首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The DNA sequence of a mixed-linkage beta-glucanase (1,3-1,4-beta-D-glucan 4-glucanohydrolase [EC 3.2.1.73]) gene from Fibrobacter succinogenes cloned in Escherichia coli was determined. The general features of this gene are very similar to the consensus features for other gram-negative bacterial genes. The gene product was processed for export in E. coli. There is a high level of sequence homology between the structure of this glucanase and the structure of a mixed-linkage beta-glucanase from Bacillus subtilis. The nonhomologous region of the amino acid sequence includes a serine-rich region containing five repeats of the sequence Pro-Xxx-Ser-Ser-Ser-Ser-(Ala or Val) which may be functionally related to the serine-rich region observed in Pseudomonas fluorescens cellulase and the serine- and/or threonine-rich regions observed in Cellulomonas fimi endoglucanase and exoglucanase, in Clostridium thermocellum endoglucanases A and B, and in Trichoderma reesei cellobiohydrolase I, cellobiohydrolase II, and endoglucanase I.  相似文献   

4.
A Clostridium thermocellum gene (licB) encoding a thermoactive 1,3-1,4-beta-glucanase (lichenase) with a molecular weight of about 35,000 was localized on a 1.5-kb DNA fragment by cloning and expression in E. coli. The enzyme acts on beta-glucans with alternating beta-1,3- and beta-1,4-linkages such as barley beta-glucan and lichenan, but not on beta-glucans containing only 1,3- or 1,4-glucosidic bonds. It is active over a broad pH range (pH 5-12) and has a temperature optimum around 80 degrees C. The C. thermocellum lichenase is unusually resistant against inactivation by heat, ethanol or ionic detergents. These properties make the enzyme highly suitable for industrial application in the mashing process of beer brewing.  相似文献   

5.
Fibrobacter succinogenes 1,3-1,4-beta-D-glucanase (Fsbeta-glucanase) catalyzes the specific hydrolysis of beta-1,4 glycosidic bonds adjacent to beta-1,3 linkages in beta-D-glucans or lichenan. This is the first report to elucidate the crystal structure of a truncated Fsbeta-glucanase (TFsbeta-glucanase) in complex with beta-1,3-1,4-cellotriose, a major product of the enzyme reaction. The crystal structures, at a resolution of 2.3 angstroms, reveal that the overall fold of TFsbeta-glucanase remains virtually unchanged upon sugar binding. The enzyme accommodates five glucose residues, forming a concave active cleft. The beta-1,3-1,4-cellotriose with subsites -3 to -1 bound to the active cleft of TFsbeta-glucanase with its reducing end subsite -1 close to the key catalytic residues Glu56 and Glu60. All three subsites of the beta-1,3-1,4-cellotriose adopted a relaxed C(1)4 conformation, with a beta-1,3 glycosidic linkage between subsites -2 and -1, and a beta-1,4 glycosidic linkage between subsites -3 and -2. On the basis of the enzyme-product complex structure observed in this study, a catalytic mechanism and substrate binding conformation of the active site of TFsbeta-glucanase is proposed.  相似文献   

6.
H Chen  X L Li    L G Ljungdahl 《Journal of bacteriology》1997,179(19):6028-6034
A 971-bp cDNA, designated licA, was obtained from a library of Orpinomyces sp. strain PC-2 constructed in Escherichia coli. It had an open reading frame of 738 nucleotides encoding LicA (1,3-1,4-beta-D-glucanase; lichenase) (EC 3.2.1.73) of 245 amino acids with a calculated molecular mass of 27,929 Da. The deduced amino acid sequence had high homology with bacterial beta-glucanases, particularly in the central regions and toward the C-terminal halves of bacterial enzymes. LicA had no homology with plant beta-glucanases. The genomic DNA region coding for LicA was devoid of introns. More than 95% of the recombinant beta-glucanase produced in E. coli cells was found in the culture medium and periplasmic space. A N-terminal signal peptide of 29 amino residues was cleaved from the enzyme secreted from Orpinomyces, whereas 21 amino acid residues of the signal peptide were removed when the enzyme was produced by E. coli. The beta-glucanase produced by E. coli was purified from the culture medium. It had a molecular mass of 27 kDa on sodium dodecyl sulfate-polyacrylamide gels. The Km and Vmax values with lichenin as the substrate at pH 6.0 and 40 degrees C were 0.75 mg/ml and 3,790 micromol/min/mg, respectively. With barley beta-glucan as the substrate, the corresponding values were 0.91 mg/ml and 5,320 micromol/min/mg. This enzyme did not hydrolyze laminarin, carboxymethylcellulose, pustulan, or xylan. The main products of lichenin and barley beta-glucan hydrolysis were triose and tetraose. LicA represented the first 1,3-1,4-beta-D-glucanase reported from fungi. The results presented suggest that licA of Orpinomyces had a bacterial origin.  相似文献   

