首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Exponentially growing cells of Saccharomyces cerevisiae were fractionated by centrifugation in isotonic, self-generated gradients of Percoll. Rapidly growing cells, μ = 0.5 × h−1, with nearly equal length of the daughter and the parental cell cycle were fractionated according to a cell cycle-related density variation. In these cells the net rate of protein synthesis varies nearly 2-fold during the cell cycle. Subsequent separations according to cell size revealed that the highest rate is observed during G2 period. Slow-growing cells, μ = 0.2 × h−1, were fractionated on shallow Percoll gradients in a bimodal fashion, primarily as a dense daughter fraction and a composite light fraction. Thereby a marked high rate of protein synthesis in large unbudded daughter cells was revealed. Separations according to cell size revealed a cell cycle-related separation of budded cells, and the highest rate is observed, as before, in the G2 period. Irrespective of the growth rate a non-exponential increase of cell protein is thereby observed through the cell cycle of budding yeast. Septation and cell separation coincide with a low degree of ribosome exploitation.  相似文献   

2.
The cell cycle of Caulobacter crescentus is controlled by a complex signalling network that co‐ordinates events. Genome sequencing has revealed many C. crescentus cell cycle genes are conserved in other Alphaproteobacteria, but it is not clear to what extent their function is conserved. As many cell cycle regulatory genes are essential in C. crescentus, the essential genes of two Alphaproteobacteria, Agrobacterium tumefaciens (Rhizobiales) and Brevundimonas subvibrioides (Caulobacterales), were elucidated to identify changes in cell cycle protein function over different phylogenetic distances as demonstrated by changes in essentiality. The results show the majority of conserved essential genes are involved in critical cell cycle processes. Changes in component essentiality reflect major changes in lifestyle, such as divisome components in A. tumefaciens resulting from that organism's different growth pattern. Larger variability of essentiality was observed in cell cycle regulators, suggesting regulatory mechanisms are more customizable than the processes they regulate. Examples include variability in the essentiality of divJ and divK spatial cell cycle regulators, and non‐essentiality of the highly conserved and usually essential DNA methyltransferase CcrM. These results show that while essential cell functions are conserved across varying genetic distance, much of a given organism's essential gene pool is specific to that organism.  相似文献   

3.
The mechanism that coordinates cell growth and cell cycle progression remains poorly understood; in particular, whether the cell cycle and cell wall biosynthesis are coordinated remains unclear. Recently, cell wall biosynthesis and cell cycle progression were reported to respond to wounding. Nonetheless, no genes are reported to synchronize the biosynthesis of the cell wall and the cell cycle. Here, we report that wounding induces the expression of genes associated with cell wall biosynthesis and the cell cycle, and that two genes, AtMYB46 in Arabidopsis thaliana and RrMYB18 in Rosa rugosa, are induced by wounding. We found that AtMYB46 and RrMYB18 promote the biosynthesis of the cell wall by upregulating the expression of cell wall-associated genes, and that both of them also upregulate the expression of a battery of genes associated with cell cycle progression. Ultimately, this response leads to the development of curled leaves of reduced size. We also found that the coordination of cell wall biosynthesis and cell cycle progression by AtMYB46 and RrMYB18 is evolutionarily conservative in multiple species. In accordance with wounding promoting cell regeneration by regulating the cell cycle, these findings also provide novel insight into the coordination between cell growth and cell cycle progression and a method for producing miniature plants.  相似文献   

4.
Visualization of the spatiotemporal pattern of cell division is crucial to understand how multicellular organisms develop and how they modify their growth in response to varying environmental conditions. The mitotic cell cycle consists of four phases: S (DNA replication), M (mitosis and cytokinesis), and the intervening G1 and G2 phases; however, only G2/M‐specific markers are currently available in plants, making it difficult to measure cell cycle duration and to analyze changes in cell cycle progression in living tissues. Here, we developed another cell cycle marker that labels S‐phase cells by manipulating Arabidopsis CDT1a, which functions in DNA replication origin licensing. Truncations of the CDT1a coding sequence revealed that its carboxy‐terminal region is responsible for proteasome‐mediated degradation at late G2 or in early mitosis. We therefore expressed this region as a red fluorescent protein fusion protein under the S‐specific promoter of a histone 3.1‐type gene, HISTONE THREE RELATED2 (HTR2), to generate an S/G2 marker. Combining this marker with the G2/M‐specific CYCB1GFP marker enabled us to visualize both S to G2 and G2 to M cell cycle stages, and thus yielded an essential tool for time‐lapse imaging of cell cycle progression. The resultant dual‐color marker system, Cell Cycle Tracking in Plant Cells (Cytrap), also allowed us to identify root cells in the last mitotic cell cycle before they entered the endocycle. Our results demonstrate that Cytrap is a powerful tool for in vivo monitoring of the plant cell cycle, and thus for deepening our understanding of cell cycle regulation in particular cell types during organ development.  相似文献   

