首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Soil samples obtained from various forested sites in North Carolina and Washington and from Alaskan tundra were examined for the presence of heterotrophic, nonsymbiotic nitrogen-fixing micro-organisms. Aerobic, nitrogen-fixing micro-organisms were not isolated from any of the soils examined. Estimates of anaerobic nitrogen-fixing bacteria in these soils ranged from 50,000 to 2,000,000/g when a dilution plate technique and a medium supplemented with potato extract was used. However, the isolation of individual colonies from the dilution plates showed that many of these bacteria were unable to fix nitrogen. Soil populations well below 100,000/g were generally indicated by this colony isolation technique. Differentiation of the colonies by size improved the accuracy of the dilution plate estimates somewhat. Dilution tube procedures appeared more suitable for obtaining accurate counts of nitrogen-fixing anaerobes in the soil than the use of dilution plates. The predominant nitrogen-fixing bacterium in most soils was a facultative anaerobe,Bacillus polymyxa. Appreciable numbers of nitrogen-fixing clostridia were also found in several tree nursery soils but were seldom isolated from forest and tundra samples. The clostridia isolated were classified asClostridium butyricum andC. pasteurianum. Variations in the fermentation patterns of these bacteria occurred when the nitrogen supply of the medium was altered. TheC. butyricum isolates were all from forest soils while all except one of theC. pasteuranium isolates were from tundra soils. Paper number2998 of the Journal Series of the North Carolina State University Agricultural Experiment Station, Raleigh, N.C  相似文献   

2.
Several solvent-producing clostridia, including Clostridium acetobutylicum and C. beijerinckii, were previously shown to be nitrogen-fixing organisms based on the incorporation of 15N2 into cellular material. The key nitrogen-fixation (nif) genes, including nifH, nifD, and nifK for nitrogenase component proteins as well as nifE, nifN, nifB and nifV for synthesis of the iron–molybdenum cofactor (FeMoco) of nitrogenase, have now been identified in C. acetobutylicum or C. beijerinckii or both. The organization of these genes is similar to the distinctive pattern that was first observed in Clostridium pasteurianum, with the nifN and nifB genes fused into the nifN-B gene and with the nifV gene split into the nifVω and nifVα genes. The corresponding nif genes of these three clostridial species are highly related to each other. However, in the two solvent-producing clostridia, the nifH and nifD genes are interspersed by two glnB-like genes, which are absent in the corresponding region in C. pasteurianum. However, the nifN-B and nifVω genes of C. pasteurianum are interspersed by the putative modA and modB genes (for molybdate transport), which are absent in the corresponding region in C. acetobutylicum. C. acetobutylicum and C. beijerinckii grew well under nitrogen-fixing conditions, and the acetylene-reducing activity of nitrogenase was measured in the two species. Acetone, butanol, and isopropanol production occurred in nitrogen-fixing cultures, but the peak of nitrogen-fixing activity preceded the active solventogenic phase. Journal of Industrial Microbiology & Biotechnology (2001) 27, 281–286. Received 02 September 2000/ Accepted in revised form 22 November 2000  相似文献   

3.
A type of iron-bound protein was isolated from Clostridium botulinum by a modification of the method used for isolating ferredoxin from C. pasteurianum. This method involved acetone and diethylaminoethyl cellulose treatments followed by ammonium sulfate fractionation. The protein exhibited maximal absorption in the ultraviolet region near 260 mμ. Portions of the isolated iron protein were separated by disc electrophoresis and, following specific iron-bound protein staining, showed a positive reaction in the same position on the gel column as was first demonstrated by use of cell-free extract. Evidence accumulated by use of a cell-free extract of C. botulinum suggests that pyruvate is metabolized through a phosphoroclastic system as demonstrated in other clostridia. It is probable that ferredoxin is an electron mediator between pyruvic oxidase and hydrogenase for hydrogen evolution and acetyl phosphate formation.  相似文献   

