首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For proper development and tissue homeostasis, cell cycle progression is controlled by multilayered mechanisms. Recent studies using knock-out mice have shown that animals can develop relatively normally with deficiency for each of the G1/S-regulatory proteins, D-type and E-type cyclins, cyclin-dependent kinase 4 (Cdk4), and Cdk2. Although Cdk4-null mice show no embryonic lethality, they exhibit specific endocrine phenotypes, i.e. dwarfism, infertility, and diabetes. Here we have demonstrated that Cdk4 plays an essential non-redundant role in postnatal proliferation of the anterior pituitary. Pituitaries from wild-type and Cdk4-null embryos at embryonic day 17.5 are morphologically indistinguishable with similar numbers of cells expressing a proliferating marker, Ki67, and cells expressing a differentiation marker, growth hormone. In contrast, anterior pituitaries of Cdk4-null mice at postnatal 8 weeks are extremely hypoplastic with markedly decreased numbers of Ki67+ cells, suggesting impaired cell proliferation. Pituitary hyperplasia induced by transgenic expression of human growth hormone-releasing hormone (GHRH) is significantly diminished in the Cdk4+/- genetic background and completely abrogated in the Cdk4-/- background. Small interfering RNA (siRNA)-mediated knockdown of Cdk4 inhibits GHRH-induced proliferation of GH3 somato/lactotroph cells with restored expression of GHRH receptors. Cdk4 siRNA also inhibits estrogen-dependent cell proliferation in GH3 cells and closely related GH4 cells. In contrast, Cdk6 siRNA does not diminish proliferation of these cells. Furthermore, Cdk4 siRNA does not affect GHRH-induced proliferation of mouse embryonic fibroblasts or estrogen-dependent proliferation of mammary carcinoma MCF-7 cells. Taken together, Cdk4 is dispensable for prenatal development of the pituitary or proliferation of other non-endocrine tissues but indispensable specifically for postnatal proliferation of somato/lactotrophs.  相似文献   

2.
Cdk2 knockout mice are viable   总被引:34,自引:0,他引:34  
BACKGROUND: Cyclin-dependent kinases (Cdks) and their cyclin regulatory subunits control cell growth and division. Cdk2/cyclin E complexes are thought to be required because they phosphorylate the retinoblastoma protein and drive cells through the G1/S transition into the S phase of the cell cycle. In addition, Cdk2 associates with cyclin A, which itself is essential for cell proliferation during early embryonic development. RESULTS: In order to study the functions of Cdk2 in vivo, we generated Cdk2 knockout mice. Surprisingly, these mice are viable, and therefore Cdk2 is not an essential gene in the mouse. However, Cdk2 is required for germ cell development; both male and female Cdk2(-/-) mice are sterile. Immunoprecipitates of cyclin E1 complexes from Cdk2(-/-) spleen extracts displayed no activity toward histone H1. Cyclin A2 complexes were active in primary mouse embryonic fibroblasts (MEFs), embryo extracts and in spleen extracts from young animals. In contrast, there was little cyclin A2 kinase activity in immortalized MEFs and spleen extracts from adult animals. Cdk2(-/-) MEFs proliferate but enter delayed into S phase. Ectopic expression of Cdk2 in Cdk2(-/-) MEFs rescued the delayed entry into S phase. CONCLUSIONS: Although Cdk2 is not an essential gene in the mouse, it is required for germ cell development and meiosis. Loss of Cdk2 affects the timing of S phase, suggesting that Cdk2 is involved in regulating progression through the mitotic cell cycle.  相似文献   