5.
Background information. Primordial germ cells in developing male and female gonads are responsive to somatic cell cues that direct their sex‐specific differentiation into functional gametes. The first divergence of the male and female pathways is a change in cell cycle state observed from 12.5 dpc (days post coitum) in mice. At this time XY and XX germ cells cease mitotic division and enter G1/G0 arrest and meiosis prophase I respectively. Aberrant cell cycle regulation at this time can lead to disrupted ovarian development, germ cell apoptosis, reduced fertility and/or the formation of germ cell tumours. Results. In order to unravel the mechanisms utilized by germ cells to achieve and maintain the correct cell cycle states, we analysed the expression of a large number of cell cycle genes in purified germ cells across the crucial time of sex differentiation. Our results revealed common signalling for both XX and XY germ cell survival involving calcium signalling. A robust mechanism for apoptosis and checkpoint control was observed in XY germ cells, characterized by p53 and Atm (ataxia telangiectasia mutated) expression. Additionally, a member of the retinoblastoma family and p21 were identified, linking these factors to XY germ cell G1/G0 arrest. Lastly, in XX germ cells we observed a down‐regulation of genes involved in both G1‐ and G2‐phases of the cell cycle consistent with their entry into meiosis. Conclusion. The present study has provided a detailed analysis of cell cycle gene expression during fetal germ cell development and identified candidate factors warranting further investigation in order to understand cases of aberrant cell cycle control in these specialized cells.  相似文献   

6.
7.
Replication of the F''lac sex factor in the cell cycle of Escherichia coli   总被引:25,自引:0,他引:25  
Summary The timing of replication of an F'lac during the cell cycle of Escherichia coli B/r has been investigated at different growth rates to clarify the relationship of F factor replication to cell division and the replication of the bacterial chromosome.Cells of a lacZ — strain carrying an F'lac were separated according to their ages in an exponentially growing population after the culture was pulse labelled with a radioactive precursor of DNA and pulse induced for the synthesis of -galactosidase. The amount of label incorporated at different cell ages reflects the state of replication of the bacteriial chromosome, while the amount of enzyme synthesized in response to a short period of induction is assumed to reflect the state of replication of the F'lac.The F'lac replicates at a time somewhat more than half way through the cell cycle at all growth rates investigated. This time is clearly distinguishable from the time of initiation of chromosomal replication at some of the growth rates studied, implying the existence of at least some different control elements in the replication of these two replicons.The regulation of F'lac replication has been further studied by following F'lac replication in temperature sensitive mutants, which are defective in the initiation of chromosomal replication at elevated temperatures.  相似文献   

8.
9.
When investigating the effect of aeration capacityK L a of a cultivation device on the cell cycle of daughter cells ofCandida utilis it was found that the length of a phase (S + G2) of the cell cycle is influenced by the rate of oxygen transfer. An increase ofK L a, of a cultivation device achieved by increasing the specific output of mechanical energy for air dispersion and mixing may lead to cell damage and to changes in the cell cycle. The effect of high intensity of aeration and mixing is thus invalidated.  相似文献   

10.
 Trochoblasts are the first cells to differentiate during the development of spiralian embryos. Differentiation is accompanied by a cell division arrest. In embryos of the limpet Patella vulgata, the participation of cell cycle-regulating factors in trochoblast arrest was analysed as a first step to unravel its cause. We determined the cell cycle phase in which the trochoblasts are arrested by analysing the subcellular locations of mitotic cyclins. The results show that the trochoblasts are most likely arrested in the G2 phase. This was supported by measurement of the DNA content in trochoblast nuclei after the last division. Trochoblasts complete their final division at the sixth mitotic cycle. This mitotic cycle resembles the first postblastoderm cell cycle of Drosophila, in which mitotic activity is controlled by expression of the string gene. As failure of string expression results in cell cycle arrest in the G2 phase, negative regulation of a Patella string homolog could be responsible for trochoblast arrest. Although Stl messengers disappeared from trochoblasts during their final division, expression was observed again 20 min later. Messengers remained present in all trochoblasts at low levels during further development. Thus, expression of the stringlike gene allows the cell cycle arrest of these cells, whereas in Drosophila cells arrested in division lack string messengers. Received: 10 February 1997 / Accepted: 23 November 1997  相似文献   

