首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Climate change will increase the frequency and the intensity of droughts in the Mediterranean region, likely reducing growth and increasing mortality of holm oaks (Quercus ilex), one of the most abundant species of Mediterranean forests. In water-limited systems such as those of the Mediterranean, carbon allocation patterns strongly favour belowground accumulation, especially in large subterranean structures called lignotubers. The resilience of these forests depends largely on the replenishment rate of these carbon reserves after disturbances. An experimental thinning, with two intensities (removal of 40% and 80% of basal area), was performed in 1992 in a holm oak forest at the Prades Experimental Complex of Catchments (NE Spain). In 2002, a second thinning was carried out in subplots within the former experimental 0.5 ha plots. Samples from the lignotubers of holm oak trees were analyzed for starch, and both mobile and immobile chemical components, in order to assess the resilience of holm oaks to repeated disturbances. Our results show that after 10 years, starch stocks in the lignotubers have only recovered to half their former values. Removing 40% of the basal area instead of 80% is suggested to be the better managing option for this kind of forests.  相似文献   

2.
Concurrent measurements of sap velocity (heat pulse) and ultrasound acoustic emission were performed on the trunks of mature Turkey oak (Quercus cerris) and sessile oak (Quercus petraea) trees. Plant water status was assessed by measuring leaf water potential, leaf conductance and transpiration. Wood density was estimated non-destructively on the trunk section of the plants by mobile computer tomography, which measures the attenuation of a collimated beam of radiation traversing the trunk in several directions, as the device rotates around the tree. Absorption is proportional to the density of the wood. As wood density is strictly correlated to water content, this non-invasive method allows the water content in the trunk section to be evaluated as well as mapped. Leaf water potential declined each morning until a minimum was reached at midday and recovered in the afternoon, lagging behind changes in transpiration rate. Good correspondence was found between the patterns of sap velocity and cavitation rate. A close correlation was demonstrated between wood density, water content and sap velocity. Sap now was always higher in Turkey oak than in sessile oak. Trunk signatures by computer tomography appeared to differentiate the two oak species, with the Turkey oak stem clearly more hydrated than the sessile oak; water storage reservoirs could play an important role in tree survival during extended periods of low soil water availability and in the relative distribution of tree species, especially in the context of global climate change. Late-wood conducting elements of oak species seem to play a significant role in water transport. The mobile computer tomograph was confirmed as a peerless tool for investigating stem water relations. Diurnal variations in the measured parameters under natural drought conditions and the differences between the two oak species are discussed.  相似文献   

3.
In a previous work we developed a mathematical model to explain the co‐occurrence of evergreen and deciduous oak groups in the Mediterranean region, regarded as one of the distinctive features of Mediterranean biodiversity. The mathematical analysis showed that a stabilizing mechanism resulting from niche difference (i.e. different water use and water stress tolerance) between groups allows their coexistence at intermediate values of suitable soil water content. A simple formal derivation of the model expresses this hypothesis in a testable form linked uniquely to the actual evapotranspiration of forests community. In the present work we ascertain whether this simplified conclusion possesses some degree of explanatory power by comparing available data on oaks distributions and remotely sensed evapotranspiration (MODIS product) in a large‐scale survey embracing the western Mediterranean area. Our findings confirmed the basic assumptions of model addressed on large scale, but also revealed asymmetric responses to water use and water stress tolerance between evergreen and deciduous oaks that should be taken into account to increase the understating of species interactions and, ultimately, improve the modeling capacity to explain co‐occurrence.  相似文献   

