首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Chemokine receptor blockade can diminish the recruitment of host effector cells and prolong allograft survival, but little is known of the role of chemokine receptors in promoting host sensitization. We engrafted fully allogeneic islets into streptozotocin-treated normal mice or mice with the autosomal recessive paucity of lymph node T cell (plt) mutation; the latter lack secondary lymphoid expression of the CCR7 ligands, secondary lymphoid organ chemokine (CCL21) and EBV-induced molecule-1 ligand chemokine (CCL19). plt mice showed permanent survival of islets engrafted under the kidney capsule, whereas controls rejected islet allografts in 12 days (p < 0.001), and consistent with this, plt mice had normal allogeneic T cell responses, but deficient migration of donor dendritic cell to draining lymph nodes. Peritransplant i.v. injection of donor splenocytes caused plt recipients to reject their allografts by 12 days, and sensitization at 60 days posttransplant of plt mice with well-functioning allografts restored acute rejection. Finally, islet allografts transplanted intrahepatically in plt mice were rejected approximately 12 days posttransplant, like controls, as were primarily revascularized cardiac allografts. These data show that the chemokine-directed homing of donor dendritic cell to secondary lymphoid tissues is essential for host sensitization and allograft rejection. Interruption of such homing can prevent T cell priming and islet allograft rejection despite normal T and B cell functions of the recipient, with potential clinical implications.  相似文献   

2.
We have earlier demonstrated that a mixed population of immunologically specific killer cells, including cytotoxic T lymphocytes, non-T (“B”) lymphocytes and monocytes, infiltrate “sponge matrix” allografts at the peak of rejection on Day 8 after transplantation. We have now performed a sequential study covering both early and late stages of the rejection response. We demonstrate that the early infiltrating killer cells are sensitive to anti-Ø and anti-T cell serum plus complement treatment but the late killer cells are not. This finding indicates that the first cytotoxic host cells infiltrating the allograft are predominantly T lymphocytes, whereas as the rejection process proceeds also cytotoxic non-T (“B”) lymphocytes and monocytes are recruited to the site of inflammation.  相似文献   

3.
Furuta E  Seo N  Yamaguchi K 《Zoological science》2006,23(12):1093-1100
The rejection of allografts in mammals is mainly mediated by cytotoxic T-lymphocytes, whereas no comparable immunoreactive cells have been described in invertebrates. The present study was undertaken to determine whether similar cytotoxic effector cells are present when allograft rejection occurs in the terrestrial slug Incilaria fruhstorferi. A piece of dorsal skin from a donor animal was orthotopically transplanted to a recipient. Immunohistochemistry for perforin, detection of apoptosis by the TUNEL (TdT-mediated dUTP-biotin nick-end labeling) method, and electron microscopy were performed using both donor and recipient tissues. Cellular changes in the rejection process continued over for 40 days. Two functional types of "effector" cells were recognized at the rejection site, but they were observed to be macrophages possessing perforin granules and phagocytosing damaged cells of the allograft. Three days after transplantation, the perforin-positive cells were recognized only in the recipient tissue surrounding the allograft. Five days after transplantation, these cells started to appear in the graft, while they disappeared from the host tissue. However, TUNEL-positive cells were not observed throughout the graft-rejection process. Electron microscopic examination of the graft tissue revealed autophagic degeneration of epithelial cells, mucous cells, pigment cells, fibroblasts, and muscle cells. These observations suggest that the molluscan slug has the capability to recognize differences in cell-surface molecules between the allogeneic and recipient tissues, and that an allograft is chronically rejected due to a type of immunocyte that can induce perforin-dependent cell death.  相似文献   

