首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microbially induced concrete corrosion (MICC) in sewer systems has been a serious problem for a long time. A better understanding of the succession of microbial community members responsible for the production of sulfuric acid is essential for the efficient control of MICC. In this study, the succession of sulfur-oxidizing bacteria (SOB) in the bacterial community on corroding concrete in a sewer system in situ was investigated over 1 year by culture-independent 16S rRNA gene-based molecular techniques. Results revealed that at least six phylotypes of SOB species were involved in the MICC process, and the predominant SOB species shifted in the following order: Thiothrix sp., Thiobacillus plumbophilus, Thiomonas intermedia, Halothiobacillus neapolitanus, Acidiphilium acidophilum, and Acidithiobacillus thiooxidans. A. thiooxidans, a hyperacidophilic SOB, was the most dominant (accounting for 70% of EUB338-mixed probe-hybridized cells) in the heavily corroded concrete after 1 year. This succession of SOB species could be dependent on the pH of the concrete surface as well as on trophic properties (e.g., autotrophic or mixotrophic) and on the ability of the SOB to utilize different sulfur compounds (e.g., H2S, S0, and S2O3(2-)). In addition, diverse heterotrophic bacterial species (e.g., halo-tolerant, neutrophilic, and acidophilic bacteria) were associated with these SOB. The microbial succession of these microorganisms was involved in the colonization of the concrete and the production of sulfuric acid. Furthermore, the vertical distribution of microbial community members revealed that A. thiooxidans was the most dominant throughout the heavily corroded concrete (gypsum) layer and that A. thiooxidans was most abundant at the highest surface (1.5-mm) layer and decreased logarithmically with depth because of oxygen and H2S transport limitations. This suggested that the production of sulfuric acid by A. thiooxidans occurred mainly on the concrete surface and the sulfuric acid produced penetrated through the corroded concrete layer and reacted with the sound concrete below.  相似文献   

2.
Souring, the production of hydrogen sulfide by sulfate-reducing bacteria (SRB) in oil reservoirs, can be controlled through nitrate or nitrite addition. To assess the effects of this containment approach on corrosion, metal coupons were installed in up-flow packed-bed bioreactors fed with medium containing 8 mM sulfate and 25 mM lactate. Following inoculation with produced water to establish biogenic H2S production, some bioreactors were treated with 17.5 mM nitrate or up to 20 mM nitrite, eliminating souring. Corrosion rates were highest near the outlet of untreated bioreactors (up to 0.4 mm year–1). Nitrate (17.5 mM) eliminated sulfide but gave pitting corrosion near the inlet of the bioreactor, whereas a high nitrite dose (20 mM) completely eliminated microbial activity and associated corrosion. More gradual, step-wise addition of nitrite up to 20 mM resulted in the retention of microbial activity and localized pitting corrosion, especially near the bioreactor inlet. We conclude that: (1) SRB control by nitrate or nitrite reduction shifts the corrosion risk from the bioreactor outlet to the inlet (i.e. from production to injection wells) and (2) souring treatment by continuous addition of a high inhibitory nitrite dose is preferable from a corrosion-prevention point of view.  相似文献   

3.
Aims:  In vitro experiments were undertaken to evaluate biocide formulations commonly used in cooling water systems against protozoa previously isolated from cooling towers. The investigations evaluated the efficacy of these formulations against amoebic cysts and trophozoites.
Methods and Results:  Laboratory challenges against protozoa isolated from cooling towers using chlorine, bromine and isothiazolinone biocides showed that all were effective after 4 h. The presence of molybdate and organic phosphates resulted in longer kill times for bromine and isothiazolinones. All treatments resulted in no detectable viable protozoa after 4 h of exposure.
Conclusions:  The chemical disinfection of planktonic protozoa in cooling water systems is strongly influenced by the residence time of the formulation and less so by its active constituent. Bromine and isothiazolinone formulations may require higher dosage of concentrations than currently practiced if used in conjunction with molybdate- and phosphate-based scale/corrosion inhibitors.
Significance and Impact of the Study:  Cooling water systems are complex microbial ecosystems in which predator–prey relationships play a key role in the dissemination of Legionella . This study demonstrated that at recommended dosing concentrations, biocides had species-specific effects on environmental isolates of amoebae that may act as reservoirs for Legionella multiplication in cooling water systems.  相似文献   