4.
Clostridium pasteurianum forms acetic and butyric acids in an initial growth phase, which is a typical feature of clostridial acetone-butanol fermentation where an initial accumulation of acids is followed by production of solvents 1-butanol, acetone and ethanol. The initiation of the solvent production coupled with endospore formation leads to decrease of cell-wall thickness; thinner cell wall is more resistant against solvents and dyes. These changes can be observed by the method based on adaptation of Gram staining. The cell wall of G+ bacteria allows the entry of hexidium iodide and rhodamine 123, whereas the outer membrane of G bacteria does not allow the uptake and therefore G+ bacteria are stained with higher fluorescence intensity than G bacteria. The ratio of fluorescence intensity (FI) to forward scatter (FSC) was determined to correspond to G+ bacteria when clostridia were producing less solvents. The significant drop of the ratio FI to FSC to the level corresponding to G bacteria is detected after initiation of solvent production.  相似文献   

5.
By hybridization experiments with three cloned fragments carrying cellulase genes ofClostridium cellulolyticum, we tried to differentiate 10 cellulolytic mesophilic clostridia, isolated from a municipal solid waste digestor. On the basis of hybridization experiments, three major groups were found among the 10 isolates. The two endoglucanase genes,cel CCA andcel CCB ofC. cellulolyticum, hybridized with nine strains of our isolates, suggesting homology and widespread distribution of these genes. Withcel CCA the strain A31 exhibited a different pattern. In contrast to these nine strains, the strain A11 was found to share no or very weak homology with these two probes, which indicated that this strain of cellulolytic clostridia possesses nonidentical cellulase complex. None of these new strains hybridized withnif genes, indicating that these clostridia did not appear to be nitrogen-fixing bacteria. With other biochemical characteristics, we found that these bacteria appeared to be different from the presently known mesophilic cellulolytic clostridia.  相似文献   

6.
Summary X-ray irradiation of aqueous ferredoxin solutions isolated fromClostridium pasteurianum causes a rapid destruction of the ferredoxin molecule.The destruction is manifested by the decrease of the absorption at 390 nm, the liberation of ferric iron and hydrogen sulfide, and concommittant loss of biological activity in the phosphoroclastic reaction ofC. pasteurianum. The biological activity decreases parallel with the iron liberation, and was found to be dose and pH dependent.The yield of biological inactivation (G-value) and the yield of iron liberation showed the same value of 0.8. OH-radical scavengers like p-amino-benzoic acid and cysteine in low concentrations of 2×10–3 M, protect ferredoxin effectively against radiation, suggesting that OH-radicals are mainly responsible for the inactivation.  相似文献   

7.
Biological nitrogen fixation by the microorganisms in the gut of termites is one of the singularly important symbiotic processes, since termites invariably thrive on nitrogen poor diet. Two isolates of free living aerobic and facultative anaerobic N fixing bacteria were obtained from the guts of fungus cultivating termite, Macrotermes sp. Among the total bacterial isolates from termite gut, the per cents of N fixing aerobes viz., Azotobacter and Beijerinckia spp were 49% and 37% from the salivary gland while facultative N fixing anaerobe viz., Klebsiella and Clostridium contributed (51% and 93%). The free living aerobic bacteria were identified as Azotobacter spp (19 x 104 CFU mL‐1) and Beijerinckia (13.2 x 104 CFU mL‐1) from the salivary gland of the termite; interestingly, foregut, mid gut and hind gut registered a low population of these bacteria. The isolates of Azotobacter were smooth, glistening, vicid in nature, rods, gram negative and cyst forming. Isolates of Beijerinckia sp. produced copious slime, tenacious, rods, gram negative with no cyst formations. Both the isolates emitted green fluorescence and produced acid. Facultative N fixing anaerobes were harbored in the hind gut. The isolates were identified as Klebsiella (20 x 104 CFU mL‐1) and Clostridium pasteurianum 39.1 x 104 CFU mL‐1. Klebsiella were straight rods arranged singly or in pairs, non‐motile, gram negative, whereas Clostridium pasteurianum was viscoid, motile with terminal spores. A positive correlation was observed between the extractable polysaccharides of these isolates and soil aggregation. The aggregates formed by the isolates increased soil aeration, porosity, water holding capacity and helped in better plant growth. Thus, the gut microflora of termite, apart from harnessing nitrogen from the atmosphere, also helps improving soil fertility.  相似文献   