3.
Cell cycle regulation is essential for proper homeostasis of hematopoietic cells. Cdk2 is a major regulator of S phase entry, is activated by mitogenic cytokines, and has been suggested to be involved in antigen-induced apoptosis of T lymphocytes. The role of Cdk2 in hematopoietic cells and apoptosis in vivo has not yet been addressed. To determine whether Cdk2 plays a role in these cells, we performed multiple analyses of bone marrow cells, thymocytes, and splenocytes from Cdk2 knockout mice. We found that Cdk2 is not required in vivo to induce apoptosis in lymphocytes, a result that differs from previous pharmacological in vitro studies. Furthermore, thymocyte maturation was not affected by the lack of Cdk2. We then analyzed the hematopoietic stem cell compartment and found similar proportions of stem cells and progenitors in Cdk2(-)(/)(-) and wild-type animals. Knockouts of Cdk2 inhibitors (p21, p27) affect stem cell renewal, but a competitive graft experiment indicated that renewal and multilineage differentiation are normal in the absence of Cdk2. Finally, we stimulated T lymphocytes or macrophages to induce proliferation and observed normal reactivation of Cdk2(-)(/)(-) quiescent cells. Our results indicate that Cdk2 is not required for proliferation and differentiation of hematopoietic cells in vivo, although in vitro analyses consider Cdk2 to be a major player in proliferation and apoptosis in these cells and a potential target for therapy.  相似文献   

4.
5.
Peripheral blood T lymphocytes require two sequential mitogenic signals to reenter the cell cycle from their natural, quiescent state. One signal is provided by stimulation of the T-cell antigen receptor, and this induces the synthesis of both cyclins and cyclin-dependent kinases (CDKs) that are necessary for progression through G1. Antigen receptor stimulation alone, however, is insufficient to promote activation of G1 cyclin-Cdk2 complexes. This is because quiescent lymphocytes contain an inhibitor of Cdk2 that binds directly to this kinase and prevents its activation by cyclins. The second mitogenic signal, which can be provided by the cytokine interleukin 2, leads to inactivation of this inhibitor, thereby allowing Cdk2 activation and progression into S phase. Enrichment of the Cdk2 inhibitor from G1 lymphocytes by cyclin-CDK affinity chromatography indicates that it may be p27Kip1. These observations show how sequentially acting mitogenic signals can combine to promote activation of cell cycle proteins and thereby cause cell proliferation to start. CDK inhibitors have been shown previously to be induced by signals that negatively regulate cell proliferation. Our new observations show that similar proteins are down-regulated by positively acting signals, such as interleukin 2. This finding suggests that both positive and negative growth signals converge on common targets which are regulators of G1 cyclin-CDK complexes. Inactivation of G1 cyclin-CDK inhibitors by mitogenic growth factors may be one biochemical pathway underlying cell cycle commitment at the restriction point in G1.  相似文献   

6.
Cyclin-dependent kinase 5 (Cdk5) is a nontraditional Cdk that is primarily active in postmitotic neurons. An important core function of Cdk5 involves regulating the migration and maturation of embryonic post-mitotic neurons. Initially there is little evidence indicating a role for Cdk5 in normal cell cycle regulation. These development roles are on its kinase activity. Recent data from our lab, however, suggest that Cdk5 plays a crucial role as a cell cycle suppressor in normal post-mitotic neurons and neuronal cell lines. It performs this foundation in a kinase independent manner. Cdk5 normally found in both nucleus and cytoplasm, but it exits the nucleus in neurons risk to death in an AD patient’s brain. The shift in sub-cellular location is accompanied by cell cycle re-entry and neuronal death. This “new” function of Cdk5 raises cautions in the design of Cdk5-directed drugs for the therapy of neurodegenerative diseases.  相似文献   