4.
The poor success in controlling small bowel (SB) allograft rejection is partially attributed to the unique immune environment in the donor intestine. We hypothesized that Ag-induced activation of donor-derived T cells contributes to the initiation of SB allograft rejection. To address the role of donor T cell activation in SB transplantation, SB grafts from DO11.10 TCR transgenic mice (BALB/c, H-2L(d+)) were transplanted into BALB/c (isografts), or single class I MHC-mismatched (L(d)-deficient) BALB/c H-2(dm2) (dm2, H-2L(d-)) mutant mice (allografts). Graft survival was followed after injection of control or antigenic OVA(323-339) peptide. Eighty percent of SB allografts developed severe rejection in mice treated with antigenic peptide, whereas <20% of allografts were rejected in mice treated with control peptide (p < 0.05). Isografts survived >30 days regardless of OVA(323-339) administration. Activation of donor T cells increased intragraft expression of proinflammatory cytokine (IFN-gamma) and CXC chemokine IFN-gamma-inducible protein-10 mRNA and enhanced activation and accumulation of host NK and T cells in SB allografts. Treatment of mice with neutralizing anti-IFN-gamma-inducible protein-10 mAb increased SB allograft survival in Ag-treated mice (67%; p < 0.05) and reduced accumulation of host T cells and NK cells in the lamina propria but not mesenteric lymph nodes. These results suggest that activation of donor T cells after SB allotransplantation induces production of a Th1-like profile of cytokines and CXC chemokines that enhance infiltration of host T cells and NK cells in SB allografts. Blocking this pathway may be of therapeutic value in controlling SB allograft rejection.  相似文献   

5.
Combined CXCR3/CCR5 blockade attenuates acute and chronic rejection   总被引:1,自引:0,他引:1  
Chemokine-chemokine receptor interactions orchestrate mononuclear cells recruitment to the allograft, leading to acute and chronic rejection. Despite biologic redundancy, several experimental studies have demonstrated the importance of CXCR3 and CCR5 in acute rejection of allografts. In these studies, deficiency or blockade of CXCR3 or CCR5 led to prolongation of allograft survival, yet allografts were ultimately lost to acute rejection. Given the above findings and the specificity of mononuclear cells bearing CXCR3 and CCR5, we hypothesized that combined blockade of CXCR3 and CCR5 will lead to indefinite (>100 days) graft survival in a full MHC-mismatched murine cardiac allograft model. The donor hearts in the control group were rejected in 6 +/- 1 days after transplantation. Combined blockade of CXCR3 and CCR5 prolonged allograft survival >15-fold vs the control group; all allografts survived for >100 days. More importantly, the donor hearts did not display any intimal lesions characteristic of chronic rejection. Further analysis of the donor hearts in the CXCR3/CCR5 blockade group demonstrated graft infiltration with CD4(+)CD25(+) T cells expressing the Foxp3 gene. Depletion of CD25(+) cells in the combined CXCR3 and CCR5 blockade group resulted in acute rejection of the allografts in 22 +/- 2 days. Combined CXCR3 and CCR5 blockade also reduced alloantigen-specific T lymphocyte proliferation. Combined CXCR3 and CCR5 blockade is effective in preventing acute and chronic rejection in a robust murine model. This effect is mediated, in part, by CD25(+) regulatory T cell recruitment and control of T lymphocyte proliferation.  相似文献   

6.
Rejected MHC-mismatched cardiac allografts in CCR5(-/-) recipients have low T cell infiltration, but intense deposition of C3d in the large vessels and capillaries of the graft, characteristics of Ab-mediated rejection. The roles of donor-specific Ab and CD4 and CD8 T cell responses in the rejection of complete MHC-mismatched heart grafts by CCR5(-/-) recipients were directly investigated. Wild-type C57BL/6 and B6.CCR5(-/-) (H-2(b)) recipients of A/J (H-2(a)) cardiac allografts had equivalent numbers of donor-reactive CD4 T cells producing IFN-gamma, whereas CD4 T cells producing IL-4 were increased in CCR5(-/-) recipients. Numbers of donor-reactive CD8 T cells producing IFN-gamma were reduced 60% in CCR5(-/-) recipients. Day 8 posttransplant serum titers of donor-specific Ab were 15- to 25-fold higher in CCR5(-/-) allograft recipients, and transfer of this serum provoked cardiac allograft rejection in RAG-1(-/-) recipients within 14 days, whereas transfer of either serum from wild-type recipients or immune serum from CCR5-deficient recipients diluted to titers observed in wild-type recipients did not mediate this rejection. Wild-type C57BL/6 and B6.CCR5(-/-) recipients rejected A/J cardiac grafts by day 11, whereas rejection was delayed (day 12-60, mean 21 days) in muMT(-/-)/CCR5(-/-) recipients. These results indicate that the donor-specific Ab produced in CCR5(-/-) heart allograft recipients is sufficient to directly mediate graft rejection, and the absence of recipient CCR5 expression has differential effects on the priming of alloreactive CD4 and CD8 T cells.  相似文献   