4.
Microbially induced concrete corrosion (MICC) in sewer systems has been a serious problem for a long time. A better understanding of the succession of microbial community members responsible for the production of sulfuric acid is essential for the efficient control of MICC. In this study, the succession of sulfur-oxidizing bacteria (SOB) in the bacterial community on corroding concrete in a sewer system in situ was investigated over 1 year by culture-independent 16S rRNA gene-based molecular techniques. Results revealed that at least six phylotypes of SOB species were involved in the MICC process, and the predominant SOB species shifted in the following order: Thiothrix sp., Thiobacillus plumbophilus, Thiomonas intermedia, Halothiobacillus neapolitanus, Acidiphilium acidophilum, and Acidithiobacillus thiooxidans. A. thiooxidans, a hyperacidophilic SOB, was the most dominant (accounting for 70% of EUB338-mixed probe-hybridized cells) in the heavily corroded concrete after 1 year. This succession of SOB species could be dependent on the pH of the concrete surface as well as on trophic properties (e.g., autotrophic or mixotrophic) and on the ability of the SOB to utilize different sulfur compounds (e.g., H2S, S0, and S2O32−). In addition, diverse heterotrophic bacterial species (e.g., halo-tolerant, neutrophilic, and acidophilic bacteria) were associated with these SOB. The microbial succession of these microorganisms was involved in the colonization of the concrete and the production of sulfuric acid. Furthermore, the vertical distribution of microbial community members revealed that A. thiooxidans was the most dominant throughout the heavily corroded concrete (gypsum) layer and that A. thiooxidans was most abundant at the highest surface (1.5-mm) layer and decreased logarithmically with depth because of oxygen and H2S transport limitations. This suggested that the production of sulfuric acid by A. thiooxidans occurred mainly on the concrete surface and the sulfuric acid produced penetrated through the corroded concrete layer and reacted with the sound concrete below.  相似文献   

5.
Aims: To investigate the relationships between sulfate‐reducing bacteria (SRB), growth conditions, bentonite densities and copper sulfide generation under circumstances relevant to underground, high‐level radioactive waste repositories. Methods and Results: Experiments took place 450 m underground, connected under in situ pressure to groundwater containing SRB. The microbial reduction of sulfate to sulfide and subsequent corrosion of copper test plates buried in compacted bentonite were analysed using radioactive sulfur (35SO42?) as tracer. Mass distribution of copper sulfide on the plates indicated a diffusive process. The relationship between average diffusion coefficients (Ds) and tested density (ρ) was linear. Ds (m2 s?1) = ?0·004 × ρ (kg m?3) + 8·2, decreasing by 0·2 Ds units per 50 kg m?3 increase in density, from 1·2 × 10?11 m2 s?1 at 1750 kg m?3 to 0·2 × 10?11 m2 s?1 at 2000 kg m?3. Conclusions: It is possible that sulfide corrosion of waste canisters in future radioactive waste repositories depends mainly on sulfide concentration at the boundary between groundwater and the buffer, which in turn depends on SRB growth conditions (e.g., sulfate accessibility, carbon availability and electron donors) and geochemical parameters (e.g., presence of ferrous iron, which immobilizes sulfide). Maintaining high bentonite density is also important in mitigating canister corrosion. Significance and Impact of the Study: The sulfide diffusion coefficients can be used in safety calculations regarding waste canister corrosion. The work supports findings that microbial activity in compacted bentonite will be restricted. The study emphasizes the importance of growth conditions for sulfate reduction at the groundwater boundary of the bentonite buffer and linked sulfide production.  相似文献   

6.
Biogenic production of sulfide in wastewater treatment plants involves odors, toxicity and corrosion problems. The production of sulfide is a consequence of bacterial activity, mainly sulfate-reducing bacteria (SRB). To prevent this production, the efficiency of nitrate addition to wastewater was tested at plant-scale by dosing concentrated calcium nitrate (Nutriox) in the works inlet. Nutriox dosing resulted in a sharp decrease of sulfide, both in the air and in the bulk water, reaching maximum decreases of 98.7% and 94.7%, respectively. Quantitative molecular microbiology techniques indicated that the involved mechanism is the development of the nitrate-reducing, sulfide-oxidizing bacterium Thiomicrospira denitrificans instead of the direct inhibition of the SRB community. Denitrification rate in primary sedimentation tanks was enhanced by nitrate, being this almost completely consumed. No significant increase of inorganic nitrogen was found in the discharged effluent, thus reducing potential environmental hazards to receiving waters. This study demonstrates the effectiveness of nitrate addition in controlling sulfide generation at plant-scale, provides the mechanism and supports the environmental adequacy of this strategy.  相似文献   

