首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The catches and discards of trawlers, seiners and trammel netters were studied in the Algarve (southern Portugal) using observers onboard commercial fishing vessels. Species diversity was high, with 236 species recorded as occasionally, frequently or regularly discarded. Mean discard rates per trip were 0.13, 0.20, 0.27, 0.62 and 0.70, respectively, for trammel nets, demersal purse seines, pelagic purse seines, fish trawls and crustacean trawls, with high variability in terms of discard volume and discard rate. This was especially so for seiners where from 0 to 100% of the total catch might be discarded. No significant relationships were found between discard quantity or discard rate and characteristics of the fishing vessels sampled within each métier (total length, TAB, hp, kW). Based on the above discard rates and the official landings, it was estimated that in 1996, Algarve trawlers discarded 9000–13000 tonnes (t) while seiners discarded 5500–8200 t. Discarding practices in these fisheries are reviewed and the reasons for discarding are presented by species and métier basis. The results support the need for more studies on the factors contributing to discarding, variability in discard quantities and rates, the fate of discards and their importance to the marine ecosystem, and on ways of reducing by-catch and discarding in these fisheries.  相似文献   

2.
Many commercial fisheries seek to maximise the economic value of the catch that they bring ashore and market for human consumption by discarding undersize or low value fish. Information on the quantity, size and species composition of discarded fish is vital for stock assessments and for devising legislation to minimise the practice. However, except for a few major species, data are usually extremely sparse and reliant on observers aboard a small sample of fishing vessels. Expanding these data to estimate total regional discards is highly problematic. Here, we develop a method for utilising additional information from scientific trawl surveys to model the quantities of fish discarded by the commercial fisheries. As a case-study, we apply the model to the North Sea over the period 1978-2011, and show a long-term decline in the overall quantity of fish discarded, but an increase in the proportion of catch which is thrown away. The composition of discarded catch has shifted from predominantly (∼80%) roundfish, to >50% flatfish. Undersized plaice constitute the largest single fraction of discards, unchanged from the beginning of the 20th century. Overall, around 60% of discarded fish are rejected on the basis of size rather than for reasons of species value or quota restrictions. The analysis shows that much more information can be gained on discarding by utilising additional sources of data rather than relying solely on information gathered by observers. In addition, it is clear that reducing fishing intensity and rebuilding stocks is likely to be more effective at reducing discards in the long term, than any technical legislation to outlaw the practice in the short term.  相似文献   

3.
Using marine reserves to estimate fishing mortality   总被引:1,自引:0,他引:1  
The proportion of a fish stock that is killed by fishing activity is often calculated as the catch divided by the estimated stock biomass. However, stock biomass is notoriously difficult to estimate reliably, and moreover, the catch may be uncertain or misreported and does not include losses due to discarding. In all too many fisheries, these difficulties have lead to underestimates of total fishing mortality and the commercial demise of the fishery. No‐take marine reserves eliminate fishing mortality from within their boundaries and, for species that exhibit seasonal migratory behaviour, comparison of reserves with fished areas can provide direct estimates of the proportion killed by fishing. For an important exploited species in New Zealand, seasonal changes in density of sub‐legal fish at three marine reserves were similar in both reserve and adjacent non‐reserve areas. However, this result did not hold for legal‐size fish, and the difference in seasonal change between reserved and non‐reserved areas was used to obtain direct estimates of the total localized fishing mortality in the non‐reserve area over 6‐month periods. Estimates of the percentage of legal‐size fish killed by fishing ranged from 70 to 96%. These results demonstrate an unanticipated practical benefit from marine reserves that goes beyond their ecological role.  相似文献   

4.
The idea of using marine reserves, where all fishing is banned is not new to fisheries management. It was first formally considered by Beverton and Holt but rejected in favour of approaches such as fleet and gear control. Since that analysis, many fisheries have collapsed worldwide, illustrating the vulnerability of fishery resources and the ineffectiveness of these approaches. Empirical data and modelling suggest that marine reserves would generally increase yields, especially at the high fishing mortality that occurs in most fisheries. However, the most interesting feature of reserves is their ability to provide resilience to overexploitation, thereby reducing the risk of stock collapse. Benefits from reserves come from the increase in biomass and individual size within them, resulting in adult migration and/or larval dispersal that would replenish fishing grounds. The use of marine reserves in managing fisheries necessitates a thorough understanding of critical habitat requirements, fish movement, fish behaviour, the relations between subpopulations and the critical density effect for larval dispersal. When properly designed, and coupled with other management practices, reserves may provide a better insurance against uncertainties in stock assessment, fishing control and management by protecting a part of the population from exploitation. This strategy can be used for both sedentary and migratory species.  相似文献   

5.
The catastrophic impact of fishing pressure on species such as cod and herring is well documented. However, the antiquity of their intensive exploitation has not been established. Systematic catch statistics are only available for ca.100 years, but large-scale fishing industries existed in medieval Europe and the expansion of cod fishing from the fourteenth century (first in Iceland, then in Newfoundland) played an important role in the European colonization of the Northwest Atlantic. History has demonstrated the scale of these late medieval and post-medieval fisheries, but only archaeology can illuminate earlier practices. Zooarchaeological evidence shows that the clearest changes in marine fishing in England between AD 600 and 1600 occurred rapidly around AD 1000 and involved large increases in catches of herring and cod. Surprisingly, this revolution predated the documented post-medieval expansion of England's sea fisheries and coincided with the Medieval Warm Period--when natural herring and cod productivity was probably low in the North Sea. This counterintuitive discovery can be explained by the concurrent rise of urbanism and human impacts on freshwater ecosystems. The search for 'pristine' baselines regarding marine ecosystems will thus need to employ medieval palaeoecological proxies in addition to recent fisheries data and early modern historical records.  相似文献   