7.
Chemokines direct leukocyte recruitment into sites of tissue inflammation and may facilitate recruitment of leukocytes into allografts following transplantation. Although the expression of chemokines during rejection of MHC-disparate allografts has been examined, chemokine expression in MHC-matched/multiple minor histocompatibility Ag-disparate allografts has not been tested. The intraallograft RNA expression of several C-X-C and C-C chemokines was tested during rejection of full thickness skin grafts from B10. D2 donors on control Ig-, anti-CD4 mAb-, and anti-CD8 mAb-treated BALB/c recipients. In all recipients, two patterns of intragraft chemokine expression were observed during rejection of these grafts: 1) macrophage-inflammatory protein-1alpha, macrophage-inflammatory protein-1beta, GRO-alpha (KC), JE, and IFN-gamma-inducible protein (IP-10) were expressed at equivalent levels in allo- and isografts for 2-4 days posttransplant and then returned to low or undetectable levels; and 2) IP-10 and monokine induced by IFN-gamma (Mig) were expressed in the allografts 3 days before rejection was completed, suggesting a possible role in recruiting primed T cells into the allograft. Three days before completion of rejection, intraallograft IP-10 protein was restricted to the epidermis, whereas Mig was located in the lower dermis and associated with the intense infiltration of mononuclear cells. Treatment of B10.D2 recipients with rabbit antiserum to Mig, but not to IP-10, delayed rejection of the allografts 3-4 days. The results suggest that Mig mediates optimal recruitment of T cells into MHC-matched/multiple minor histocompatibility Ag-disparate allografts during rejection.  相似文献   

8.
One hundred and twenty-two larvae of Xenopus laevis, the South African clawed toad, at developmental stages 48, 50, 52 and 54, were implanted in the tail with two allografts from adult tissues. In each case, one allograft was from kidney, while the other was either from kidney, thymus, spleen, or liver. In any particular host the two implants were always from the same donor and the implants were all visually matched in size. The experimental period was a maximum of nine days, so as to minimize the large numbers of changes normally accompanying larval progress from stage to stage. We are concerned with the timing of allograft response initiation under the implant conditions of each experimental group at a particular point in development. An allograft response was defined as an infiltration and accumulation of small lymphocytes in the “test” kidney allograft. Larvae of all stages developed allograft responses within one week post-implantation when the variable implant was from kidney, but implants from spleen and thymus suppressed both the timing of initiation and the subsequent intensity of the response. Spleen was more effective in this regard than thymus and both were more effective in the earlier larval stages. Liver proved to be toxic to the larvae. The relationship between the maturation of the lymphomyeloid tissues and external morphological staging is also discussed.  相似文献   