7.
Mammalian cyclin-dependent kinases   总被引:15,自引:0,他引:15  
  相似文献   

8.
Progression through the early G(1) phase of the cell cycle requires mitogenic stimulation, which ultimately leads to the activation of cyclin-dependent kinases 4 and 6 (Cdk4/6). Cdk4/6 activity is promoted by D-type cyclins and opposed by Cdk inhibitor proteins. Loss of c-myc proto-oncogene function results in a defect in the activation of Cdk4/6. c-myc(-/-) cells express elevated levels of the Cdk inhibitor p27(Kip1) and reduced levels of Cdk7, the catalytic subunit of Cdk-activating kinase. We show here that in normal (c-myc(+/+)) cells, the majority of cyclin D-Cdk4/6 complexes are assembled with p27 and remain inactive during cell cycle progression; their function is presumably to sequester p27 from Cdk2 complexes. A small fraction of Cdk4/6 protein was found in lower molecular mass catalytically active complexes. Conditional overexpression of p27 in c-myc(+/+) cells caused inhibition of Cdk4/6 activity and elicited defects in G(0)-to-S phase progression very similar to those seen in c-myc(-/-) cells. Overexpression of cyclin D1 in c-myc(-/-) cells rescued the defect in Cdk4/6 activity, indicating that the limiting factor is the number of cyclin D-Cdk4/6 complexes. Cdk-activating kinase did not rescue Cdk4/6 activity. We propose that the defect in Cdk4/6 activity in c-myc(-/-) cells is caused by the elevated levels of p27, which convert the low abundance activable cyclin D-Cdk4/6 complexes into unactivable complexes containing higher stoichiometries of p27. These observations establish p27 as a physiologically relevant regulator of cyclin D-Cdk4/6 activity as well as mechanistically a target of c-Myc action and provide a model by which c-Myc influences the early-to-mid G(1) phase transition.  相似文献   

9.
The ras oncogene transforms immortalized, contact-inhibited non-malignant murine fibroblasts into cells that are focus forming, exhibit increased saturation density, and are malignant in suitable hosts. Here, we examined changes in cell cycle control complexes as normal and Ras-transformed cells ceased to grow exponentially, to reveal the molecular basis for Ras-dependent focus formation. As normal cells entered density-dependent arrest, cyclin D1 decreased while cyclin D2 was induced and replaced D1 in Cdk4 complexes. Concomitantly, p27(Kip1) levels rose and the inhibitor accumulated in both Cdk4 and Cdk2 complexes, as these kinases were inactivated. Ras-transformed cells failed to arrest at normal saturation density and showed no significant alterations in cell control complexes at this point. Yet, at an elevated density the Ras-transformed cells ceased to proliferate and entered a quiescent-like state with low Cdk4 and Cdk2 activity. Surprisingly, this delayed arrest was molecularly distinct from contact inhibition of normal cells, as it occurred in the absence of p27(Kip1) induction and cyclin D1 levels remained high. This demonstrates that although oncogenic Ras efficiently disabled the normal response to contact inhibition, a separate back-up mechanism enforced cell cycle arrest at higher cell density.  相似文献   

10.
Mouse knockouts of Cdk2 and Cdk4 have demonstrated that, individually, these genes are not essential for viability. To investigate whether there is functional redundancy, we have generated double knockout (DKO) mice. Cdk2-/- Cdk4-/- DKOs die during embryogenesis around E15 as a result of heart defects. We observed a gradual decrease of Retinoblastoma protein (Rb) phosphorylation and reduced expression of E2F-target genes, like Cdc2 and cyclin A2, during embryogenesis and in embryonic fibroblasts (MEFs). DKO MEFs are characterized by a decreased proliferation rate, impaired S phase entry, and premature senescence. HPV-E7-mediated inactivation of Rb restored normal expression of E2F-inducible genes, senescence, and proliferation in DKO MEFs. In contrast, loss of p27 did not rescue Cdk2-/- Cdk4-/- phenotypes. Our results demonstrate that Cdk2 and Cdk4 cooperate to phosphorylate Rb in vivo and to couple the G1/S phase transition to mitosis via E2F-dependent regulation of gene expression.  相似文献   

11.
12.
13.
The metazoan Wee1-like kinases Wee1 and Myt1 regulate the essential mitotic regulator Cdk1 by inhibitory phosphorylation. This regulatory mechanism, which prevents Cdk1 from triggering premature mitotic events, is also induced during the DNA damage response and used to coordinate cell proliferation with crucial developmental events. Despite the previously demonstrated role for Myt1 regulation of Cdk1 during meiosis, relatively little is known of how Myt1 functions at other developmental stages. To address this issue, we have undertaken a functional analysis of Drosophila Myt1 that has revealed novel developmental roles for this conserved cell cycle regulator during gametogenesis. Notably, more proliferating cells were observed in myt1 mutant testes and ovaries than controls. This can partly be attributed to ectopic division of germline-associated somatic cells in myt1 mutants, suggesting that Myt1 serves a role in regulating exit from the cell cycle. Moreover, mitotic index measurements suggested that germline stem cells proliferate more rapidly, in myt1 mutant females. In addition, male myt1 germline cells occasionally undergo an extra mitotic division, resulting in meiotic cysts with twice the normal numbers of cells. Based on these observations, we propose that Myt1 serves unique Cdk1 regulatory functions required for efficient coupling of cell differentiation with cell cycle progression.  相似文献   