7.
The synthesis and secretion of a 1,3-1,4-beta-D-glucanase were studied in different strains of Escherichia coli transformed with plasmids carrying the Bacillus circulans WL-12 1,3-1,4-beta-D-glucanase structural gene. This gene (named BGC) is contained within a 1.9-kilobase BamHI-HindIII fragment and directs the synthesis in E. coli of an enzyme that specifically degrades lichenan. Only one active form of the enzyme was found when the gene was expressed in different E. coli strains. The electrophoretic pattern of this protein showed a molecular weight that was approximately the same as that of the mature beta-glucanase secreted from B. circulans WL-12, suggesting that the processing of this protein may be similar in both species. As deduced from maxicell experiments, the Bacillus parental promoter directs the synthesis in E. coli. Pulse-chase experiments showed that the protein may be cotranslationally processed.  相似文献   

8.
The 1,3-1,4-beta-D-glucanase from Fibrobacter succinogenes (Fsbeta-glucanase) is classified as one of the family 16 glycosyl hydrolases. It hydrolyzes the glycosidic bond in the mixed-linked glucans containing beta-1,3- and beta-1,4-glycosidic linkages. We constructed a truncated form of recombinant Fsbeta-glucanase containing the catalytic domain from amino acid residues 1-258, which exhibited a higher thermal stability and enzymatic activity than the full-length enzyme. The crystal structure of the truncated Fsbeta-glucanase was solved at a resolution of 1.7A by the multiple wavelength anomalous dispersion (MAD) method using the anomalous signals from the seleno-methionine-labeled protein. The overall topology of the truncated Fsbeta-glucanase consists mainly of two eight-stranded anti-parallel beta-sheets arranged in a jellyroll beta-sandwich, similar to the fold of many glycosyl hydrolases and carbohydrate-binding modules. Sequence comparison with other bacterial glucanases showed that Fsbeta-glucanase is the only naturally occurring circularly permuted beta-glucanase with reversed sequences. Structural comparison shows that the engineered circular-permuted Bacillus enzymes are more similar to their parent enzymes with which they share approximately 70% sequence identity, than to the naturally occurring Fsbeta-glucanase of similar topology with 30% identity. This result suggests that protein structure relies more on sequence identity than topology. The high-resolution structure of Fsbeta-glucanase provides a structural rationale for the different activities obtained from a series of mutant glucanases and a basis for the development of engineered enzymes with increased activity and structural stability.  相似文献   

9.
EcoRI fragments of DNA from Bacillus subtilis NCIB 8565, a high producer of an endo-1,3-1,4-beta-D-glucanase, were 'shot-gun' cloned in the plasmid vector pBR325. A 3.5 kb insert, carrying single restriction sites for AvaI, BglII, ClaI, PvuI and PvuII, was shown to direct the synthesis of beta-glucanase in Escherichia coli K12. Enzyme activity was demonstrated in extracellular fractions of E. coli harbouring the beta-glucanase gene; however, the largest proportion (greater than 50%) of total enzyme activity was periplasmic in location. beta-Glucanase activity and cellular location were independent of the orientation of the 3.5 kb fragment in pBR325.  相似文献   