9.
The role of NO and superoxide (O(2)(-)) in tissue injury during cardiac allograft rejection was investigated by using a rat ex vivo organ perfusion system. Excessive NO production and inducible NO synthase (iNOS) expression were observed in cardiac allografts at 5 days after cardiac transplantation, but not in cardiac isografts, as identified by electron spin resonance spectroscopy and Northern blotting. Cardiac isografts or allografts obtained on Day 5 after transplantation were perfused with Krebs bicarbonate buffer with or without various antidotes for NO or O(2)-, including N(omega)-monomethyl-L-arginine (L-NMMA; 1 mM), 2-phenyl-4,4,5, 5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO; 100 microM), 4-amino-6-hydroxypyrazolo[3,4-d]pyrimidine (AHPP; a xanthine oxidase inhibitor; 100 microM), and superoxide dismutase (SOD; 100 units/ml). Treatment of the cardiac allografts with PTIO showed most remarkable improvement of the cardiac injury as revealed by significant reduction in aspartate transaminase, lactate dehydrogenase, and creatine phosphokinase concentrations in the perfusate. Similar but less potent protective effect on the allograft injury was observed by treatment with L-NMMA, AHPP, and SOD. Immunohistochemical analyses for iNOS and nitrotyrosine indicated that iNOS is mainly expressed by macrophages infiltrating the allograft tissues, and nitrotyrosine formation was demonstrated not only in macrophages but also in cardiac myocytes of the allografts, providing indirect evidence for the generation of peroxynitrite during allograft rejection. Our results suggest that tissue injury in rat cardiac allografts during acute rejection is mediated by both NO and O(2)(-), possibly through peroxynitrite formation.  相似文献   

10.
Vascular knee allograft transplantation in a rabbit model   总被引:1,自引:0,他引:1  
Using a rabbit model in which vascularized knee autograft transplantation was successful, vascularized knee allograft transplants survived an average of 9 days, as determined by serial bone scan. The longest surviving allograft was one of 3 months. Immunosuppression and irradiation did not significantly increase survival. Both vascularized and nonvascularized allografts elicited a second-set skin graft response but no histologic evidence of rejection. This suggests that joint allografts are clearly immunogenic but do not undergo the same destructive rejection process with a clear end point seen with soft-tissue grafts. Donor vessels did show a classic rejection picture with severe intimal damage presumably predisposing to vessel thrombosis and graft loss. Vascular rejection, therefore, limited joint allograft survival. Immediate vascularization of the allograft with subsequent limited survival does not enhance host revascularization and creeping substitution at 1, 3, or 6 months. These findings do not suggest clinical applicability for vascularized joint allograft transplantation at this time. Future experimental studies should employ genetically defined models.  相似文献   

11.
TNF-alpha and lymphotoxin (LT)alpha have been shown to be important mediators of allograft rejection. TNF-R1 is the principal receptor for both molecules. Mice with targeted genetic deletions of TNF-R1 demonstrate normal development of T and B lymphocytes but exhibit functional defects in immune responses. However, the role of TNF-R1-mediated signaling in solid organ transplant rejection has not been defined. To investigate this question, we performed vascularized heterotopic allogeneic cardiac transplants in TNF-R1-deficient (TNF-R1(-/-)) and wild-type mice. Because all allografts in our protocol expressed TNF-R1, direct antigraft effects of TNF-alpha and LTalpha were not prevented. However, immunoregulatory effects on recipient inflammatory cells by TNF-R1 engagement was eliminated in TNF-R1(-/-) recipients. In our study, cardiac allograft survival was significantly prolonged in TNF-R1(-/-) recipients. Despite this prolonged allograft survival, we detected increased levels of CD8 T cell markers in allografts from TNF-R1(-/-) recipients, suggesting that effector functions, but not T cell recruitment, were blocked. We also demonstrated the inhibition of multiple chemokines and cytokines in allografts from TNF-R1(-/-) recipients including RANTES, IFN-inducible protein-10, lymphotactin, and IL-1R antagonist, as well as altered levels of chemokine receptors. We correlated gene expression with the physiologic process of allograft rejection using self-organizing maps and identified distinct patterns of gene expression in allografts from TNF-R1(-/-) recipients. These findings indicate that in our experimental system TNF-alpha and LTalpha exert profound immunoregulatory effects through TNF-R1.  相似文献   

