首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Autophagy plays a key role during Salmonella infection, by eliminating these pathogens following escape into the cytosol. In this process, selective autophagy receptors, including the myosin VI adaptor proteins optineurin and NDP52, have been shown to recognize cytosolic pathogens. Here, we demonstrate that myosin VI and TAX1BP1 are recruited to ubiquitylated Salmonella and play a key role in xenophagy. The absence of TAX1BP1 causes an accumulation of ubiquitin-positive Salmonella, whereas loss of myosin VI leads to an increase in ubiquitylated and LC3-positive bacteria. Our structural studies demonstrate that the ubiquitin-binding site of TAX1BP1 overlaps with the myosin VI binding site and point mutations in the TAX1BP1 zinc finger domains that affect ubiquitin binding also ablate binding to myosin VI. This mutually exclusive binding and the association of TAX1BP1 with LC3 on the outer limiting membrane of autophagosomes may suggest a molecular mechanism for recruitment of this motor to autophagosomes. The predominant role of TAX1BP1, a paralogue of NDP52, in xenophagy is supported by our evolutionary analysis, which demonstrates that functionally intact NDP52 is missing in Xenopus and mice, whereas TAX1BP1 is expressed in all vertebrates analysed. In summary, this work highlights the importance of TAX1BP1 as a novel autophagy receptor in myosin VI-mediated xenophagy. Our study identifies essential new machinery for the autophagy-dependent clearance of Salmonella typhimurium and suggests modulation of myosin VI motor activity as a potential therapeutic target in cellular immunity.  相似文献   

2.
Autophagosome formation requires multiple autophagy‐related (ATG) factors. However, we find that a subset of autophagy substrates remains robustly targeted to the lysosome in the absence of several core ATGs, including the LC3 lipidation machinery. To address this unexpected result, we performed genome‐wide CRISPR screens identifying genes required for NBR1 flux in ATG7KO cells. We find that ATG7‐independent autophagy still requires canonical ATG factors including FIP200. However, in the absence of LC3 lipidation, additional factors are required including TAX1BP1 and TBK1. TAX1BP1''s ability to cluster FIP200 around NBR1 cargo and induce local autophagosome formation enforces cargo specificity and replaces the requirement for lipidated LC3. In support of this model, we define a ubiquitin‐independent mode of TAX1BP1 recruitment to NBR1 puncta, highlighting that TAX1BP1 recruitment and clustering, rather than ubiquitin binding per se, is critical for function. Collectively, our data provide a mechanistic basis for reports of selective autophagy in cells lacking the lipidation machinery, wherein receptor‐mediated clustering of upstream autophagy factors drives continued autophagosome formation.  相似文献   

3.
Nuclear factor kappa B (NF-kappaB) is a key mediator of inflammation. Unchecked NF-kappaB signalling can engender autoimmune pathologies and cancers. Here, we show that Tax1-binding protein 1 (TAX1BP1) is a negative regulator of TNF-alpha- and IL-1beta-induced NF-kappaB activation and that binding to mono- and polyubiquitin by a ubiquitin-binding Zn finger domain in TAX1BP1 is needed for TRAF6 association and NF-kappaB inhibition. Mice genetically knocked out for TAX1BP1 are born normal, but develop age-dependent inflammatory cardiac valvulitis, die prematurely, and are hypersensitive to low doses of TNF-alpha and IL-1beta. TAX1BP1-/- cells are more highly activated for NF-kappaB than control cells when stimulated with TNF-alpha or IL-1beta. Mechanistically, TAX1BP1 acts in NF-kappaB signalling as an essential adaptor between A20 and its targets.  相似文献   

4.
OPTN (optineurin), a ubiquitin-binding scaffold protein, functions as an important macroautophagy/autophagy receptor in selective autophagy processes. Mutations in OPTN have been linked with human neurodegenerative diseases including ALS and glaucoma. However, the mechanistic basis underlying the recognition of ubiquitin by OPTN and its regulation by TBK1-mediated phosphorylation are still elusive. Here, we demonstrate that the UBAN domain of OPTN preferentially recognizes linear ubiquitin chain and forms an asymmetric 2:1 stoichiometry complex with the linear diubiquitin. In addition, our results provide new mechanistic insights into how phosphorylation of UBAN would regulate the ubiquitin-binding ability of OPTN and how disease-associated mutations in the OPTN UBAN domain disrupt its interaction with ubiquitin. Finally, we show that defects in ubiquitin-binding may affect the recruitment of OPTN to linear ubiquitin-decorated mutant Huntington protein aggregates. Taken together, our findings clarify the interaction mode between UBAN and linear ubiquitin chain in general, and expand our knowledge of the molecular mechanism of ubiquitin-decorated substrates recognition by OPTN as well as the pathogenesis of neurodegenerative diseases caused by OPTN mutations.  相似文献   