8.
Hierarchical clustering and similarity coefficients of pairwise alignments of the published nucleotide sequences of 27nifH genes suggest thatnif genes are as ancient as the archaebacteria and clostridia. The positions ofnifHl ofMethanococcus thermolithotrophicus, nifH3 ofClostridium pasteurianum, nifH3 ofAzotobacter vinelandii andnifH ofFrankia suggest that a variety of lateral transfers may have occurred during evolution ofnifH gene. The genes for type 3 nitrogenase ofA. vinelandii may have diverged early from methanogens and clostridia. A high similarity coefficient with the derived amino acid sequence of type 3 nitrogenase suggests the presence of a functionally similar enzyme inC. pasteurianum. The type 2 nitrogenase genenifH2 of azotobacters seems to have originated recently from the genenifHl for conventional type I nitrogenase. RhizobialnifH genes comprise two closely related but discrete clusters that are in consonance with the plasmid or chromosomal location ofnif genes. The chromosomal and plasmid locatednifH of rhizobia seem to have evolved independently but contemporaneously.  相似文献   

9.
Microbial electrosynthesis or electro-fermentation in bioelectrochemical systems (BES) have recently received much attention. Here, we demonstrate with the glycerol metabolism by Clostridium pasteurianum that H 2 from in situ water electrolysis, especially in combination with a redox mediator, provides a simple and flexible way for shifting product selectivity and enhancing product yield in the fermentation process. In particular, we report and quantify for the first time strictly different effects of Neutral Red (NR) and the barely studied redox mediator Brilliant Blue (BB) on the growth and product formation of C. pasteurianum grown on glycerol in a newly developed BES. We were able to switch the product formation pattern of C. pasteurianum with a concentration-dependent addition of NR and BB under varied iron availability. Interestingly, NR and BB influenced the glycerol metabolism in a strictly opposite manner concerning the formation of the major products 1,3-propanediol (1,3-PDO) and n-butanol (BuOH). Whereas, NR and iron generally enhance the formation of BuOH, BB favors the formation of 1,3-PDO. In BES the metabolic shifts were enhanced, leading to a further increased yield by as high as 33% for BuOH in NR fermentations and 21% for 1,3-PDO in BB fermentations compared with the respective controls. For the first time, the electron transfer mediated by these mediators and their recycle (recharge) were unambiguously quantified by excluding the overlapping effect of iron. BB has a higher capacity than NR and iron. The extra electron transfer by BB can account for as high as 30–75% of the total NAD + regeneration under certain conditions, contributing significantly to the product formation.  相似文献   

10.
We report here the existence of anaerobic nitrogen-fixing consortia (ANFICOs) consisting of N2-fixing clostridia and diverse nondiazotrophic bacteria in nonleguminous plants; we found these ANFICOs while attempting to overcome a problem with culturing nitrogen-fixing microbes from various gramineous plants. A major feature of ANFICOs is that N2 fixation by the anaerobic clostridia is supported by the elimination of oxygen by the accompanying bacteria in the culture. In a few ANFICOs, nondiazotrophic bacteria specifically induced nitrogen fixation of the clostridia in culture. ANFICOs are widespread in wild rice species and pioneer plants, which are able to grow in unfavorable locations. These results indicate that clostridia are naturally occurring endophytes in gramineous plants and that clostridial N2 fixation arises in association with nondiazotrophic endophytes.  相似文献   