12.
The use of chemokine antagonism as a strategy to inhibit leukocyte trafficking into inflammatory sites requires identification of the dominant chemokines mediating recruitment. The chemokine(s) directing T cells into cardiac allografts during acute rejection remain(s) unidentified. The role of the CXC chemokines IFN-gamma inducible protein 10 (IP-10) and monokine induced by IFN-gamma (Mig) in acute rejection of A/J (H-2(a)) cardiac grafts by C57BL/6 (H-2(b)) recipients was tested. Intra-allograft expression of Mig was observed at day 2 posttransplant and increased to the time of rejection at day 7 posttransplant. IP-10 mRNA and protein production were 2.5- to 8-fold lower than Mig. Whereas allografts were rejected at day 7-9 in control recipients, treatment with rabbit antiserum to Mig, but not to IP-10, prolonged allograft survival up to day 19 posttransplant. At day 7 posttransplant, allografts from Mig antiserum-treated recipients had marked reduction in T cell infiltration. At the time of rejection in Mig antiserum-treated recipients (i.e., days 17-19), intra-allograft expression of macrophage-inflammatory protein-1alpha, -1beta, and their ligand CCR5 was high, whereas expression of CXCR3, the Mig receptor, was virtually absent. Mig was produced by the allograft endothelium as well as by recipient allograft-infiltrating macrophages and neutrophils, indicating the synergistic interactions between innate and adaptive immune compartments during acute rejection. Collectively, these results indicate that Mig is a dominant recruiting factor for alloantigen-primed T cells into cardiac allografts during acute rejection. Although Mig antagonism delays acute heart allograft rejection, the results also suggest that the alloimmune response circumvents Mig antagonism through alternative mechanisms.  相似文献   

13.
CD4 T cell-dependent mechanisms promoting allograft rejection include expression of inflammatory functions within the graft and the provision of help for donor-reactive CD8 T cell and Ab responses. These studies tested CD4 T cell-mediated rejection of MHC-mismatched cardiac allografts in the absence of both CD8 T and B lymphocytes. Whereas wild-type C57BL/6 recipients depleted of CD8 T cells rejected A/J cardiac grafts within 10 days, allografts were not rejected in B cell-deficient B6.muMT(-/-) recipients depleted of CD8 T cells. Isolated wild-type C57BL/6 and B6.muMT(-/-) CD4 T cells had nearly equivalent in vivo alloreactive proliferative responses. CD4 T cell numbers in B6.muMT(-/-) spleens were 10% of that in wild-type mice but were only slightly decreased in peripheral lymph nodes. CD8 T cell depletion did not abrogate B6.muMT(-/-) mice rejection of A/J skin allografts and this rejection rendered these recipients able to reject A/J cardiac allografts. Redirection of the alloimmune response to the lymph nodes by splenectomy conferred the ability of B6.muMT(-/-) CD4 T cells to reject cardiac allografts. These results indicate that the low number of splenic CD4 T cells in B6.muMT(-/-) mice underlies the inability to reject cardiac allografts and this inability is overcome by diverting the CD4 T cell response to the peripheral lymph nodes.  相似文献   

14.
Balb/c thyroids, held in organ culture for 26 days, survive and function as well as isografts for greater than 100 days in CBA recipients. Uncultured allografts are totally rejected by 20 days after transplantation. Prolonged allograft survival can also be achieved by the treatment of donor animals with cyclophosphamide prior to harvesting tissues for transplantation. These allografts do not survive as well as 26 day cultured allografts, but cyclophosphamide pretreatment reduces the culture time required to achieve indefinite survival to 7 days. The provision of an allogeneic (LD) stimulus by thyroid tissue that is I-region incompatible with the host does not facilitate the rejection of a tolerated cultured allograft. However, activation of the host immune system by an uncultured graft syngeneic to a tolerated cultured allograft leads to the chronic rejection of the cultured transplant. The transfer of a tolerated cultured allograft back to its strain of origin induces an acute inflammatory reaction that causes tissue damage within the transplant but does not lead to the total destruction of the tissue.  相似文献   