5.
《Autophagy》2013,9(12):1955-1964
Upon completion of cytokinesis, the midbody ring is transported asymmetrically into one of the two daughter cells where it becomes a midbody ring derivative that is degraded by autophagy. In this study we showed that the ubiquitin-binding autophagy receptor SQSTM1/p62 and the interacting adaptor protein WDFY3/ALFY form a complex with the ubiquitin E3 ligase TRAF6 and that these proteins, as well as NBR1, are important for efficient clearance of midbody ring derivatives by autophagy. The number of ubiquitinated midbody ring derivatives decreases in TRAF6-depleted cells and we showed that TRAF6 mediates ubiquitination of the midbody ring localized protein KIF23/MKLP1. We conclude that TRAF6-mediated ubiquitination of the midbody ring is important for its subsequent recognition by ubiquitin-binding autophagy receptors and degradation by selective autophagy.  相似文献   

6.
7.
8.
Upon virus infection, the innate immune response provides the first line of protection and rapidly induces type I interferons (IFNα/β), which mediate potent antiviral effects. To maintain homeostasis and prevent autoimmunity, IFN production is tightly regulated; however, the mechanisms of negative regulation are poorly understood. Herein, we demonstrate that the A20 binding inhibitor of NF-κB 1 (ABIN1) is a novel negative regulator of antiviral signaling. Overexpression of ABIN1 inhibited IFN-β promoter activation in response to virus infection or poly(I:C) transfection, whereas siRNA-mediated knockdown of ABIN1 enhanced IFN-β production upon virus infection. ABIN1 interacted with the A20 regulatory molecule TAX1BP1 and was essential for the recruitment of TAX1BP1 and A20 to the noncanonical IκB kinases TBK1 and IKKi in response to poly(I:C) transfection. ABIN1 and TAX1BP1 together disrupted the interactions between the E3 ubiquitin ligase TRAF3 and TBK1/IKKi to attenuate lysine 63-linked polyubiquitination of TBK1/IKKi. Finally, an intact ubiquitin binding domain of ABIN1 was essential for ABIN1 to interact with TBK1/IKKi and inhibit IFN-β production upon poly(I:C) transfection or virus infection. Together, these results suggest that ABIN1 requires its ubiquitin binding domain and cooperates with TAX1BP1 and A20 to restrict antiviral signaling.  相似文献   

9.
《Autophagy》2013,9(11):1937-1952
Lipopolysaccharide (LPS)-induced activation of TLR4 (toll-like receptor 4) is followed by a subsequent overwhelming inflammatory response, a hallmark of the first phase of sepsis. Therefore, counteracting excessive innate immunity by autophagy is important to contribute to the termination of inflammation. However, the exact molecular details of this interplay are only poorly understood. Here, we show that PELI3/Pellino3 (pellino E3 ubiquitin protein ligase family member 3), which is an E3 ubiquitin ligase and scaffold protein in TLR4-signaling, is impacted by autophagy in macrophages (MΦ) after LPS stimulation. We noticed an attenuated mRNA expression of proinflammatory Il1b (interleukin 1, β) in Peli3 knockdown murine MΦ in response to LPS treatment. The autophagy adaptor protein SQSTM1/p62 (sequestosome 1) emerged as a potential PELI3 binding partner in TLR4-signaling. siRNA targeting Sqstm1 and Atg7 (autophagy related 7), pharmacological inhibition of autophagy by wortmannin as well as blocking the lysosomal vacuolar-type H+-ATPase by bafilomycin A1 augmented PELI3 protein levels, while inhibition of the proteasome had no effect. Consistently, treatment to induce autophagy by MTOR (mechanistic target of rapamycin (serine/threonine kinase)) inhibition or starvation enhanced PELI3 degradation and reduced proinflammatory Il1b expression. PELI3 was found to be ubiquitinated upon LPS stimulation and point mutation of PELI3-lysine residue 316 (Lys316Arg) attenuated Torin2-dependent degradation of PELI3. Immunofluorescence analysis revealed that PELI3 colocalized with the typical autophagy markers MAP1LC3B/LC3B (microtubule-associated protein 1 light chain 3 β) and LAMP2 (lysosomal-associated membrane protein 2). Our observations suggest that autophagy causes PELI3 degradation during TLR4-signaling, thereby impairing the hyperinflammatory phase during sepsis.  相似文献   