11.
Kravchenko  I. K.  Doroshenko  E. V. 《Microbiology》2003,72(1):98-102
The nitrogenase (acetylene reductase) activity in monolithic and minced peat samples was found to be low, no more than 0.014–0.022 mg N/(kg h). Incorporation of the 15N2 isotope into organic compounds of peat soil was 2.71–8.13 mg N/kg over 15 days. The nitrogen-fixing activity was the highest in a 10- to 20-cm layer of soil and much lower in the upper (under green moss) and deeper (20- to 30-cm) layers. The addition of glucose to soil samples stimulated nitrogen fixation considerably after 18–26 h. The maximum nitrogenase activity (3.5–3.8 mg N/(kg h)), observed after 60–70 h, coincided with the peak of respiratory activity. A repeated addition of glucose after its exhaustion increased nitrogenase activity, without a lag period, to 8.5 mg N/(kg h). Investigation of the effect of environmental factors (temperature, pH, aeration, and light intensity) on potential nitrogen-fixing activity in peat samples revealed that nitrogen fixation could proceed in a wide range of pH values (from 3.0 to 7.5) and temperatures (from 5 to 35°C). The nitrogen-fixing bacteria belonging to different trophic groups were enumerated by using nitrogen-free media with pH values and mineralization levels close to those in situ. In samples of peat soil, diazotrophic methanol-utilizing bacteria prevailed (2.0–2.5 × 106 cells/g); the second largest group was facultatively anaerobic bacteria of the family Enterobacteriaceae.  相似文献   

12.
Clostridium pasteurianum produces industrially valuable chemicals such as n‐butanol and 1,3‐propanediol from fermentations of glycerol and glucose. Metabolic engineering for increased yields of selective compounds is not well established in this microorganism. In order to study carbon fluxes and to selectively increase butanol yields, we integrated the latest advances in genome editing to obtain an electrocompetent Clostridium pasteurianum strain for further engineering. Deletion of the glycerol dehydratase large subunit (dhaB) using an adapted S. pyogenes Type II CRISPR/Cas9 nickase system resulted in a 1,3‐propanediol‐deficient mutant producing butanol as the main product. Surprisingly, the mutant was able to grow on glycerol as the sole carbon source. In spite of reduced growth, butanol yields were highly increased. Metabolic flux analysis revealed an important role of the newly identified electron bifurcation pathway for crotonyl‐CoA to butyryl‐CoA conversion in the regulation of redox balance. Compared to the parental strain, the electron bifurcation pathway flux of the dhaB mutant increased from 8 to 46% of the overall flux from crotonyl‐CoA to butyryl‐CoA and butanol, indicating a new, 1,3‐propanediol‐independent pattern of glycerol fermentation in Clostridium pasteurianum.  相似文献   

13.
Clostridium pasteurianum was grown in batch cultures on media with an initial iron concentration of 10 M. The uptake of iron and the synthesis of ferredoxin was followed. All the iron present in the medium was taken up by the cells before 50% of the final cell density was attained. The bacteria then continued to grow in the complete absence of exogenous iron. Ferredoxin was synthesized during growth until the exogenous iron concentration dropped below 1 M. During growth in the absence of iron ferredoxin was degraded with the result that at the end of growth the cells did not contain ferredoxin. The specific activity of the iron sulfur protein, pyruvate synthase (E.C. 1.2.7.1), remained constant during growth of C. pasteurianum in the absence of exogenous iron. This finding suggests that ferredoxin was used as an endogenous source of iron for the synthesis of essential iron proteins during periods of iron deprivation.The term ferredoxin degradation is used here to indicate that the ferredoxin content in the growing cells decreased more than could be accounted for by repeated cell division. Ferredoxin = holoferredoxin = protein containing iron and sulfide; apoferredoxin = protein free of iron and sulfide  相似文献   

14.
The occurrence and the dynamics of phototrophic purple nonsulphur bacteria (PPNSB) as well as Azospirillum, Azotobacter, Clostridium, and cyanobacteria at different rice growth stages were studied in two ricefields, at Kafr-El-Shiekh and Al-Fayoum in Egypt.The PPNSB existed in the both rice fields examined, but their numbers varied according to field conditions, habitat and rice growth stage. After transplanting, the number of PPNSB increased gradually, reached its maximum at maximum tillering stage, and thereafter declined toward harvest time. Numbers of PPNSB were generally comparable with that of the heterotrophic N2-fixers namely Azospirillum, Azotobacter, Clostridium and cyanobacteria, while that of phototrophic purple and green sulphur bacteria were relatively lower.The highest PPNSB numbers were generally found in rhizosphere (103–106 per g–1 dw soil) followed by soil (103–105 per g–1 dw soil) and floodwater (10–102 per ml). Rice plants showed a positive rhizosphere effect on PPNSB, clostridia, Azotobacter and Azospirillum, negative rhizosphere effect on cyanobacteria and green sulphur bacteria, and no effect on purple sulphur bacteria.  相似文献   

