首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acetylene reduction by nitrogen-fixing blue-green algae   总被引:23,自引:0,他引:23  
Summary Known nitrogen-fixing species of blue-green algae are capable of reducing acetylene to ethylene, but acetylene is not reduced by Anacystis nidulans, which does not fix nitrogen. Cycad root nodules which contain blue-green algae as endophytes reduce acetylene. Acetylene reduction is inhibited by carbon monoxide. Nitrate or ammonium-nitrogen has no immediate effect on algae reducing acetylene, but algae grown on nitrate-nitrogen gradually lose their capacity to reduce acetylene. Nitrate-nitrogen also inhibits heterocyst formation in these algae and there is a fairly direct correlation between the abundance of heterocysts in a particular sample and its capacity to reduce acetylene. Aphanizomenon flosaquae reduces acetylene and fixes nitrogen in unialgal culture and there is strong presumptive evidence that these reductions are carried out by the alga rather than by associated bacteria. The molar ratios of ethylene: ammonia produced vary within the range 1.4–1.8.  相似文献   

2.
We report here the existence of anaerobic nitrogen-fixing consortia (ANFICOs) consisting of N(2)-fixing clostridia and diverse nondiazotrophic bacteria in nonleguminous plants; we found these ANFICOs while attempting to overcome a problem with culturing nitrogen-fixing microbes from various gramineous plants. A major feature of ANFICOs is that N(2) fixation by the anaerobic clostridia is supported by the elimination of oxygen by the accompanying bacteria in the culture. In a few ANFICOs, nondiazotrophic bacteria specifically induced nitrogen fixation of the clostridia in culture. ANFICOs are widespread in wild rice species and pioneer plants, which are able to grow in unfavorable locations. These results indicate that clostridia are naturally occurring endophytes in gramineous plants and that clostridial N(2) fixation arises in association with nondiazotrophic endophytes.  相似文献   

3.
4.
Anaerobic nitrogen-fixing consortia consisting of N2-fixing clostridia and diverse nondiazotrophic bacteria were previously isolated from various gramineous plants (K. Minamisawa, K. Nishioka, T. Miyaki, B. Ye, T. Miyamoto, M. You, A. Saito, M. Saito, W. Barraquio, N. Teaumroong, T. Sein, and T. Tadashi, Appl. Environ. Microbiol. 70:3096-3102, 2004). For this work, clostridial populations and their phylogenetic structures in a stand of the grass Miscanthus sinensis in Japan were assessed by a 16S rRNA gene-targeted terminal restriction fragment length polymorphism (TRFLP) analysis combined with most-probable-number (MPN) counts. PCR primers and restriction enzymes were optimized for analyses of the plant clostridia. Clostridia were detected in strongly surface-sterilized leaves, stems, and roots of the plants at approximately 10(4) to 10(5) cells/g of fresh weight; they made up a large proportion of N2-fixing bacterial populations, as determined by MPN counts associated with an acetylene reduction assay. Phylogenetic grouping by MPN-TRFLP analysis revealed that the clostridial populations belonged to group II of cluster XIVa and groups IV and V of cluster I; this result was supported by a culture-independent TRFLP analysis using direct DNA extraction from plants. When phylogenetic populations from M. sinensis and the soil around the plants were compared, group II clostridia were found to exist exclusively in M. sinensis.  相似文献   

5.
Iron reduction by psychrotrophic enrichment cultures   总被引:1,自引:0,他引:1  
Psychrotrophic (<20 degrees C) enrichment cultures from deep Pacific marine sediments and Alaskan tundra permafrost reduced ferric iron when using organic acids or H(2) as electron donors. The representative culture W3-7 from the Pacific sediments grew fastest at 10 degrees C, which was 5-fold faster than at 25 degrees C and more than 40-fold faster than at 4 degrees C. Fe(III) reduction was also the fastest at 10 degrees C, which was 2-fold faster than at 25 degrees C and 12-fold faster than at 4 degrees C. Overall, about 80% of the enrichment cultures exhibited microbial Fe(III) reduction under psychrotrophic conditions. These results indicated that microbial iron reduction is likely widespread in cold natural environments and may play important roles in cycling of iron and organic matter over geological times.  相似文献   