4.
Aim To analyse the role of the Balearic Islands as a refuge area for evergreen Quercus (cork oak: Quercus suber L., holm oak: Q. ilex L., kermes oak: Q. coccifera L.), by using molecular, historical and palaeobotanical data. Location The Western Mediterranean Basin (Balearic Islands, eastern Iberia, Provence, Sardinia, Corsica, Sicily, Malta, Italy, Northern Africa). Methods We sampled 108 populations and used the PCR‐RFLP technique with five universal cpDNA primers to define haplotypes in the sampled populations. Diversity, differentiation parameters and spatial analysis of the populations, using a spatial version of amova , were linked to the geological history of the Western Mediterranean Basin in order to explain the present spatial pattern of the evergreen Quercus populations in the Balearics. Results Evergreen Quercus cpDNA shows a complex structure, with remnants of ancient diversity in the Balearics. Balearic populations of holm oak are related to Iberian populations, while for cork and kermes oaks, we found both Tyrrhenian and Iberian haplotypes. Main conclusions The complex spatial patterns of cpDNA in Balearic evergreen Quercus appears explicable in terms of a combination of physical (vicariance and long distance dispersal) and biological (introgressive hybridization) factors. The Balearics constitute a glacial refuge area and a reservoir of genetic variation with traces of ancient diversity from Messinian–Pliocene stages.  相似文献   

5.
The Mediterranean region is projected to be extremely vulnerable to global change, which will affect the distribution of typical forest types such as native oak forests. However, our understanding of Mediterranean oak forest responses to future conditions is still very limited by the lack of knowledge on oak forest dynamics and species‐specific responses to multiple drivers. We compared the long‐term (1966–2006) forest persistence and land cover change among evergreen (cork oak and holm oak) and deciduous oak forests and evaluated the importance of anthropogenic and environmental drivers on observed changes for Portugal. We used National Forest Inventories to quantify the changes in oak forests and explored the drivers of change using multinomial logistic regression analysis and an information theoretical approach. We found distinct trends among oak forest types, reflecting the differences in oak economic value, protection status and management schemes: cork oak forests were the most persistent (62%), changing mostly to pines and eucalypt; holm oak forests were less persistent (53.2%), changing mostly to agriculture; and deciduous oak forests were the least persistent (45.7%), changing mostly to shrublands. Drivers of change had distinct importance across oak forest types, but drivers from anthropogenic origin (wildfires, population density, and land accessibility) were always among the most important. Climatic extremes were also important predictors of oak forest changes, namely extreme temperatures for evergreen oak forests and deficit of precipitation for deciduous oak forests. Our results indicate that under increasing human pressure and forecasted climate change, evergreen oak forests will continue declining and deciduous oak forests will be replaced by forests dominated by more xeric species. In the long run, multiple disturbances may change competitive dominance from oak forests to pyrophytic shrublands. A better understanding of forest dynamics and the inclusion of anthropogenic drivers on models of vegetation change will improve predicting the future of Mediterranean oak forests.  相似文献   

6.
A global change-induced biome shift in the Montseny mountains (NE Spain)   总被引:12,自引:0,他引:12  
Shifts in plant species and biome distribution in response to warming have been described in past climate changes. However, reported evidence of such shifts under current climate change is still scarce. By comparing current and 1945 vegetation distribution in the Montseny mountains (Catalonia, NE Spain), we report here a progressive replacement of cold‐temperate ecosystems by Mediterranean ecosystems. Beech (Fagus sylvatica) forest has shifted altitudinally upwards by ca. 70 m at the highest altitudes (1600–1700 m). Both the beech forests and the heather (Calluna vulgaris) heathlands are being replaced by holm oak (Quercus ilex) forest at medium altitudes (800–1400 m). This beech replacement has been observed to occur through a progressive isolation and degradation of beech stands. In ‘isolated’ (small and surrounded by holm oaks) beech stands, beech trees are 30% more defoliated, beech recruitment is 41% lower, and holm oak recruitment is three times higher than in ‘continental’ (large and continuous) beech stands. The progressively warmer conditions, complemented by the land use changes (mainly the cessation of traditional land management) are the apparent causes, providing a paradigmatic example of global change affecting distributions of plant species and biomes.  相似文献   