15.
Hopanoid lipids have been discovered recently in a number of nitrogen-fixing soil bacteria and in Bradyrhizobium bacteria which fix nitrogen in association with legume plants. We report here an investigation of the hopanoid content in an additional number of soil bacteria capable of living in close association with plants. Of the strains investigated, hopanoids were discovered in phototrophic, nitrogen-fixing bacteria and in an extended number of Bradyrhizobium strains. Strains in which hopanoids so far have not been found belong to the following genera: Rhizobium, Sinorhizobium, Phyllobacterium, Agrobacterium, and Azoarcus. To address the function of hopanoids in Bradyrhizobium, we cloned the gene coding for a key enzyme of hopanoid biosynthesis, the squalene-hopene cyclase, and expressed the gene in E. coli. The recombinant enzyme catalyzed in vitro the cyclization of squalene to hopanoid derivatives.Abbreviations SHC squalene-hopene cyclase - shc squalene-hopene cyclase gene  相似文献   

16.
Chlorimuron-ethyl is a type of long-residual herbicide applied widely to soybean fields in China, but little information is available about the long-term impact of this herbicide on soil nitrogen-transforming microbial communities. Soil samples (0–20 cm) were collected from three treatments (no, 5-year and 10-year application of chlorimuron-ethyl) in a continuously cropped soybean field. Plate count (CFU), most probable number (MPN) count, and clone library analyses were conducted to investigate the abundance and composition of nitrogen-fixing, ammonia-oxidizing, and denitrifying bacterial communities, and a chlorate inhibition method was adopted to measure the soil nitrification potential. Long-term chlorimuron-ethyl application reduced the abundance of soil culturable nitrogen-fixing, ammonia-oxidizing, and denitrifying bacteria. Moreover, chlorimuron-ethyl decreased the diversity of nitrogen-fixing and ammonia-oxidizing bacteria but promoted that of denitrifying bacteria. Chlorimuron-ethyl restrained some uncultured nitrogen-fixing bacteria, ammonia-oxidizing bacteria Nitrosospira sp. cluster 3a and 3d, and some novel or putative denitrifying bacteria. The nitrogen-fixing bacteria were closely related to Bradyrhizobium sp., ammonia-oxidizing bacteria Nitrosospira sp. cluster 3b and 3c, and most denitrifying bacteria were resistant to chlorimuron-ethyl. There was a negative correlation between the nitrification potential and the residual amount of soil chlorimuron-ethyl (R2?=?0.88, n?=?3, P?<?0.05). Therefore, long-term application of chlorimuron-ethyl in the continuously cropped soybean field could seriously disturb soil N-transforming communities, and might impact soybean soil biological quality and soybean growth. Further studies should address rational amendment models of this herbicide to reduce the possible ecological risks of long-term application of this herbicide to soybean fields.  相似文献   

17.
Inorganic nitrogen metabolism in two cellulose degrading clostridia, the mesophile Clostridium cellobioparum and the thermophile Clostridium thermocellum was investigated. Both strains show acetylene reduction (i.e. possibly nitrogenase activity), contain glutamine synthetase, glutamate dehydrogenase and glutamate-dependent transaminases. C. cellobioparum additionally contains a NADH-dependent glutamate synthase and a NH 4 + -repressible glycine dehydrogenase (NADPH). Remarkably, acetylene reduction in C. thermocellum is not repressed by ammonium, casting doubt whether this activity is due to nitrogenase. The results are compared with the data from other saccharolytic clostridia.Abbreviation GOGAT glutamine-oxoglutarate amidotransferase (glutamate synthase)  相似文献   