15.
Acute rejection is mediated by T cell infiltration of allografts, but mechanisms mediating the delayed rejection of allografts in chemokine receptor-deficient recipients remain unclear. The rejection of vascularized, MHC-mismatched cardiac allografts by CCR5(-/-) recipients was investigated. Heart grafts from A/J (H-2(a)) donors were rejected by wild-type C57BL/6 (H-2(b)) recipients on day 8-10 posttransplant vs day 8-11 by CCR5(-/-) recipients. When compared with grafts from wild-type recipients, however, significant decreases in CD4(+) and CD8(+) T cells and macrophages were observed in rejecting allografts from CCR5-deficient recipients. These decreases were accompanied by significantly lower numbers of alloreactive T cells developing to IFN-gamma-, but not IL-4-producing cells in the CCR5(-/-) recipients, suggesting suboptimal priming of T cells in the knockout recipients. CCR5 was more prominently expressed on activated CD4(+) than CD8(+) T cells in the spleens of allograft wild-type recipients and on CD4(+) T cells infiltrating the cardiac allografts. Rejecting cardiac allografts from wild-type recipients had low level deposition of C3d that was restricted to the graft vessels. Rejecting allografts from CCR5(-/-) recipients had intense C3d deposition in the vessels as well as on capillaries throughout the graft parenchyma similar to that observed during rejection in donor-sensitized recipients. Titers of donor-reactive Abs in the serum of CCR5(-/-) recipients were almost 20-fold higher than those induced in wild-type recipients, and the high titers appeared as early as day 6 posttransplant. These results suggest dysregulation of alloreactive Ab responses and Ab-mediated cardiac allograft rejection in the absence of recipient CCR5.  相似文献   

16.
Viability of allografts exchanged between the field-collected individuals of the common frog, R. temporaria , was long in tadpoles grafted during and immediately after closing of operculum; median survival time (MST) was 26 and 18 days, respectively. This probably reflected the immaturity of the host immune system and temporary tolerance to weak transplantation antigens. Allograft viability was the shortest in tadpoles grafted at foot-paddle stage (MST, 11 days). It was independent from the origin and size of the grafts. Such rate of rejection might reflect a maximal immunological potential of the host and the absence of any suppressor factors in response to highly polymorphic frog transplantation antigens. A gradual prolongation of allograft viability was observed in animals grafted at final stages of metamorphosis, in froglets, and in sexually mature adults (MST: 13, 17, and 28 days, respectively). In particular age groups viability of allografts from sibling donors was longer and from nonsibling ones shorter than MST values cited above.
Immunological memory of transplantation antigens did not disappear during the host metamorphosis, as MST (10 days) of second-set allografts in metamorphosing hosts sensitized during larval life was considerably shorter than the viability of the sensitizing grafts in the same age group.
The ontogeny of the response to alloantigens reflecting the immunological potential and the appearance of self-tolerance can be realized in different ways, depending on a particular amphibian species.  相似文献   

17.
Earthworms (Lumbricus terrestris) were maintained at 15 degrees C and exposed on filter paper to 10 micrograms/cm2 of the polychlorinated biphenyl (PCB) Aroclor 1254 for 5 days prior to surgical treatments which consisted of wounds, autografts, and allografts. At 1 day after surgery, we observed a higher percentage of healing defects and a significantly greater number of early signs of allograft rejection in exposed worms. Observations for 25 days post-transplantation revealed no response to autografts, but an acceleration of the allograft rejection process in exposed earthworms. We postulate that Aroclor modified host coelomocytes and/or their interactions associated with antigen recognition and inflammation.  相似文献   