11.
In this study, we aimed to investigate the effects of lncRNA CASC11 on gastric cancer (GC) cell progression through regulating miR-340-5p and cell cycle pathway. Expressions of lncRNA CASC11 in gastric cancer tissues and cell lines were determined by qRT-PCR. Differentially expressed lncRNAs, mRNAs and miRNAs were screened through microarray analysis. The relationship among CASC11, CDK1 and miR-340-5p was predicted by TargetScan and validated through dual luciferase reporter assay. Western blot assay examined the protein level of CDK1 and several cell cycle regulatory proteins. GO functional analysis and KEGG pathway analysis were used to predict the association between functions and related pathways. Cell proliferation was determined by CCK-8 assays. Cell apoptosis and cell cycle were detected by flow cytometry assay. CASC11 was highly expressed in GC tissues and cell lines. Knockdown of CASC11 inhibited GC cell proliferation, promoted cell apoptosis and blocked cell cycle. KEGG further indicated an enriched cell cycle pathway involving CDK1. QRT-PCR showed that miR-340-5p was down-regulated in GC cells tissues, while CDK1 was up-regulated. Furthermore, CASC11 acted as a sponge of miR-340-5p which directly targeted CDK1. Meanwhile, miR-340-5p overexpression promoted GC cell apoptosis and induced cell cycle arrest, while CDK1 overexpression inhibited cell apoptosis and accelerated cell cycle. Our study revealed the mechanism of CASC11/miR-340-5p/CDK1 network in GC cell line, and suggested that CASC11 was a novel facilitator that exerted a biological effect by activating the cell cycle signaling pathway. This finding provides a potential therapeutic target for GC.  相似文献   

12.
Activation of virulence in pathogenic fungi often involves differentiation processes that need the reset of the cell cycle and induction of a new morphogenetic program. Therefore, the fungal capability to modify its cell cycle constitutes an important determinant in carrying out a successful infection. The dimorphic fungus Ustilago maydis is the causative agent of corn smut disease and has lately become a highly attractive model in addressing fundamental questions about development in pathogenic fungi. The different morphological and genetic changes of U. maydis cells during the pathogenic process advocate an accurate control of the cell cycle in these transitions. This is why this model pathogen deserves attention as a powerful tool in analyzing the relationships between cell cycle, morphogenesis, and pathogenicity. The aim of this review is to summarize recent advances in the unveiling of cell cycle regulation in U. maydis. We also discuss the connection between cell cycle and virulence and how cell cycle control is an important downstream target in the fungus-plant interaction.  相似文献   

13.
Plasmodiophora brassicae is a soil‐borne biotroph whose life cycle involves reprogramming host developmental processes leading to the formation of galls on its underground parts. Formation of such structures involves modification of the host cell cycle leading initially to hyperplasia, increasing the number of cells to be invaded, followed by overgrowth of cells colonised by the pathogen. Here we show that P. brassicae infection stimulates formation of the E2Fa/RBR1 complex and upregulation of MYB3R1, MYB3R4 and A‐ and B‐type cyclin expression. These factors were previously described as important regulators of the G2?M cell cycle checkpoint. As a consequence of this manipulation, a large population of host hypocotyl cells are delayed in cell cycle exit and maintained in the proliferative state. We also report that, during further maturation of galls, enlargement of host cells invaded by the pathogen involves endoreduplication leading to increased ploidy levels. This study characterises two aspects of the cell cycle reprogramming efforts of P. brassicae: systemic, related to the disturbance of host hypocotyl developmental programs by preventing cell cycle exit; and local, related to the stimulation of cell enlargement via increased endocycle activity.  相似文献   