10.
A (1,3)-beta-D-glucanase [(1,3)-beta-D-glucan-3-glucanohydrolase] from Ruminococcus flavefaciens grown on milled filter paper was purified 3,700-fold (19% yield) and appeared as a single major protein and activity band upon polyacrylamide gel electrophoresis. The enzyme did not hydrolyze 1,6-beta linkages (pustulan) or 1,3-beta linkages in glucans with frequent 1,6-beta-linkage branch points (scleroglucan). Curdlan and carboxymethylpachyman were hydrolyzed at 50% the rate of laminarin. The enzyme had a Km of 0.37 mg of laminarin per ml, a pH optimum of 6.8, and a temperature optimum of 55 degrees C and was stable to heating at 40 degrees C for 60 min. The molecular mass of the enzyme was estimated to be 26 kDa by gel filtration and 25 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme was completely inhibited by 1 mM Hg2+, Cu2+, and KMnO4, 75% by 1 mM Ag2+, and Ni2+, and 50% by 1 mM Mn2+ and Fe3+. In a 2-h incubation with laminaridextrins (seven to nine glucose units) or curdlan and excess enzyme, the major products were glucose (30 to 37%), laminaribiose (17 to 23%), laminaritriose (18 to 28%), laminaritetraose (13 to 21%), and small amounts of large laminarioligosaccharides. With laminarihexaose and laminaripentaose, the products were equal quantities of laminaribiose and glucose (30%) and laminaritetraose and laminaritriose (18 to 21%). Laminaribiose or laminaritriose were not hydrolyzed, indicating a requirement for at least four contiguous 1,3-beta-linked glucose units for enzyme activity. The enzyme appeared to have the properties of both an exo- and an endoglucanase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Bacillus amyloliquefaciens 1,3-1,4-beta-D-glucan 4-glucanohydrolase (EC 3.2.1.73) was modified by the mechanism-based, affinity-labeling reagent [14C](3,4)-epoxybutyl beta-D-cellobioside. Following partial inactivation a completely inactivated enzyme preparation containing 1.1 mol of covalently bound inhibitor/mol of protein was obtained by chromatography on a cellulosic matrix. The inactivated enzyme was digested with endoproteinase Glu-C and radioactive peptides purified by reversed-phase high performance liquid chromatography (HPLC). The affinity label was esterified exclusively to the gamma-carboxylate of Glu105 in the sequence Gly-Thr-Pro-Trp-Asp-Glu-Ile-Asp-Ile-Glu109. The sequence motif Glu-(Ile/Leu)-Asp-Ile is found in many glucanases and xylanases and may therefore serve to identify the catalytic nucleophile in beta-glycanases, which otherwise exhibit a low degree of sequence identity. The esterification of Glu105 by the affinity label abolished endoproteinase Glu-C-mediated hydrolysis of the Glu-Ile106 peptide bond. Identification of phenylthiohydantoin-Glu105 during automated sequence analysis was not possible unless the affinity label was liberated by prior base hydrolysis. These observations formed the basis for the development of a highly sensitive approach for the identification of catalytic carboxylates in polysaccharide hydrolases employing non-radioactive inhibitors, comparative HPLC mapping, electrospray mass spectrometry, and Edman degradation.  相似文献   

12.
1. Nitrate reductase was purified 134-fold from Escherichia coli K12. The purification procedure involves the release by Triton X-100 of the enzyme from the cell envelope. i. The purified enzyme exists in aqueous solution either as a monomer (mol. wt. about 220 000) or as an associated form (probably a tetramer; mol.wt. about 880 000). 3. The purified enzyme has three subunits with apparent mol.wts. of 150 000, 67000 and 65000. An additional subunit of apparent mol.wt. 20000 is present in a haem-containing fraction that is also produced by the preparative procedure described. 4. None of the enzyme subunits is present in the cell envelope of cells grown in the absence of nitrate. 5. Reversible changes in the activity of nitrate reductase in vitro with FMNH2 as reductant can be induced under circumstances which are without effect on the reduced Benzyl Viologen-NO3-activity.  相似文献   