7.
A holm oak forest was exposed to an experimental drought during 5 years to elucidate the growth responses of the dominant species Quercus ilex, Arbutus unedo and Phillyrea latifolia. Soil water availability was partially reduced, about 15% as predicted for this area for the next decades by GCM and ecophysiological models, by plastic strips intercepting rainfall and by ditch exclusion of water runoff. The stem diameter increment was highly correlated with annual rainfall in all species, and drought treatment strongly reduced the diameter increment of Q. ilex (41%) and specially of A. unedo (63%), the species showing higher growth rates. Stem mortality rates were highly correlated with previous stem density, but drought treatment increased mortality rates in all species. Q. ilex showed the highest mortality rates (9% and 18% in control and drought plots, respectively), and P. latifolia experienced the lowest mortality rates (1% and 3% in control and drought plots, respectively). Drought strongly reduced the increment of live aboveground biomass during these 5 years (83%). A. unedo and Q. ilex experienced a high reduction in biomass increment by drought, whereas P. latifolia biomass increment was insensitive to drought. The different sensitivity to drought of the dominant species of the holm oak forest may be very important determining their future development and distribution in a drier environment as expected in Mediterranean areas for the next decades. These drier conditions could thus have strong effects on structure (species composition) and functioning (carbon uptake and biomass accumulation) of these Mediterranean forests.  相似文献   

8.
Forest decline events have increased worldwide over the last decades being holm oak (Quercus ilex L.) one of the tree species with the most worrying trends across Europe. Since this is one of the tree species with the southernmost distribution within the European continent, its vulnerability to climate change is a phenomenon of enormous ecological importance. Previous research identified drought and soil pathogens as the main causes behind holm oak decline. However, despite tree health loss is a multifactorial phenomenon where abiotic and biotic factors interact in time and space, there are some abiotic factors whose influence has been commonly overlooked. Here, we evaluate how land use (forests versus savannas), topography, and climate extremes jointly determine the spatiotemporal patterns of holm oak defoliation trends over almost three decades (1987–2014) in Spain, where holm oak represents the 25% of the national forested area. We found an increasing defoliation trend in 119 out of the total 134 holm oak plots evaluated, being this defoliation trend significantly higher in forests compared with savannas. Moreover, we have detected that the interaction between topography (which covariates with the land use) and summer precipitation anomalies explains trends of holm oak decline across the Mediterranean region. While a higher occurrence of dry summers increases defoliation trends in steeper terrains where forests dominate, an inverse relationship was found in flatter terrains where savannas are mainly located. These opposite relationships suggest different causal mechanisms behind decline. Whereas hydric stress is likely to occur in steeper terrains where soil water holding capacity is limited, soil waterlogging usually occurs in flatter terrains what increases tree vulnerability to soil pathogens. Our results contribute to the growing evidence of the influence of local topography on forest resilience and could assist in the identification of potential tree decline hotspots and its main causes over the Mediterranean region.  相似文献   

9.
Comparative landscape genetics studies can provide key information to implement cost‐effective conservation measures favouring a broad set of taxa. These studies are scarce, particularly in Mediterranean areas, which include diverse but threatened biological communities. Here, we focus on Mediterranean wetlands in central Iberia and perform a multi‐level, comparative study of two endemic pond‐breeding amphibians, a salamander (Pleurodeles waltl) and a toad (Pelobates cultripes). We genotyped 411 salamanders from 20 populations and 306 toads from 16 populations at 18 and 16 microsatellite loci, respectively, and identified major factors associated with population connectivity through the analysis of three sets of variables potentially affecting gene flow at increasingly finer levels of spatial resolution. Topographic, land use/cover, and remotely sensed vegetation/moisture indices were used to derive optimized resistance surfaces for the two species. We found contrasting patterns of genetic structure, with stronger, finer scale genetic differentiation in Pleurodeles waltl, and notable differences in the role of fine‐scale patterns of heterogeneity in vegetation cover and water content in shaping patterns of regional genetic structure in the two species. Overall, our results suggest a positive role of structural heterogeneity in population connectivity in pond‐breeding amphibians, with habitat patches of Mediterranean scrubland and open oak woodlands (“dehesas”) facilitating gene flow. Our study highlights the usefulness of remotely sensed continuous variables of land cover, vegetation and water content (e.g., NDVI, NDMI) in conservation‐oriented studies aimed at identifying major drivers of population connectivity.  相似文献   