7.
Sulfate-reducing bacteria (SRB), which cause microbiologically influenced material corrosion under anoxic conditions, form one of the major groups of microorganisms responsible for the generation of hydrogen sulfide. In this study, which is aimed at reducing the presence of SRB, a novel alternative approach involving the addition of magnesium peroxide (MgO2) compounds involving the use of reagent-grade MgO2 and a commercial product (ORC™) was evaluated as a means of inhibiting SRB in laboratory batch columns. Different concentrations of MgO2 were added in the columns when black sulfide sediment had appeared in the columns. The experimental results showed that MgO2 is able to inhibit biogenic sulfide. The number of SRB, the sulfide concentration and the sulfate reducing rate (SRR) were decreased. ORC™ as an additive was able to decrease more effectively the concentration of sulfide in water and the SRB-control effect was maintained over a longer time period when ORC™ was used. The level of oxidation–reduction potential (ORP), which has a linear relationship to the sulfide/sulfate ratio, is a good indicator of SRB activity. As determined by fluorescence in-situ hybridization (FISH), most SRB growth was inhibited under increasing amounts of added MgO2. The concentration of sulfide reflected the abundance of the SRB. Utilization of organic matter greater than the theoretical SRB utilization rate indicated that facultative heterotrophs became dominant after MgO2 was added. The results of this study could supply the useful information for further study on evaluating the solution to biocorrosion problems in practical situations.  相似文献   

8.
Climate change‐induced ocean warming is expected to greatly affect carbon dynamics and sequestration in vegetated shallow waters, especially in the upper subtidal where water temperatures may fluctuate considerably and can reach high levels at low tides. This might alter the greenhouse gas balance and significantly reduce the carbon sink potential of tropical seagrass meadows. In order to assess such consequences, we simulated temperature stress during low tide exposures by subjecting seagrass plants (Thalassia hemprichii) and associated sediments to elevated midday temperature spikes (31, 35, 37, 40, and 45°C) for seven consecutive days in an outdoor mesocosm setup. During the experiment, methane release from the sediment surface was estimated using gas chromatography. Sulfide concentration in the sediment pore water was determined spectrophotometrically, and the plant's photosynthetic capacity as electron transport rate (ETR), and maximum quantum yield (Fv/Fm) was assessed using pulse amplitude modulated (PAM) fluorometry. The highest temperature treatments (40 and 45°C) had a clear positive effect on methane emission and the level of sulfide in the sediment and, at the same time, clear negative effects on the photosynthetic performance of seagrass plants. The effects observed by temperature stress were immediate (within hours) and seen in all response variables, including ETR, Fv/Fm, methane emission, and sulfide levels. In addition, both the methane emission and the size of the sulfide pool were already negatively correlated with changes in the photosynthetic rate (ETR) during the first day, and with time, the correlations became stronger. These findings show that increased temperature will reduce primary productivity and increase methane and sulfide levels. Future increases in the frequency and severity of extreme temperature events could hence reduce the climate mitigation capacity of tropical seagrass meadows by reducing CO2 sequestration, increase damage from sulfide toxicity, and induce the release of larger amounts of methane.  相似文献   