13.
A gene coding for xylanase synthesis in Bacteroides succinogenes was isolated by cloning, with Escherichia coli HB101 as the host. After partial digestion of B. succinogenes DNA with Sau3A, fragments were ligated into the BamHI site of pBR322 and transformed into E. coli HB101. Of 14,000 colonies screened, 4 produced clear halos on Remazol brilliant blue-xylan agar. Plasmids from two stable clones recovered exhibited identical restriction enzyme patterns, with the same 9.4-kilobase-pair (kbp) insert. The plasmid was designated pBX1. After subcloning of restriction enzyme fragments, a 3-kbp fragment was found to code for xylanase activity in either orientation when inserted into pUC18 and pUC19. The original clone possessed approximately 10-fold higher xylanase activity than did clones harboring the 3-kbp insert in pUC18, pUC19, or pBR322. The enzyme was partially secreted into the periplasmic space of E. coli. The periplasmic enzyme of the BX1 clone had 2% of the activity on carboxymethyl cellulose and less than 0.2% of the activity on p-nitrophenyl xyloside and a range of other substrates that it exhibited on xylan. The xylanase gene was not subject to catabolite repression by glucose or induction by either xylan or xylose. The xylanase activity migrated as a single broad band on nondenaturing polyacrylamide gels. The Km of the pBX1-encoded enzyme was 0.22% (wt/vol) of xylan, which was similar to that for the xylanase activity in an extracellular enzyme preparation from B. succinogenes. Based on these data it appears that the xylanase gene expressed in E. coli is fully functional and codes for an enzyme with properties similar to the B. succinogenes enzyme(s).  相似文献   

14.
Cheng HL  Tsai LC  Lin SS  Yuan HS  Yang NS  Lee SH  Shyur LF 《Biochemistry》2002,41(27):8759-8766
The possible structural and catalytic functions of the nine tryptophan amino acid residues, including Trp(54), Trp(105), Trp(112), Trp(141), Trp(148), Trp(165), Trp(186), Trp(198), and Trp(203) in Fibrobacter succinogenes 1,3-1,4-beta-D-glucanase (Fs beta-glucanase), were characterized using site-directed mutagenesis, initial rate kinetics, fluorescence spectrometry, and structural modeling analysis. Kinetic studies showed that a 5-7-fold increase in K(m) value for lichenan was observed for W141F, W141H, and W203R mutant Fs beta-glucanases, and approximately 72-, 56-, 30-, 29.5-, 4.9-, and 4.3-fold decreases in k(cat) relative to that for the wild-type enzyme were observed for the W54F, W54Y, W141H, W203R, W141F, and W148F mutants, respectively. In contrast, W186F and W203F, unlike the other 12 mutants, exhibited a 1.4- and 4.2-fold increase in k(cat), respectively. W165F and W203R were the only two mutants that exhibited a 4-7-fold higher activity relative to the wild-type enzyme after they were incubated at pH 3.0 for 1 h. Fluorescence spectrometry indicated that all of the mutations on the nine tryptophan amino acid residues retained a folding similar to that of the wild-type enzyme. Structural modeling and kinetic studies suggest that Trp(54), Trp(141), Trp(148), and Trp(203) play important roles in maintaining structural integrity in the substrate-binding cleft and the catalytic efficiency of the enzyme.  相似文献   