10.
Sardans  Jordi  Rodà  Ferran  Peñuelas  Josep 《Plant Ecology》2004,174(2):307-319
Aleppo pine (Pinus halepensis) and the evergreen holm oak (Quercus ilex) dominate forest areas of the Mediterranean Basin. Both species regenerate abundantly after fires: pine through seedlings and holm oak through resprouts. Cumulative nutrient losses caused by frequent fires may have decreased soil nutrient availability in such areas. To assess the role of nitrogen and phosphorus as limiting factors for growth of these species during post-fire recovery, a field fertilisation and competition experiment was conducted in a 5-year post-fire shrubland on calcareous soil, where naturally-regenerated saplings of Aleppo pine and resprouts of interior holm oak (Quercus ilex subsp. rotundifolia) coexist. Three years after fertilisation, relative basal area increment was 56% greater in pines fertilised with 250 kg P ha–1 than in non fertilised ones. N fertilisation had small or no effects. Interactions between N and P fertilisation were not observed. Growth of Aleppo pine only increased with P fertilisation when neighbours were removed. Hence, the negative effect of neighbours on growth was greater when P availability was enhanced by fertilisation. In contrast, holm oak was able to grow more (110%) in response to increased P supply even without neighbour removal. A common garden experiment was then conducted with potted seedlings to investigate whether the suggested higher competitive capacity of holm oak for P held under a range of P amendments on different soils and competitive situations. P fertilisation increased seedling biomass yield of both species. When P availability increased, a negative effect of neighbours on growth was observed for holm oak and in 70 a lesser extent for Aleppo pine. In conclusion, in the field, holm oak resprouts showed higher competitive ability for P uptake compared to Aleppo pine saplings, but in potted seedlings in common garden conditions this trend was not observed. Therefore holm oak is not always competitively superior to Aleppo pine for P. Potted seedlings of both species had a notable plasticity in shoot/root biomass allocation, but only holm oak increased its proportional allocation to roots when neighbours were present. P availability can be a key factor in growth and competitive relations of these two species, but effects differ depending on soil type, individual age, regeneration type (i.e., seedling versus resprouts), and competitive situation. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
Aims Both human and non‐human determinants have shaped Mediterranean forest structure over the last few millennia. The effects of recent human activities on forest composition, however, remain poorly understood. We quantified changes in forest composition during the past century in the mixed forests of Quercus suber (cork oak) and Q. canariensis (Algerian oak), and explored the effects of forest management and environmental (climate, topography) factors on forest structure at various spatial and temporal scales. Location Mountains north of the Strait of Gibraltar (southern Spain). Methods First, we quantified 20th‐century changes in species composition from a series of inventories in nine mixed forests (c. 40,000 ha), and examined them in terms of the management practices and environmental conditions. Second, we analysed present‐day Q. suber and Q. canariensis stand structure along environmental gradients at two spatial scales: (1) that of the forest landscape (c. 284 ha), combining local inventories and topographic variables and using a digital elevation model; and (2) regional (c. 87,600 km2), combining data from the Spanish Forest Inventory for the Andalusia region and estimates of climatic variables. Results Historical data indicate anthropogenic changes in stand composition, revealing a sharp increase in the density of cork oaks over the last century. Forest management has favoured this species (for cork production) at the expense of Q. canariensis. The impact of management is imprinted on the present‐day forest structure. The abundance of both species increases with annual mean precipitation, and they coexist above 800 mm (the minimum threshold for Q. canariensis). Quercus suber dominates in most of the stands, and species segregation in the landscape is associated with the drainage network, Q. canariensis being clearly associated with moister habitats near streams. Main conclusions Our study quantitatively exemplifies a recent human‐mediated shift in forest composition. As a result of forest management, the realized niche of the cork oak has been enlarged at the expense of that of Q. canariensis, providing further evidence for humans as major drivers of oak forest composition across the Mediterranean. Recent regeneration problems detected in Q. suber stands, a reduced demand for wood products, conservation policies, and climate change augur new large‐scale shifts in forest composition.  相似文献   