6.
7.
8.
9.
The catalytic activity of phosvitin in Fe(II) oxidation and the addition of iron to transferrin were studied under various conditions. It was concluded that the Fe(II) oxidized by phosvitin would bind to apotransferrin, although an appreciable fraction of Fe(III) remained bound to phosvitin. Fe(III) also migrated from phosvitin to apotransferrin. This reaction was first-order with respect to Fe(III)-phosvitin concentration with a half-time (t1/2) of 10 min, and a first-order rate constant, k=0.069min-1, in 700 muM-phosphate buffer, pH 7.2, at 30 degrees C. The catalysis of the oxidation of Fe(III) by phosvitin was proportional to O2 concentration, and is quite different from the relative O2 independence of Fe(II) oxidation as catalysed by ferroxidase. A scheme for the mobilization and transfer of iron in the chicken, including the role of ferroxidase, phosyitin and transferrin, is presented.  相似文献   

10.
11.
12.
Purine and glycine metabolism by purinolytic clostridia.   总被引:5,自引:3,他引:5       下载免费PDF全文
Cell extracts of Clostridium acidiurici, C. cylindrosporum, and C. purinolyticum converted purine, hypoxanthine, 2-hydroxypurine, 6,8-dihydroxypurine, and uric acid into xanthine by the shortest possible route. Adenine was transformed to xanthine only by C. purinolyticum, whereas the other two species formed 6-amino-8-hydroxypurine, which was neither deaminated nor hydroxylated further. 8-Hydroxypurine was formed from purine by all three species. Xanthine dehydrogenase activity was constitutively expressed by C. purinolyticum. Due to the lability of the enzyme activity, comparative studies could not be done with a purified preparation. All enzymes reported to be involved in formiminoglycine metabolism of C. acidiurici and C. cylindrosporum were present in C. purinolyticum. However, glycine was reduced directly to acetate in all three species, as indicated by radiochemical data and by the detection of glycine reductase in cell extracts of C. cylindrosporum and C. purinolyticum. The expression of glycine reductase and the high ratio of glycine fermented to uric acid present points to an energetic advantage for the glycine reductase system, which is expressed when selenium compounds are added to the growth media.  相似文献   

13.
14.
Iron reductase activity in cell extracts ofAquaspirillum magnetotacticum strain MS-1 (wild type) or nonmagnetotactic mutant strain NM-1A was located primarily in the periplasm. Cytoplasm contained 20%–35% and membrane fractions 3% of total iron reductase activity detected. Iron reduction was reversibly inhibited by oxygen, required -NADH, and was enhanced by flavins. Reduced disulfide bonds and uncomplexed sulfhydryl groups were necessary for reductase activity. Respiratory inhibitors did not appreciably affect iron reductase activity. Iron complexed with quinic acid, dihydroxybenzoic acid, acetohydroxamic acid, citric acid, or deferrioxamine B was reduced by soluble iron reductases of strain MS-1.  相似文献   

15.
M. G. Yates  R. M. Daniel 《BBA》1970,197(2):161-169

1. 1. Preparations were obtained from Azotobacter chroococcum which reduced acetylene to ethylene using physiological electron donors instead of sodium dithionite. These preparations fell into two categories: those which required catalytic amounts of benzyl viologen for acetylene reduction and those that did not.

2. 2. Acetylene reduction without benzyl viologen or sodium dithionite was observed only with particles that sedimented at 40 000 × g after disrupting bacteria in the French press or with preparations obtained by disrupting bacteria protected by a mixture of defatted bovine serum albumin-Ficoll-MgCl2 with liquid N2; supernatant fractions required benzyl viologen for acetylene reduction.

3. 3. Added ATP inhibited acetylene reduction by large particles; ATP and MgCl2 were necessary for maximum acetylene reduction with bovine serum albumin-protected preparations.

4. 4. NADH and carbon substrates acted as electron donors but H2 did not; NAD+ was necessary for maximum acetylene reduction with carbon substrates.