14.
Dinoflagellates of the genus Symbiodinium live in symbiosis with many invertebrates, including reef‐building corals. Hosts maintain this symbiosis through continuous regulation of Symbiodinium cell density via expulsion and degradation (postmitotic) and/or constraining cell growth and division through manipulation of the symbiont cell cycle (premitotic). Importance of premitotic regulation is unknown since little data exists on cell cycles for the immense genetic diversity of Symbiodinium. We therefore examined cell cycle progression for several distinct SymbiodiniumITS2‐types (B1, C1, D1a). All types exhibited typical microalgal cell cycle progression, G1 phase through to S phase during the light period, and S phase to G2/M phase during the dark period. However, the proportion of cells in these phases differed between strains and reflected differences in growth rates. Undivided larger cells with 3n DNA content were observed especially in type D1a, which exhibited a distinct cell cycle pattern. We further compared cell cycle patterns under different growth light intensities and thermal regimes. Whilst light intensity did not affect cell cycle patterns, heat stress inhibited cell cycle progression and arrested all strains in G1 phase. We discuss the importance of understanding Symbiodinium functional diversity and how our findings apply to clarify stability of host‐Symbiodinium symbioses.  相似文献   

15.
The cell cycle duration was estimated in Drosophila melanogaster mutants for the tumor suppressor Merlin with the use of different approaches. Experiments on induction of mosaic clones in tissues of the larval wing imaginal disc showed that the cell cycle in mutant discs is shorter than that in control. Flow fluorescence cytometry revealed no differences between mutant and normal animals in the relative duration of the cell cycle phases, which suggests proportional shortening of the cell cycle phases. The study with pulselabeled mitoses confirmed these results and showed that the length of the cell cycle is 7 h (S phase duration 3 h) in control individuals and 5 h (S phase duration 2 h) in Merlin gene mutants.  相似文献   

16.
Cell-cycle-specific initiation of replication   总被引:3,自引:2,他引:1  
The following characteristics are relevant when replication of chromosomes and plasmids is discussed in relation to the cell cycle: the timing or replication, the selection of molecules for replication, and the coordination of multiple initiation events within a single cell cycle. Several fundamentally different methods have been used to study these processes: Meselson—Stahl density-shift experiments, experiments with the so-called‘baby machine', sorting of cells according to size, and flow cytometry. The evidence for precise timing and co-ordination of chromosome replication in Escherichia coli is overwhelming. Similarly, the high-copy-number plasmid ColE1 and the low-copy-number plasmids R1/R100 without any doubt replicate randomly throughout the cell cycle. Data about the low-copy-number plasmids F and P1 are conflicting. This calls for new types of experiments and for a better understanding of how these plasmids control their replication and partitioning.  相似文献   

17.
18.
Bacillus subtilis strain Marburg was grown exponentially with a doubling time of 65 min. To follow the time course of various cell cycle events, cells were collected by agar filtration and were then classified according to length. The DNA replication cycle was determined by a quantitative analysis of radioautograms of tritiated thymidine pulse labeled cells. The DNA replication period was found to be 45 min. This period is preceded and followed by periods without DNA synthesis of about 10 min.The morphology and segregation of nucleoplasmic bodies was studied in thin sections. B. subtilis contains two sets of genomes. DNA replication and DNA segregation seem to go hand in hand and DNA segregation is completed shortly after termination of DNA replication.Cell division and cell separation were investigated in whole mount preparations (agar filtration) and in thin sections. Cell division starts about 20 min after cell birth; cell separation starts at about 45 min and before completion of the septum.  相似文献   

19.
14-3-3 proteins are a family of highly conserved polypeptides that function as small adaptors that facilitate a diverse array of cellular processes by binding phosphorylated target proteins. One of these processes is the regulation of the cell cycle. Here we characterized the role of Bmh1, a 14-3-3 protein, in the cell cycle regulation of the fungus Ustilago maydis. We found that this protein is essential in U. maydis and that it has roles during the G2/M transition in this organism. The function of 14-3-3 in U. maydis seems to mirror the proposed role for this protein during Schizosaccharomyces pombe cell cycle regulation. We provided evidence that in U. maydis 14-3-3 protein binds to the mitotic regulator Cdc25. Comparison of the roles of 14-3-3 during cell cycle regulation in other fungal system let us to discuss the connections between morphogenesis, cell cycle regulation and the evolutionary role of 14-3-3 proteins in fungi.  相似文献   

20.
The numbers of dictyosomes in cells ofM. crux-melitensis andM. pinnatifida were counted at various stages in the cell cycle. Dictyosomes synchronously doubled in number by dividing at the premitotic stage and then were separated into two groups by the septum, thus reducing the dictyosomal number to the ordinal number in each new cell. The number remained the same throughout the cell cycle until the next premitotic stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号