12.
The effects of ecosystem degradation are pervasive worldwide and increasingly concerning under the present context of global changes in climate and land use. Theoretical studies and empirical evidence increasingly suggest that drylands are particularly prone to develop nonlinear functional changes in response to climate variations and human disturbance. Precipitation-use efficiency (PUE) represents the ratio of vegetation production to precipitation and provides a tool for evaluating human and climate impacts on landscape functionality. Holm oak (Quercus ilex) woodlands are one of the most conspicuous dry forest ecosystems in the western Mediterranean basin and present a variety of degraded states, due to their long history of human use. We studied the response of Iberian holm oak woodlands to human disturbance along an aridity gradient (that is, semi-arid, dry-transition and sub-humid conditions) using PUE estimations from enhanced vegetation index (EVI) observations of the Moderate-Resolution Imaging Spectroradiometer (MODIS). Our results indicated that PUE decreased linearly with disturbance intensity in sub-humid holm oak woodlands, but showed accelerated, nonlinear reductions with increased disturbance intensity in semi-arid and dry-transition holm oak sites. The impact of disturbance on PUE was larger for dry years than for wet years, and these differences increased with aridity from sub-humid to dry-transition and semi-arid holm oak woodlands. Therefore, aridity may also interact with ecosystem degradation in holm oak woodlands by reducing the landscape ability to buffer large changes in vegetation production caused by climate variability.  相似文献   

13.
Hybridisation between species of the genus Quercus is a common phenomenon as a result of weak reproductive isolation mechanisms between phylogenetically close species that frequently co-occur in mixed stands. In this study, we use microsatellite markers to analyse introgression between kermes ( Quercus coccifera L.) and holm ( Q. ilex L.) oak, two closely related taxa that frequently dominate the landscape in extensive areas in the Mediterranean region. All tested microsatellites amplified and were polymorphic in both kermes and holm oaks. Bayesian admixture analyses showed a good correspondence between each species and one of the two inferred genetic clusters. Five sampled individuals were a priori tentatively identified as hybrids on the basis of intermediate morphological characteristics, and it was confirmed that they also presented mixed genotypes. However, we also detected different levels of genetic introgression among morphologically pure individuals, suggesting that successful backcrossing and/or reduced phenotypic expression of genetic variance in certain individuals may have resulted in strong convergence towards a single species phenotype.  相似文献   

14.
López  B.  Sabaté  S.  Gracia  C.A. 《Plant and Soil》2001,230(1):125-134
The biomass, production and mortality of fine roots (roots with diameter <2.5 mm) were studied in a typical Mediterranean holm oak (Quercus ilex L.) forest in NE Spain using the minirhizotron methodology. A total of 1212 roots were monitored between June of 1994 and March of 1997. Mean annual fine root biomass in the holm oak forest of Prades was 71±8 g m–2 yr–1. Mean annual production for the period analysed was 260+11 g m–2 yr–1. Mortality was similar to production, with a mean value of 253±3 g m–2 yr–1. Seasonal fine root biomass presented a cyclic behaviour, with higher values in autumn and winter and lower in spring and summer. Production was highest in winter, and mortality in spring. In summer, production and mortality values were the lowest for the year. Production values in autumn and spring were very similar. The vertical distribution of fine root biomass decreased with increasing depth except for the top 10–20 cm, where values were lower than immediately below. Production and mortality values were similar between 10 and 50 cm depth. In the 0–10 cm and the 50–60 cm depth intervals, both production and mortality were lower.  相似文献   

