfect osmometers.  相似文献   

19.
High-pressure-induced hemolysis is suppressed by pretreating human erythrocytes at 49 degrees C, or enhanced by pretreatment with trypsin. So, the response of these pretreated cells to a pressure of 200 MPa was examined using flow cytometry. In the case of intact erythrocytes, a major product was fragmented particles. From 49 degrees C-pretreated cells, vesicles were mainly released. Trypsin-pretreated cells mainly produced open ghosts. Additionally, intact erythrocytes, 49 degrees C-pretreated ones, and trypsin-pretreated ones also released at 200 MPa vesicles of diameter 464 +/- 9, 259 +/- 18, and 574 +/- 16 nm, respectively. These results suggest that mother cells, fragmented particles, vesicles, and open ghosts from 200 MPa-treated erythrocytes are easily monitored by flow cytometry and that the size of released vesicles may also be an important factor in high-pressure-induced hemolysis.  相似文献   

20.
When rat red cell ghosts were incubated with 0.1-0.5 mM CdCl2 in 10 mM Tris-HCl (pH 7.4) at 37 degrees C for 30 min, they became irregular in shape and released small vesicles. The release of vesicles was dependent on the incubation temperature and Cd2+ concentration. The maximum release occurred at 37 degrees C in the presence of 0.2 mM Cd2+. The protein composition of Cd2+-induced vesicles was similar to that of the vesicles released from ATP-depleted red cells. Upon incubation with 0.1-0.2 mM Cd2+, more than 90% of the Cd2+ added to the incubation buffer was recovered in ghosts and 15-20% of the ghost Cd2+ was located on the cytoskeletons prepared by washing ghosts with 0.5% Triton X-100 solution containing 0.1 M KCl and 10 mM Tris-HCl (pH 7.4). Moreover, the cytoskeletons prepared from Cd2+-treated ghosts markedly contained cell membrane proteins, bands 2.1, 3, 4.2 and 4.5, and glycophorins. The association of bands 3 and 4.2 with cytoskeletons increased with increasing concentrations of Cd2+ added to the incubation buffer and saturated at 0.2 mM Cd2+. The solubilization of cytoskeletal proteins, bands 1, 2 and 5, from ghosts at low ionic strength was almost completely suppressed by preincubation of ghosts with 0.1 mM Cd2+. HgCl2, PbCl2 and ZnCl2 at 0.2 mM each also produced an increased association of cell membrane proteins with cytoskeletons, whereas CaCl2 and MgCl2 did not.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号