18.
The application of DD, a 1∶1 mixture of 1,3-dichloropropene and 1,2-dichloropropane, at field rate, to soil had neither stimulatory nor suppressive effects on bacteria, actinomycetes, fungi and cellulose decomposing bacteria. The toxic effect of the nematocide onAzotobacter and nitrogen-fixing clostridia was slight, the organisms recovering in a very short time. In fumigated soils the counts ofNitrosomonas andNitrobacter were markedly reduced and remained lower than the counts in the untreated soils for the 30 days duration of the experiment. The inhibitory effects of DD were to some extent influenced by soil type, being most marked in sandy and loam and least in calcareous soils.  相似文献   

19.
【目的】探究不同生境巨菌草内生固氮菌群落组成多样性及其分异规律。【方法】采用高通量测序固氮酶nif H标靶基因方法,研究了我国6个典型地区的巨菌草内生固氮菌群,包括福建闽侯县、新疆墨玉县、内蒙古阿拉善左旗、青海贵德县、甘肃安定区、海南那大镇,结合地理气候因子统计,分析了固氮菌多样性的环境驱动机制。【结果】共获得64122条nif H基因的有效序列,640个OTUs,归属于6个门、10个纲、17个目、24个科、33个属和39个种。不同地区巨菌草中优势内生固氮菌群的种类和丰度存在较大的差异。在门水平上,福州闽侯县、甘肃安定区、新疆墨玉县、内蒙古阿拉善左旗和青海贵德县5个地区的优势菌门均为变形菌门,海南那大镇的优势菌门为变形菌门和蓝藻菌门;属水平上,不同地区巨菌草最优势内生固氮菌类群分别为:福州闽侯县(变形菌门中未定属,80.56%);新疆墨玉县(变形菌门中未定属,33.14%);内蒙古阿拉善左旗(变形菌门中未定属,76.23%);甘肃安定区(α-变形菌纲中的未定属,53.78%);海南那大镇(变形菌门中未定属,38.37%);青海贵德县(变形菌门中未定属,46.12%)。Alpha多样性和Beta多样性分析表明,不同地区巨菌草内生固氮菌群落的多样性存在较大的差异,海南那大镇样本中巨菌草各类内生固氮菌群的多样性及丰富度最高,福建闽侯县样本中巨菌草各类内生固氮菌群的多样性及丰富度最低。典范对应分析(CCA)结果表明,年均降雨量和年均气温是影响巨菌草内生固氮菌群变化的主要因素,其次是土壤有机质、土壤全氮和土壤p H。【结论】不同地区巨菌草内生固氮菌群落的组成及丰度存在着较大的差异,海南那大镇巨菌草内生固氮菌群的种类及相对丰度较高,本研究可为巨菌草内生固氮菌群的资源开发及其固氮微生物肥料的菌种选育和生产应用提供理论支持。  相似文献   

20.
1. Rubredoxin isolated from the green photosynthetic bacterium Chloropseudomonas ethylica was similar in composition to those from anaerobic fermentative bacteria. Amino acid analysis indicated a minimum molecular weight of 6352 with one iron atom per molecule. 2. The circular-dichroism and electron-paramagnetic-resonance spectra of Ch. ethylica rubredoxin showed many similarities to those of Clostridium pasteurianum, but suggested that there may be subtle differences in the protein conformation about the iron atom. 3. Mössbauer-effect measurements on rubredoxin from Cl. pasteurianum and Ch. ethylica showed that in the oxidized state the iron (high-spin Fe3+) has a hyperfine field of 370±3kG, whereas in the reduced state (high-spin Fe2+) the hyperfine field tensor is anisotropic with a component perpendicular to the symmetry axis of the ion of about −200kG. For the reduced protein the sign of the electric-field gradient is negative, i.e. the ground state of the Fe2+ is a [unk] orbital. There is a large non-cubic ligand-field splitting (Δ/k=900°K), and a small spin-orbit splitting (D~+4.4cm−1) of the Fe2+ levels. 4. The contributions of core polarization to the hyperfine field in the Fe3+ and Fe2+ ions are estimated to be −370 and −300kG respectively. 5. The significance of these results in interpretation of the Mössbauer spectra of other iron–sulphur proteins is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号