9.
The relationship between corrosion and biodegradation of bio- and petroleum-based fuels was evaluated using aerobic seawater, fuel and unprotected carbon steel coupons under stagnant conditions to simulate a potential fuel storage condition. Aerobic respiration and corrosion reactions consumed oxygen in the incubations in a short time. The transient oxygen influenced the microbial biodegradation of all fuels and resulted in a suite of characteristic metabolites, including catechols. The corrosion was believed to be the result of biogenic sulfide production and in all cases, the black corrosion products contained chlorine and sulfur (presumed chloride and sulfide) in addition to iron. There were few differences in electrochemically measured corrosion rates in incubations amended with any of the fuels or their blends. Clone library analysis demonstrated higher proportions of Firmicutes, Deltaproteobacteria (primarily sulfate-reducing bacteria), Chloroflexi, and Lentisphaerae in incubations exposed to fuels than the original seawater. Relative proportions of sequences affiliated with these bacterial groups varied with fuel. Methanogen sequences similar to those of Methanolobus were also found in multiple incubations. Despite the dominance of characteristically anaerobic taxa, sequences coding for an alkane monooxygenase from marine hydrocarbon-degrading genera and aerobically produced intermediates were observed, indicative that organisms with this metabolic potential were active at some point during the incubation. Aerobic oxidation of fuel components resulted in the formation of a series of intermediates that could be used by anaerobic seawater microbial communities to support metabolism, sulfide production, and carbon steel corrosion.  相似文献   

10.
Subpopulations of human peripheral blood lymphocytes were prepared by rosetting techniques employing neuraminidase-treated sheep erythrocytes (SRBCn), sheep erythrocytes coated with IgM and murine complement (EAC′), and bovine erythrocytes coated with IgG and IgM. The isolated subpopulations were tested in assays of natural cytotoxicity (NC), antibody-dependent cellular cytotoxicity (ADCC), and mitogen-induced cellular cytotoxicity (MICC). B cells (SRBCn?, EAC′+) did not mediate cytotoxicity. L cells (SRBCn?, EAC′?) mediated NC and ADCC but not MICC. T cells (SRBCn+) mediated NC, ADCC, and MICC. Separation of T cells into Fc-IgG (Tγ) and Fc-IgM (Tμ) subsets revealed that Tγ cells mediated NC, ADCC, and MICC while Tμ cells mediated only MICC. Thus MICC but not NC or ADCC was solely T-cell mediated. Tγ and L cells were functionally distinguishable in that Tγ cells but not L cells mediated MICC. Tγ cells and Tμ cells differed with regard to NC and ADCC effector function while both subsets mediated MICC.  相似文献   

11.
Soil salinity and fluctuations in soil matric potential are stressors for soil microorganisms which, in turn, may affect soil organic matter turnover. In response to salinity and low soil water content, many microorganisms accumulate osmolytes. Therefore, it is conceivable that microorganisms in saline soils are more tolerant to drying and rewetting (DRW) stress than those in non-saline soils. An experiment was carried out with three different salinity levels: electrical conductivity (EC1:5) 0, 2 and 4 dS m?1 (EC0, EC2, EC4), and two water treatments: a constantly moist control or two DRW cycles. Respiration as an indicator of microbial activity was measured throughout the 59 days of incubation. At the end of the second dry period (day 35) and at the end of the following moist incubation (day 59), microbial biomass and microbial community structure were determined by phospholipid fatty acid (PLFA) analysis. Increasing salinity decreased microbial activity but did not affect its resistance to DRW. On day 59, cumulative respiration decreased in the order EC0 > EC2 > EC4 with no differences between water treatments. Fungal biomass was negatively affected by salinity at the end of the experiment, while bacterial biomass was unaffected. Microbial community structure in moist treatments differed between salinity levels, with EC4 influencing microbial community structure earlier than EC2. The resistance of microbial communities to DRW stress was salt level dependent; only beyond a critical salinity level adaptation to salt stress was able to reduce the impact of water stress on microbial community structure.  相似文献   

12.
Microbially induced concrete corrosion (MICC) is an important problem in sewers. Here, small-subunit (SSU) rRNA gene amplicon pyrosequencing was used to characterize MICC communities. Microbial community composition differed between wall- and ceiling-associated MICC layers. Acidithiobacillus spp. were present at low abundances, and the communities were dominated by other sulfur-oxidizing-associated lineages.  相似文献   