15.
A (1,3)-beta-D-glucanase [(1,3)-beta-D-glucan-3-glucanohydrolase] from Ruminococcus flavefaciens grown on milled filter paper was purified 3,700-fold (19% yield) and appeared as a single major protein and activity band upon polyacrylamide gel electrophoresis. The enzyme did not hydrolyze 1,6-beta linkages (pustulan) or 1,3-beta linkages in glucans with frequent 1,6-beta-linkage branch points (scleroglucan). Curdlan and carboxymethylpachyman were hydrolyzed at 50% the rate of laminarin. The enzyme had a Km of 0.37 mg of laminarin per ml, a pH optimum of 6.8, and a temperature optimum of 55 degrees C and was stable to heating at 40 degrees C for 60 min. The molecular mass of the enzyme was estimated to be 26 kDa by gel filtration and 25 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme was completely inhibited by 1 mM Hg2+, Cu2+, and KMnO4, 75% by 1 mM Ag2+, and Ni2+, and 50% by 1 mM Mn2+ and Fe3+. In a 2-h incubation with laminaridextrins (seven to nine glucose units) or curdlan and excess enzyme, the major products were glucose (30 to 37%), laminaribiose (17 to 23%), laminaritriose (18 to 28%), laminaritetraose (13 to 21%), and small amounts of large laminarioligosaccharides. With laminarihexaose and laminaripentaose, the products were equal quantities of laminaribiose and glucose (30%) and laminaritetraose and laminaritriose (18 to 21%). Laminaribiose or laminaritriose were not hydrolyzed, indicating a requirement for at least four contiguous 1,3-beta-linked glucose units for enzyme activity. The enzyme appeared to have the properties of both an exo- and an endoglucanase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
A gene coding for xylanase synthesis in Bacteroides succinogenes was isolated by cloning, with Escherichia coli HB101 as the host. After partial digestion of B. succinogenes DNA with Sau3A, fragments were ligated into the BamHI site of pBR322 and transformed into E. coli HB101. Of 14,000 colonies screened, 4 produced clear halos on Remazol brilliant blue-xylan agar. Plasmids from two stable clones recovered exhibited identical restriction enzyme patterns, with the same 9.4-kilobase-pair (kbp) insert. The plasmid was designated pBX1. After subcloning of restriction enzyme fragments, a 3-kbp fragment was found to code for xylanase activity in either orientation when inserted into pUC18 and pUC19. The original clone possessed approximately 10-fold higher xylanase activity than did clones harboring the 3-kbp insert in pUC18, pUC19, or pBR322. The enzyme was partially secreted into the periplasmic space of E. coli. The periplasmic enzyme of the BX1 clone had 2% of the activity on carboxymethyl cellulose and less than 0.2% of the activity on p-nitrophenyl xyloside and a range of other substrates that it exhibited on xylan. The xylanase gene was not subject to catabolite repression by glucose or induction by either xylan or xylose. The xylanase activity migrated as a single broad band on nondenaturing polyacrylamide gels. The Km of the pBX1-encoded enzyme was 0.22% (wt/vol) of xylan, which was similar to that for the xylanase activity in an extracellular enzyme preparation from B. succinogenes. Based on these data it appears that the xylanase gene expressed in E. coli is fully functional and codes for an enzyme with properties similar to the B. succinogenes enzyme(s).  相似文献   

17.
A DNA fragment coding for a cellodextrinase of Bacteroides succinogenes S85 was isolated by screening of a pBR322 gene library in Escherichia coli HB101. Of 100,000 colonies screened on a complex medium with methylumbelliferyl-beta-D-cellobioside as the indicator substrate, two cellodextrinase-positive clones (CB1 and CB2) were isolated. The DNA inserts from the two recombinant plasmids were 7.7 kilobase pairs in size and had similar restriction maps. After subcloning from pCB2, a 2.5-kilobase-pair insert which coded for cellodextrinase activity was isolated. The enzyme was located in the cytoplasm of the E. coli host. It exhibited no activity on carboxymethyl cellulose, Avicel microcrystalline cellulose, acid-swollen cellulose, or cellobiose but hydrolyzed p-nitrophenyl-beta-D-cellobioside and p-nitrophenyl-beta-D-lactoside. The Km (0.1 mM) for the hydrolysis of p-nitrophenyl-cellobioside by the enzyme expressed in E. coli was similar to that reported for the purified enzyme from B. succinogenes. Expression of the cellodextrinase gene was subjected to catabolite repression by glucose and was not induced by cellobiose. The origin of the DNA insert from B. succinogenes was confirmed by Southern blot analysis. Western blotting (immunoblotting) using antibodies raised against the purified B. succinogenes cellodextrinase revealed a protein with a molecular weight of approximately 50,000 in E. coli clones which comigrated with the native enzyme isolated from B. succinogenes. These data indicate that the cellodextrinase gene expressed in E. coli is fully functional and codes for an enzyme with properties similar to those of the native enzyme.  相似文献   