10.
Lipopolysaccharide (LPS)-induced activation of TLR4 (toll-like receptor 4) is followed by a subsequent overwhelming inflammatory response, a hallmark of the first phase of sepsis. Therefore, counteracting excessive innate immunity by autophagy is important to contribute to the termination of inflammation. However, the exact molecular details of this interplay are only poorly understood. Here, we show that PELI3/Pellino3 (pellino E3 ubiquitin protein ligase family member 3), which is an E3 ubiquitin ligase and scaffold protein in TLR4-signaling, is impacted by autophagy in macrophages (MΦ) after LPS stimulation. We noticed an attenuated mRNA expression of proinflammatory Il1b (interleukin 1, β) in Peli3 knockdown murine MΦ in response to LPS treatment. The autophagy adaptor protein SQSTM1/p62 (sequestosome 1) emerged as a potential PELI3 binding partner in TLR4-signaling. siRNA targeting Sqstm1 and Atg7 (autophagy related 7), pharmacological inhibition of autophagy by wortmannin as well as blocking the lysosomal vacuolar-type H+-ATPase by bafilomycin A1 augmented PELI3 protein levels, while inhibition of the proteasome had no effect. Consistently, treatment to induce autophagy by MTOR (mechanistic target of rapamycin (serine/threonine kinase)) inhibition or starvation enhanced PELI3 degradation and reduced proinflammatory Il1b expression. PELI3 was found to be ubiquitinated upon LPS stimulation and point mutation of PELI3-lysine residue 316 (Lys316Arg) attenuated Torin2-dependent degradation of PELI3. Immunofluorescence analysis revealed that PELI3 colocalized with the typical autophagy markers MAP1LC3B/LC3B (microtubule-associated protein 1 light chain 3 β) and LAMP2 (lysosomal-associated membrane protein 2). Our observations suggest that autophagy causes PELI3 degradation during TLR4-signaling, thereby impairing the hyperinflammatory phase during sepsis.  相似文献   

11.
Selective autophagy underlies many of the important physiological roles that autophagy plays in multicellular organisms, but the mechanisms involved in cargo selection are poorly understood. Here we describe a molecular mechanism that can target conventional endosomes for autophagic degradation. We show that the human transmembrane protein TMEM59 contains a minimal 19‐amino‐acid peptide in its intracellular domain that promotes LC3 labelling and lysosomal targeting of its own endosomal compartment. Interestingly, this peptide defines a novel protein motif that mediates interaction with the WD‐repeat domain of ATG16L1, thus providing a mechanistic basis for the activity. The motif is represented with the same ATG16L1‐binding ability in other molecules, suggesting a more general relevance. We propose that this motif may play an important role in targeting specific membranous compartments for autophagic degradation, and therefore it may facilitate the search for adaptor proteins that promote selective autophagy by engaging ATG16L1. Endogenous TMEM59 interacts with ATG16L1 and mediates autophagy in response to Staphylococcus aureus infection.  相似文献   

12.
Xenophagy, also known as antibacterial autophagy, plays a role in host defence against invading pathogens such as Group A Streptococcus (GAS) and Salmonella. In xenophagy, autophagy receptors are used in the recognition of invading pathogens and in autophagosome maturation and autolysosome formation. However, the mechanism by which autophagy receptors are regulated during bacterial infection remains poorly elucidated. In this study, we identified LAMTOR2 and LAMTOR1, also named p14 and p18, respectively, as previously unrecognised xenophagy regulators that modulate the autophagy receptor TAX1BP1 in response to GAS and Salmonella invasion. LAMTOR1 was localized to bacterium‐containing endosomes, and LAMTOR2 was recruited to bacterium‐containing damaged endosomes in a LAMTOR1‐dependent manner. LAMTOR2 was dispensable for the formation of autophagosomes targeting damaged membrane debris surrounding cytosolic bacteria, but it was critical for autolysosome formation, and LAMTOR2 interacted with the autophagy receptors NBR1, TAX1BP1, and p62 and was necessary for TAX1BP1 recruitment to pathogen‐containing autophagosomes. Notably, knockout of TAX1BP1 caused a reduction in autolysosome formation and subsequent bacterial degradation. Collectively, our findings demonstrated that the LAMTOR1/2 complex is required for recruiting TAX1BP1 to autophagosomes and thereby facilitating autolysosome formation during bacterial infection.  相似文献   