13.
The extent of how complex natural microbial communities contribute to metal corrosion is still not fully resolved, especially not for freshwater environments. In order to elucidate the key processes, we investigated rust tubercles forming massively on sheet piles along the river Havel (Germany) applying a complementary set of techniques. In-situ microsensor profiling revealed steep gradients of O2, redox potential and pH within the tubercle. Micro-computed tomography and scanning electron microscopy showed a multi-layered inner structure with chambers and channels and various organisms embedded in the mineral matrix. Using Mössbauer spectroscopy we identified typical corrosion products including electrically conductive iron (Fe) minerals. Determination of bacterial gene copy numbers and sequencing of 16S rRNA and 18S rRNA amplicons supported a densely populated tubercle matrix with a phylogenetically and metabolically diverse microbial community. Based on our results and previous models of physic(electro)chemical reactions, we propose here a comprehensive concept of tubercle formation highlighting the crucial reactions and microorganisms involved (such as phototrophs, fermenting bacteria, dissimilatory sulphate and Fe(III) reducers) in metal corrosion in freshwaters.  相似文献   

14.
We develop a comprehensive biogeochemical framework for understanding and quantitatively evaluating metals bio-protection in sulfidic microbial systems. We implement the biogeochemical framework in CCBATCH by expanding its chemical equilibrium and biological sub-models for surface complexation and the formation of soluble and solid products, respectively. We apply the expanded CCBATCH to understand the relative importance of the various key ligands of sulfidic systems in Zn detoxification. Our biogeochemical analysis emphasizes the relative importance of sulfide over other microbial products in Zn detoxification, because the sulfide yield is an order of magnitude higher than that of other microbial products, while its reactivity toward metals also is highest. In particular, metal-titration simulations using the expanded CCBATCH in a batch mode illustrate how sulfide detoxifies Zn, controlling its speciation as long as total sulfide is greater than added Zn. Only in the absence of sulfide does complexation of Zn to biogenic organic ligands play a role in detoxification. Our biogeochemical analysis conveys fundamental insight on the potential of the key ligands of sulfidic systems to effect Zn detoxification. Sulfide stands out for its reactivity and prevalence in sulfidic systems.  相似文献   

15.
Biofilms formed in pipes are known to contribute to waterborne diseases, accelerate corrosion and cause aesthetic taste and odour issues within the potable water supply network. This paper describes a pilot study, undertaken to assess the potential of using metabolomics to monitor bacterial activity in biofilms of an urban water network. Using samples from a water mains flushing programme, it was found that a profile of intracellular and extracellular metabolites associated with microbial activity could be obtained by analysing samples using gas chromatography mass spectrometry. Chemometric analysis of the chromatograms in conjunction with data from the mass spectrometer showed that it is possible to differentiate between biofilms from different pipe materials and planktonic bacteria. This research demonstrates that metabolomics has the potential for investigating biofilms and other microbial activity within water networks, and could provide a means for enhancing monitoring programmes, understanding the source of water quality complaints, and optimising water network management strategies.  相似文献   

16.
Phytohemagglutinin (PHA) induced cell cytotoxicity was studied in man using chromated chicken red blood cells (CRBC) as target cells. A phagocytic, adherent monocyte was found to be necessary for lysis of target cells. Results using E rosette depletion showed that this procedure markedly increased mitogen-induced cellular cytotoxicity (MICC). Carbonyl iron treatment of peripheral blood cell suspensions to remove phagocytic cells abolished MICC, as did removal of adherent cells by glass wool columns. Complement mediated lysis of B cells did not substantially reduce MICC. However, pretreatment of cells with silica or hydrocortisone did reduce MICC. The mechanism of mitogen-induced lysis appears to require direct cell contact between effector cells and target cells.  相似文献   

17.
Hydrogen sulfide (H2S) inhibits the last step of the denitrification process, i.e. the reduction of nitrous oxide (N2O) to dinitrogen gas (N2), both in natural environments (marine sediments) and industrial processes (activated sludge, methanogenic sludge, BioDeNOx process). In a previously published study, we showed that the inhibitory effect of sulfide to N2O reduction in mixed microbial communities is reversible and can be counteracted by dosing trace amounts of copper. It remained, however, unclear if this was due to copper sulfide precipitation or a retrofitting of the copper containing N2O-reductase (N2OR). The present study aimed to elucidate the mechanism of the restoration of sulfide-inhibited N2O reducing activity by metal addition to a pure Pseudomonas aeruginosa culture. This was done by using other metals (zinc, cobalt and iron) in comparison with copper. Zinc and cobalt clearly alleviated the sulfide inhibition of N2OR to the same extent as copper and the activity restoration was extremely fast (within 15 min, Fig. 3) for zinc, cobalt and copper. This suggests that the alleviation of the inhibitory effect of sulfide is due to metal sulfide precipitation and thus not exclusively limited to Cu. This work also underlines the importance of metal speciation: supply of iron did not restore the N2OR activity because it was precipitated by the phosphates present in the medium and thus could not precipitate the sulfide.  相似文献   