18.
A cel gene from Bacteroides succinogenes inserted into the vector pUC8 coded for an enzyme which exhibited high hydrolytic activity on carboxymethylcellulose, p-nitrophenylcellobioside, and lichenan and low activity on laminarin and xylan. The enzyme was not synthesized by the Escherichia coli host when cells were cultured in complex medium containing added glucose. In the absence of added glucose, the endoglucanase and cellobiosidase activities synthesized were partitioned into the periplasmic space during growth, and practically all enzyme was located in the periplasm when the stationary phase of growth was reached. The enzyme exhibited 17- and sixfold higher Km values for the hydrolysis of carboxymethylcellulose and lichenan, respectively, than did the extracellular endoglucanase complex from B. succinogenes. The Cel endoglucanase had a pH optimum similar to that of the B. succinogenes enzyme except that the range was narrower, and the Cel endoglucanase was more readily inactivated on exposure to high temperature, detergents, and certain metals. Its activity was stimulated by calcium and magnesium. Nondenaturing polyacrylamide gel electrophoresis at different acrylamide concentrations revealed the presence of three endoglucanase components, two with molecular weights of 43,000 and one with a molecular weight of 55,000.  相似文献   

19.
A cellobiosidase with unique characteristics from the extracellular culture fluid of the anaerobic gram-negative cellulolytic rumen bacterium Bacteroides succinogenes grown on microcrystalline cellulose (Avicel) in a continuous culture system was purified to homogeneity by column chromatography. The enzyme was a glycoprotein with a molecular weight of approximately 75,000 and an isoelectric point of 6.7. When assayed at 39 degrees C and pH 6.5, the activity of the enzyme with p-nitrophenyl-beta-D-cellobioside as the substrate was stimulated by chloride, bromide, fluoride, iodide, nitrate, and nitrite, with maximum activation (approximately sevenfold) occurring at concentrations ranging from 1.0 mM (Cl-) to greater than 0.75 M (F-). The presence of chloride (0.2 M) did not affect the Km but doubled the Vmax. In the presence of chloride (0.2 M), the pH optimum of the enzyme was broadened, and the temperature optimum was increased from 39 to 45 degrees C. The enzyme released terminal cellobiose from cellotriose and cellobiose and cellotriose from longer-chain-length cellooligosaccharrides and acid-swollen cellulose, but it had no activity on cellobiose. The enzyme showed affinity for cellulose (Avicel) but did not hydrolyze it. It also had a low activity on carboxymethyl cellulose.  相似文献   

20.
A DNA fragment coding for a cellodextrinase of Bacteroides succinogenes S85 was isolated by screening of a pBR322 gene library in Escherichia coli HB101. Of 100,000 colonies screened on a complex medium with methylumbelliferyl-beta-D-cellobioside as the indicator substrate, two cellodextrinase-positive clones (CB1 and CB2) were isolated. The DNA inserts from the two recombinant plasmids were 7.7 kilobase pairs in size and had similar restriction maps. After subcloning from pCB2, a 2.5-kilobase-pair insert which coded for cellodextrinase activity was isolated. The enzyme was located in the cytoplasm of the E. coli host. It exhibited no activity on carboxymethyl cellulose, Avicel microcrystalline cellulose, acid-swollen cellulose, or cellobiose but hydrolyzed p-nitrophenyl-beta-D-cellobioside and p-nitrophenyl-beta-D-lactoside. The Km (0.1 mM) for the hydrolysis of p-nitrophenyl-cellobioside by the enzyme expressed in E. coli was similar to that reported for the purified enzyme from B. succinogenes. Expression of the cellodextrinase gene was subjected to catabolite repression by glucose and was not induced by cellobiose. The origin of the DNA insert from B. succinogenes was confirmed by Southern blot analysis. Western blotting (immunoblotting) using antibodies raised against the purified B. succinogenes cellodextrinase revealed a protein with a molecular weight of approximately 50,000 in E. coli clones which comigrated with the native enzyme isolated from B. succinogenes. These data indicate that the cellodextrinase gene expressed in E. coli is fully functional and codes for an enzyme with properties similar to those of the native enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号