18.
An analysis of killer cells infiltrating “sponge-matrix” allografts during rejection has been performed by preparative fractionation by density centrifugation, velocity sedimentation, and free flow cell electrophoresis and by the use of heterologous anti-T-cell sera. At the peak of rejection, 7 to 8 days after transplantation, the allograft is infiltrated by several classes of killer cells, most notably by non-T lymphocytes, monocytes/macrophages, and T lymphocytes. The predominant cell types capable of performing in vitro lysis of relevant target cells appeared to be monocytes and non-T lymphocytes. T lymphocytes formed only a minority of the killer cells at this stage of the response. In contrast, as also documented earlier, the predominant killer cells in the regional lymph nodes and the spleen of the graft recipient mice were T lymphocytes (blasts).  相似文献   

19.
The T lymphocyte-deprived (B) rat, produced by X-radiation and bone marrow reconstitution of adolescent thymectomized animals, exhibits a true immunological deficit and are unable to reject histoincompatible heterotopic cardiac allografts. A comprehensive survey of lymphocyte traffic in B recipients was performed to correlate the differential potency of specifically sensitized lymphocyte populations mediating re-establishment of immune responsiveness toward the graft, with their migratory and recirculatory behavior. 111In-oxine-labeled thoracic duct lymphocytes (TDL) were retained in the peripheral blood and migrated from nonlymphoid organs to lymph nodes of B recipients in higher proportion than any other lymphoid population, particularly splenic lymphocytes (SL). Although all cell groups but TDL were sequestered in the spleen in equal and relatively large numbers, no differences were found between the lymphocyte populations tested in their capacity to accumulate in the grafts. In contrast, an increased avidity in the allograft of 125IUdR-labeled TDL and lymph node (LNL) lymphoblasts, as compared to 125IUdR-labeled SL, resembles closely the results of functional studies of the differential potency of adoptively transferred cells. We assume that specific cellular interactions induced by the accumulated 125IUdR-labeled cells invoke nonspecific mechanisms for the recruitment of other uncommitted 111Inlabeled lymphocytes which recirculate between blood and lymph and localize indiscriminately in the allograft amplifying its rejection. The latter lymphocytes can be “armed” by adherent cells residing in the lymphoid organs of graft recipients, particularly spleen, and subsequently increase the penetration of the foreign tissue. When radiolabeled lymphocytes were traced in B recipients experiencing rejection of their allografts following transfer of sensitized cells plus lymphokine, their migration patterns as well as blastogenic response in B hosts were similar to those observed during acute rejection of cardiac allografts in unmodified hosts. Thus the similarities between the rejection network brought by alloimmune cells into otherwise unresponsive animals and immunocompetent animals able to reject their grafts are stressed.  相似文献   

20.
Corneal transplantation is the most common solid organ transplantation. The immunologically privileged nature of the cornea results in high success rates. However, T cell-mediated rejection is the most common cause of corneal graft failure. Using antiangiogenesis treatment to prevent corneal neovascularization, which revokes immune privilege, prevents corneal allograft rejection. Endostatin is an antiangiogenic factor that maintains corneal avascularity. In this study, we directly test the role of antiangiogenic and immunological signals in corneal allograft survival, specifically the potential correlation of endostatin production and T cell recruitment. We report that 75% of the corneal allografts of BALB/c mice rejected after postoperative day (POD) 20, whereas all syngeneic grafts survived through POD60. This correlates with endogenous endostatin, which increased and remained high in syngeneic grafts but decreased after POD10 in allografts. Immunostaining demonstrated that early recruitment of allospecific T cells into allografts around POD10 correlated with decreased endostatin production. In Rag(-/-) mice, both allogeneic and syngeneic corneal grafts survived; endostatin remained high throughout. However, after T cell transfer, the allografts eventually rejected, and endostatin decreased. Furthermore, exogenous endostatin treatment delayed allograft rejection and promoted survival secondary to angiogenesis inhibition. Our results suggest that endostatin plays an important role in corneal allograft survival by inhibiting neovascularization and that early recruitment of allospecific T cells into the grafts promotes destruction of endostatin-producing cells, resulting in corneal neovascularization, massive infiltration of effector T cells, and ultimately graft rejection. Therefore, combined antiangiogenesis and immune suppression will be more effective in maintaining corneal allograft survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号