15.
Leaf anatomical parameters such as leaf mass per area (LMA) and biochemical composition can be used as indicators of leaf photosynthetic capacity. The aims of this study are to evaluate the potential of reflectance spectroscopy of fresh leaves for assessing and predicting various parameters, anatomical (LMA and tissue thickness) and biochemical (nitrogen concentration). This paper describes results obtained with fresh leaves of holm oak ( Quercus ilex ), an evergreen oak that is widely distributed from mesic to xeric habitats in the Mediterranean. Fresh leaves (560) were collected over 3 yr at six different sites, from the top to the bottom of the canopy. The reflectance of each leaf was obtained within 1 h of sampling with an NIRSystems 6500 spectrophotometer over the range 400–2500 nm. LMA was determined for all samples; biochemical and anatomical measurements were conducted over representative subsample populations of 92 and 87 leaves, respectively. Stepwise regression calibrations and partial least squares (PLS) calibrations were developed and compared with different spectral regions and mathematical treatments. Calibration equations had high coefficients of determination ( r 2 ranging from 0.94 for nitrogen to 0.98 for LMA and tissue thickness). The PLS regressions gave better results than stepwise regressions for all parameters studied. Compared with regressions calculated on raw spectral data, calculations on second derivatives of spectra improved results in all cases. The use of scatter corrections also improved results. These results show that visible and near-infra red reflectance can be used for accurately predicting anatomical parameters and the nitrogen concentration of fresh holm oak leaves. The results support the suggestion that high spectral resolution imaging spectrometry can be a useful tool for assessing functional processes in forest ecosystems.  相似文献   

16.
Abstract. European Mediterranean landscapes have undergone changes in structure in recent years as a result of widespread agricultural land abandonment and cessation of silvicultural regimes. Studies concerning the regeneration dynamics of dominant forest species have become critical to the prediction of future landscape trends in these changing forest stands. Quercus ilex (holm oak) and Q. pubescens (downy oak) are considered to be the terminal point of secondary succession in extensive areas of the Mediterranean region. Recent studies, however, have suggested the existence of recruitment bottlenecks in oak genet populations as a result of current management regimes. In this study, we present evidence of the successful establishment of Q. ilex and Q. pubescens in Pinus halepensis (Aleppo pine) woodlands. We investigate the distribution patterns and spatial relationships among oak recruits and resident pines. Established P. halepensis is randomly distributed throughout the study area. Oak seedlings are positively associated with pine trees, suggesting that P. halepensis individuals provide safe sites for oak genet recruitment. We show that spatial patterns of recruitment are in agreement with the general model of spatial segregation described for other Mediterranean plant communities, with seeder species colonizing large openings after disturbance, followed by a more aggregated recruitment of resprouter species.  相似文献   

17.
High evaporative demand and periodic drought characterize the growing season in midwestern grasslands relative to deciduous forests of the eastern US, and predicted climatic changes suggest that these climatic extremes may be exacerbated. Despite this less than optimal environment for tree seedling establishment, deciduous trees have expanded into adjacent tallgrass prairie within the last century leading to a dramatic land cover change. In order to determine the role of light and temperature on seedling establishment, we assessed carbon and water relations and aboveground growth of first‐year Quercus macrocarpa seedlings exposed to one of three conditions: (1) intact tallgrass prairie communities (control), (2) aboveground herbaceous biomass removed (grass removal), and (3) shade plus biomass removal to reduce light (PFD) to levels typical of the grassland‐forest ecotone (shade). In the 2000 growing season, precipitation was 35% below the long‐term average, which had a significant negative effect on oak seedling carbon gain at midseason (photosynthesis declined to 10% of maximum rates). However, net photosynthesis and stomatal conductance in the shade treatment was ca. 2.5 and 1.5 times greater, respectively, than in control treatment seedlings during this drought. During this period, leaf and air temperatures in control seedlings were similar whereas leaf temperatures in the shade treatment remained below air temperature. A late‐season recovery period, coincident with decreased air temperatures, resulted in increased net photosynthesis for all seedlings. Increased photosynthetic rates and water relations in shaded seedlings compared to seedlings in full sun suggest that, at least in dry years, high light and temperature may negatively impact oak seedling performance. However, high survival rates for all seedlings indicate that Q. macrocarpa seedlings are capable of tolerating both present‐day and future climatic extremes. Unless historic fire regimes are restored, forest expansion and land cover change are likely to continue.  相似文献   