5. 5. Anaerobic conditions were necessary for maximum acetylene reduction in all cases.

Abbreviations: TES; N-tris-[hydroxymethyl]-methyl-2-aminoethane sulfonic acid  相似文献   


16.
The genome of the endophytic diazotrophic bacterial species Gluconacetobacter diazotrophicus PAL5 (PAL5) revealed the presence of a gum gene cluster. In this study, the gumD gene homologue, which is predicted to be responsible for the first step in exopolysaccharide (EPS) production, was insertionally inactivated and the resultant mutant (MGD) was functionally studied. The mutant MGD presented normal growth and nitrogen (N(2)) fixation levels but did not produce EPS when grown on different carbon sources. MGD presented altered colony morphology on soft agar plates (0.3% agar) and was defective in biofilm formation on glass wool. Most interestingly, MGD was defective in rice root surface attachment and in root surface and endophytic colonization. Genetic complementation reverted all mutant phenotypes. Also, the addition of EPS purified from culture supernatants of the wild-type strain PAL5 to the mutant MGD was effective in partially restoring wild-type biofilm formation and plant colonization. These data provide strong evidence that the PAL5 gumD gene is involved in EPS biosynthesis and that EPS biosynthesis is required for biofilm formation and plant colonization. To our knowledge, this is the first report of a role of EPS in the endophytic colonization of graminaceous plants by a nitrogen-fixing bacterium.  相似文献   

17.
4,5-Dioxovalerate, which has been proposed as an intermediate in the newly discovered so-called C5 pathway that leads from L-glutamate to δ-aminolevulinate, strongly inhibits uroporphyrin formation from δ-aminolevulinate in cells of Clostridiumtetanomorphum and in cell-free extracts of this organism, in spite of the presence of L-alanine: 4,5-dioxovalerate aminotransferase (aminolevulinate aminotransferase, EC 2.6.1.43). The interference by 4,5-dioxovalerate with porphyrin formation is due to strong inhibition of δ-aminolevulinate dehydratase (EC 4.2.1.24). Since 4,5-dioxovalerate hence effectively prevents the operation of the reaction sequence from L-glutamate to porphyrin, it is concluded that 4,5-dioxovalerate does not function as a physiological δ-aminolevulinate precursor.  相似文献   

18.
19.
Uracil was used by growing cultures of Clostridium sporogenes, and by proteolytic strains of C. botulinum types A and B. Uracil was not used by C. bifermentans; C. botulinum, type B (non-proteolytic); C. botulinum, type F (non-proteolytic); C. botulinum, type E; C. butyricum; C. cochlearium; C. difficile; C. histolyticum; C. oedematiens, type A; C. paraputrificum; C. scatologenes; C. septicum; C. sordellii; C. sticklandii; C. tertium; C. tetani; C. tetanomorphum; C. welchii, types A, B, C, E and 4 untyped strains. The growth of C. sporogenes was not increased by uracil; it was reduced to dihydrouracil. Experiments with washed cells of C. sporogenes showed that the uracil-reducing system was inducible. Washed cell suspensions incubated under hydrogen with uracil, thymine, iso-barbituric acid, 5-amino uracil and cytosine consumed 1 mole H2/mole pyrimidine. The reduction product of cytosine was dihydrouracil indicating that it was deaminated before reduction. The reduction products of the remaining pyrimidines were the corresponding dihydro derivatives. Extracts of C. sporogenes reduced uracil in the presence of NADPH2 but not NADH2.  相似文献   

20.
The cause of the failure of the C2H2-C2H4 assay for nitrogen-fixing bacteria growing on lower alkanes was studied. Acetylene was a strong competitive inhibitor of methane oxidation for methane-utilizing bacteria, as well as for the oxidation of lower alkanes by other bacteria, so that energy and reducing power were no longer available for the reduction of acetylene by nitrogenase. Nitrogen-fixing bacteria grown on alkanes may reduce acetylene when intermediates of alkane-breakdown or other substrates oxidizable in the presence of acetylene are supplied. Ethylene co-oxidation is not responsible for the failure of the test, because acetylene also inhibits this co-oxidation along with methane oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号