14.
15.
Complexes of D-type cyclins and cdk4 or 6 are thought to govern progression through the G(1) phase of the cell cycle. In DROSOPHILA:, single genes for Cyclin D and Cdk4 have been identified, simplifying genetic analysis. Here, we show that DROSOPHILA: Cdk4 interacts with Cyclin D and the Rb homolog RBF as expected, but is not absolutely essential. Flies homozygous for null mutations develop to the adult stage and are fertile, although only to a very limited degree. Overexpression of inactive mutant Cdk4, which is able to bind Cyclin D, does not enhance the Cdk4 mutant phenotype, confirming the absence of additional Cyclin D-dependent cdks. Our results indicate, therefore, that progression into and through the cell cycle can occur in the absence of Cdk4. However, the growth of cells and of the organism is reduced in Cdk4 mutants, indicating a role of D-type cyclin-dependent protein kinases in the modulation of growth rates.  相似文献   

16.
D-type cyclin-dependent kinases (Cdk4 and Cdk6) regulate the G1 to S phase progression of the mammalian cell cycle. It has been suggested that Cdk4 and Cdk6 may have distinct functions in vivo, even though they are indistinguishable biochemically. Here we show that although these Cdks phosphorylate multiple residues in pRB, they do so with different residue selectivities in vitro; Thr821 and Thr826 are preferentially phosphorylated by Cdk6 and Cdk4, respectively. This raises the possibility different substrate specificities lead to their different roles in the regulation of cellular events. Furthermore, our results indicate the new concept that Cdk itself contributes to substrate recognition.  相似文献   

17.
18.
The ability to proliferate in the absence of anchorage is a fundamental attribute of cancer cells, yet how it is acquired is one central problem in cancer biology. By utilizing growth factor-transformable NRK cells and its insensitive mutants, we recently found that oncogenic stimulation invokes Cdk6 to participate in a critical step of the cell cycle start, but not via the regulation of its catalytic activity and that Cdk6 participation closely correlates with the anchorage-independent growth ability. Since many hematopoietic cells employ predominantly Cdk6 for the cell cycle start and perform anchorage-independent growth by nature, this finding raises the possibility that the mechanism by which oncogenic stimulation invokes anchorage-independent growth of NRK cells is similar to the one used for hematopoietic cell proliferation. We discuss this novel mechanism and its implication.  相似文献   

19.
Cdk1 and Plk1/Plx1 activation leads to their inactivation through negative feedback loops. Cdk1 deactivates itself by activating the APC/C, consequently generating embryonic cell cycle oscillations. APC/C inhibition by the mitotic checkpoint in somatic cells and the cytostatic factor (CSF) in oocytes sustain the mitotic state. Plk1/Plx1 targets its co-activator Bora for degradation, but it remains unclear how embryonic oscillations in Plx1 activity are generated, and how Plk1/Plx1 activity is sustained during mitosis. We show that Plx1-mediated degradation of Bora in interphase generates oscillations in Plx1 activity and is essential for development. In CSF extracts, phosphorylation of Bora on the Cdk consensus site T52 blocks Bora degradation. Upon fertilization, Calcineurin dephosphorylates T52, triggering Plx1 oscillations. Similarly, we find that GFP-Bora is degraded when Plk1 activity spreads to somatic cell cytoplasm before mitosis. Interestingly, GFP–Bora degradation stops upon mitotic entry when Cdk1 activity is high. We hypothesize that Cdk1 controls Bora through an incoherent feedforward loop synchronizing the activities of mitotic kinases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号