13.
14.
15.
FYCO1 (FYVE and coiled-coil domain containing 1) functions as an autophagy adaptor in directly linking autophagosomes with the microtubule-based kinesin motor, and plays an essential role in the microtubule plus end-directed transport of autophagic vesicles. The specific association of FYCO1 with autophagosomes is mediated by its interaction with Atg8-family proteins decorated on the outer surface of autophagosome. However, the mechanistic basis governing the interaction between FYCO1 and Atg8-family proteins is largely unknown. Here, using biochemical and structural analyses, we demonstrated that FYCO1 contains a unique LC3-interacting region (LIR), which discriminately binds to mammalian Atg8 orthologs and preferentially binds to the MAP1LC3A and MAP1LC3B. In addition to uncovering the detailed molecular mechanism underlying the FYCO1 LIR and MAP1LC3A interaction, the determined FYCO1-LIR-MAP1LC3A complex structure also reveals a unique LIR binding mode for Atg8-family proteins, and demonstrates, first, the functional relevance of adjacent sequences C-terminal to the LIR core motif for binding to Atg8-family proteins. Taken together, our findings not only provide new mechanistic insight into FYCO1-mediated transport of autophagosomes, but also expand our understanding of the interaction modes between LIR motifs and Atg8-family proteins in general.  相似文献   

16.
Ubiquilins (Ubqlns)—a family of ubiquitin‐binding proteins—are involved in several protein degradation pathways and have been implicated in various neurodegenerative diseases. Ubqln1 regulates autophagosome maturation during autophagy‐mediated degradation. We now show that Ubqln4 mediates the interaction between Ubqln1 and the autophagy machinery by recruiting Ubqln1 to LC3. This targeting of Ubqln1 to autophagosomes requires the Ubqln4 UBL domain and the Ubqln1 UBA domain. This study identifies a new role for Ubqln4, expanding the role for Ubqlns in protein degradation.  相似文献   

17.
18.
《Autophagy》2013,9(12):1424-1433
Under normal growth conditions the mammalian target of rapamycin complex 1 (mTORC1) negatively regulates the central autophagy regulator complex consisting of Unc-51-like kinases 1/2 (Ulk1/2), focal adhesion kinase family-interacting protein of 200 kDa (FIP200) and Atg13. Upon starvation, mTORC1-mediated repression of this complex is released, which then leads to Ulk1/2 activation. In this scenario, Atg13 has been proposed as an adaptor mediating the interaction between Ulk1/2 and FIP200 and enhancing Ulk1/2 kinase activity. Using Atg13-deficient cells, we demonstrate that Atg13 is indispensable for autophagy induction. We further show that Atg13 function strictly depends on FIP200 binding. In contrast, the simultaneous knockout of Ulk1 and Ulk2 did not have a similar effect on autophagy induction. Accordingly, the Ulk1-dependent phosphorylation sites we identified in Atg13 are expendable for this process. This suggests that Atg13 has an additional function independent of Ulk1/2 and that Atg13 and FIP200 act in concert during autophagy induction.  相似文献   

19.
Under normal growth conditions the mammalian target of rapamycin complex 1 (mTORC1) negatively regulates the central autophagy regulator complex consisting of Unc-51-like kinases 1/2 (Ulk1/2), focal adhesion kinase family-interacting protein of 200 kDa (FIP200) and Atg13. Upon starvation, mTORC1-mediated repression of this complex is released, which then leads to Ulk1/2 activation. In this scenario, Atg13 has been proposed as an adaptor mediating the interaction between Ulk1/2 and FIP200 and enhancing Ulk1/2 kinase activity. Using Atg13-deficient cells, we demonstrate that Atg13 is indispensable for autophagy induction. We further show that Atg13 function strictly depends on FIP200 binding. In contrast, the simultaneous knockout of Ulk1 and Ulk2 did not have a similar effect on autophagy induction. Accordingly, the Ulk1-dependent phosphorylation sites we identified in Atg13 are expendable for this process. This suggests that Atg13 has an additional function independent of Ulk1/2 and that Atg13 and FIP200 act in concert during autophagy induction.  相似文献   

20.
Syntenin-1 is a PDZ domain-containing adaptor that controls trafficking of transmembrane proteins including those associated with tetraspanin-enriched microdomains. We describe the interaction of syntenin-1 with ubiquitin through a novel binding site spanning the C terminus of ubiquitin, centered on Arg(72), Leu(73), and Arg(74). A conserved LYPSL sequence in the N terminus, as well as the C-terminal region of syntenin-1, are essential for binding to ubiquitin. We present evidence for the regulation of this interaction through syntenin-1 dimerization. We have also established that syntenin-1 is phosphorylated downstream of Ulk1, a serine/threonine kinase that plays a critical role in autophagy and regulates endocytic trafficking. Importantly, Ulk1-dependent phosphorylation of Ser(6) in the LYPSL prevents the interaction of syntenin-1 with ubiquitin. These results define an unprecedented ubiquitin-dependent pathway involving syntenin-1 that is regulated by Ulk1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号