18.
The ecological behaviors of a network of pure evergreen oak stands (Quercus suber L. and Quercus ilex L.) in the Central-Western Mediterranean Basin were investigated toward climatic and edaphic factors implemented with the application of topographic wetness index (TWI). A Categorical Principal Component Analysis (Catpca) using climatic and soil physico-chemical parameters was performed on 23 cork oak and holm oak pure stands with the aim to understand better the effectiveness of TWI for characterizing soil ecology of the two species. Catpca pointed out that, although cork oak and holm oak are able to growth in similar Mediterranean conditions, they show different behaviors in terms of needs and tolerance to soil water content. TWI confirmed such results at local scale, allowing highlighting some interesting features of the species differential ecology. Although both species confirmed to be drought-tolerant, the heliophilous cork oak revealed to dominate the landscape on wettest soils with high TWI values—indicating the capacity to tolerate stresses due to periods of waterlogging—, while the shade-tolerant holm oak prevails for low-medium TWI values—drier and mesophilous sites. Despite the application of TWI to vegetation science and ecology is relatively recent, results are encouraging and suggest considering this user-friendly and synthetic index in ecological investigations and modeling.  相似文献   

19.
Bonilla  D.  Rodà  F. 《Plant Ecology》1992,99(1):247-257
Soil nitrogen (N) dynamics were studied in a dense, holm oak (Quercus ilex ssp. ilex) stand in the Montseny mountains to determine annual and seasonal patterns of N availability and uptake in an undisturbed Mediterranean forest on acidic soil. Soil mineral N content, net N mineralization (NNM), and net nitrification (NN) were determined by monthly sampling at two soil depths followed by in situ incubation in polyethylene bags. NNM per unit of soil mass was much higher at 0–5 cm than at 5–20 cm (annual means 24 and 2.5 mg N/kg, respectively) but on an area basis NNM was similar at both depths. A total of 80 kg N/ha/yr were mineralized from the first 20 cm of soil. NN amounted to only 9% of the annual NNM (7.5 kg N/ha/yr) and it occurred only in the upper 5 cm. NNM was maximum in June and July, while the NN peaked in May. Despite favourable soil temperature and moisture, NNM was negative in autumn because of microbial immobilization. Seasonal and depth variations of NNM appeared to be controlled more by substrate quality than by organic matter quantity, temperature or moisture. NN was not limited by ammonium availability. Calculated N uptake amounted to 91 kg/ha yr, peaking in June and July. The investigated stand showed a moderately high N availability, but ammonium was the major form of mineral N supply for holm oak.  相似文献   

20.
Forest management presents challenges to accurate prediction of water and carbon exchange between the land surface and atmosphere, due to its alteration of forest structure and composition. We examined how forest species types in northern Wisconsin affect landscape scale water fluxes predicted from models driven by remotely sensed forest classification. A site‐specific classification was developed for the study site. Using this information and a digital soils database produced for the site we identified four key forest stand types: red pine, northern hardwoods, aspen, and forested wetland. Within these stand types, 64 trees representing 7 species were continuously monitored with sap flux sensors. Scaled stand‐level transpiration from sap flux was combined with a two‐source soil evaporation model and then applied over a 2.5 km × 3.0 km area around the WLEF AmeriFlux tower (Park Falls, Wisconsin) to estimate evapotranspiration. Water flux data at the tower was used as a check against these estimates. Then, experiments were conducted to determine the effects of aggregating vegetation types to International Geosphere– Biosphere Program (IGBP) level on water flux predictions. Taxonomic aggregation resulting in loss of species level information significantly altered landscape water flux predictions. However, daily water fluxes were not significantly affected by spatial aggregation when forested wetland evaporation was included. The results demonstrate the importance of aspen, which has a higher transpiration rate per unit leaf area than other forest species. However, more significant uncertainty results from not including forested wetland with its high rates of evaporation during wet summers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号