18.
Microbiological studies of spent nuclear fuel storage basins at Savannah River Site (SRS) were performed as a preliminary step to elucidate the potential for microbial-influenced corrosion (MIC) in these facilities. Total direct counts and culturable counts performed during a 2-year period indicated microbial densities of 104 to 107 cells/ml in water samples and on submerged metal coupons collected from these basins. Bacterial communities present in the basin transformed between 15% and 89% of the compounds present in Biolog™ plates. Additionally, the presence of several biocorrosion-relevant microbial groups (i.e., sulfate-reducing bacteria and acid-producing bacteria) was detected with commercially available test kits. Scanning electron microscopy and X-ray spectra analysis of osmium tetroxide-stained coupons demonstrated the development of microbial biofilm communities on some metal coupons submerged for 3 weeks in storage basins. After 12 months, coupons were fully covered by biofilms, with some deterioration of the coupon surface evident at the microscopical level. These results suggest that, despite the oligotrophic and radiological environment of the SRS storage basins and the active water deionization treatments commonly applied to prevent electrochemical corrosion in these facilities, these conditions do not prevent microbial colonization and survival. Such microbial densities and wide diversity of carbon source utilization reflect the ability of the microbial populations to adapt to these environments. The presumptive presence of sulfate-reducing bacteria and acid-producing bacteria and the development of biofilms on submerged coupons indicated that an environment for MIC of metal components in the storage basins may occur. However, to date, there has been no indication or evidence of MIC in the basins. Basin chemistry control and corrosion surveillance programs instituted several years ago have substantially abated all corrosion mechanisms. Received: 4 April 1998 / Accepted: 7 July 1998  相似文献   

19.
The identification of bacteria in oil production facilities has previously been based on culture techniques. However, cultivation of bacteria from these often-extreme environments can lead to errors in identifying the microbial community members. In this study, molecular techniques including fluorescence in situ hybridization, PCR, denaturing gradient gel electrophoresis, and sequencing were used to track changes in bacterial biofilm populations treated with nitrate, nitrite, or nitrate + molybdate as agents for the control of sulfide production. Results indicated that nitrite and nitrate + molybdate reduced sulfide production, while nitrate alone had no effect on sulfide generation. No long-term effect on sulfide production was observed. Initial sulfate-reducing bacterial numbers were not influenced by the chemical treatments, although a significant increase in sulfate-reducing bacteria was observed after termination of the treatments. Molecular analysis showed a diverse bacterial population, but no major shifts in the population due to treatment effects were observed.  相似文献   

20.
Multiple environmental mechanisms have been proposed to control bottom water hypoxia (<2 mg O2 L?1) in the northern Gulf of Mexico Louisiana shelf. Near-bottom hypoxia has been attributed to a direct consumption of oxygen through benthic microbial respiration and a secondary chemical reaction between oxygen and reduced metabolites (i.e. ferrous iron and total sulfide) from these populations. No studies to date have examined the metabolically active microbial community structure in conjunction with the geochemical profile in these sediments. Temporal and spatial differences in dissolved and solid phase geochemistry were investigated in the upper 20 cm of the sediment column. Pyrosequencing of reverse transcribed small subunit (SSU) ribosomal ribonucleic acid (rRNA) was used to determine population distribution. Results indicated that populations shallower than 10 cm below surface were temporally variable yet uniform between sites, while below this depth, populations were more site-specific. This suggests a potential interaction between the water column and the benthic microbial population limited to a shallow depth. The presence of dissolved reduced iron in the upper sediment column was indicative of low oxygen concentration, yet sulfide was at or below detection limits. Putative sulfate and iron reducing and oxidizing populations were metabolically active at similar depths suggesting potential recycling of products. Results from this study indicate low carbon concentrations in the shallow sediments limit general metabolic activity, reducing the potential for microbial respiration. Supplemental materials are available for this article. Go to the publisher's online edition of Geomicrobiology Journal to view the supplemental file.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号