6.
No-take marine reserves (NTMRs) are much advocated as a solution to managing marine ecosystems, protecting exploited species and restoring natural states of biodiversity [1,2]. Increasingly, it is becoming clear that effective marine conservation and management at ecosystem and regional scales requires extensive networks of NTMRs [1,2]. The world's largest network of such reserves was established on Australia's Great Barrier Reef (GBR) in 2004. Closing such a large area to all fishing has been socially and politically controversial, making it imperative that the effectiveness of this new reserve network be assessed. Here we report evidence, first, that the densities of the major target species of the GBR reef line fisheries were significantly higher in the new NTMRs, compared with fished sites, in just two years; and second, that the positive differences were consistent for multiple marine reserves over an unprecedented spatial scale (>1,000 km).  相似文献   

7.
Overexploitation has been the principal focus of marine mammal conservation. Less attention has been paid to bycatch in commercial fisheries; entanglement in lost and discarded fishing gear; food shortages owing to climate change and/or overharvesting of essential prey; point and non-point source pollution; and diseases. Also, relatively little attention has been paid to situations where marine mammals pose threats to the existence and human uses of other marine species. As overexploitation is addressed, focus must be shifted to these problems that are no less significant.  相似文献   

8.
Oceanic uptake of anthropogenic carbon dioxide (CO2) is altering the carbonate chemistry of seawater, with potentially negative consequences for many calcifying marine organisms. At the same time, increasing fisheries exploitation is impacting on marine ecosystems. Here, using increased benthic‐invertebrate mortality as a proxy for effects of ocean acidification, the potential impact of the two stressors of fishing and acidification on the southeast Australian marine ecosystem to year 2050 was explored. The individual and interaction effects of the two stressors on biomass and diversity were examined for the entire ecosystem and for regional assemblages. For 61 functional groups or species, the cumulative effects of moderate ocean acidification and fishing were additive (30%), synergistic (33%), and antagonistic (37%). Strong ocean acidification resulted in additive (22%), synergistic (40%), and antagonistic (38%) effects. The greatest impact was on the demersal food web, with fishing impacting predation and acidification affecting benthic production. Areas that have been subject to intensive fishing were the most susceptible to acidification effect, although fishing also mitigated some of the decline in biodiversity observed with moderate acidification. The model suggested that ocean acidification and long‐term fisheries exploitation could act synergistically with the increasing sensitivity to change from long‐term (decades) fisheries exploitation potentially causing unexpected restructuring of the pelagic and demersal food webs. Major regime shifts occur around year 2040. Greater focus is needed on how differential fisheries exploitation of marine resources may exacerbate or accelerate effects of environmental changes such as ocean acidification.  相似文献   

9.
It has been widely acknowledged that fishery discard practices constitute a purposeless waste of valuable living resources, which plays an important role in the depletion of marine populations. Furthermore, discarding may have a number of adverse ecological impacts in marine ecosystems, provoking changes in the overall structure of trophic webs and habitats, which in turn could pose risks for the sustainability of current fisheries. The present review aims to describe the current state-of-the-art in discards research, with particular emphasis on the needs and challenges associated with the implementation of the Ecosystem Approach to Fisheries Management (EAFM) in European waters. We briefly review the international and European policy contexts of discarding, how discard data are collected and incorporated into stock assessments, selectivity in fishing and the main consequences of discarding for ecosystem dynamics. We then review implementation issues related to reducing discards under the EAFM and the associated scientific challenges, and conclude with some comments on lessons learned and future directions.  相似文献   

10.
The impacts of climate change on marine species are often compounded by other stressors that make direct attribution and prediction difficult. Shy albatrosses (Thalassarche cauta) breeding on Albatross Island, Tasmania, show an unusually restricted foraging range, allowing easier discrimination between the influence of non-climate stressors (fisheries bycatch) and environmental variation. Local environmental conditions (rainfall, air temperature, and sea-surface height, an indicator of upwelling) during the vulnerable chick-rearing stage, have been correlated with breeding success of shy albatrosses. We use an age-, stage- and sex-structured population model to explore potential relationships between local environmental factors and albatross breeding success while accounting for fisheries bycatch by trawl and longline fisheries. The model uses time-series of observed breeding population counts, breeding success, adult and juvenile survival rates and a bycatch mortality observation for trawl fishing to estimate fisheries catchability, environmental influence, natural mortality rate, density dependence, and productivity. Observed at-sea distributions for adult and juvenile birds were coupled with reported fishing effort to estimate vulnerability to incidental bycatch. The inclusion of rainfall, temperature and sea-surface height as explanatory variables for annual chick mortality rate was statistically significant. Global climate models predict little change in future local average rainfall, however, increases are forecast in both temperatures and upwelling, which are predicted to have detrimental and beneficial effects, respectively, on breeding success. The model shows that mitigation of at least 50% of present bycatch is required to offset losses due to future temperature changes, even if upwelling increases substantially. Our results highlight the benefits of using an integrated modeling approach, which uses available demographic as well as environmental data within a single estimation framework, to provide future predictions. Such predictions inform the development of management options in the face of climate change.  相似文献   

11.
In response to concerns over excessive discarding from Australian recreational round traps (with four funnel entrances) used to target giant mud crabs, Scylla serrata, an experiment was done to assess the independent and cumulative utility of paired, bottom-located horizontal escape gaps (46×120 mm) and increasing mesh size (from 51 to 101 mm). Compared to conventional traps comprising 51-mm mesh throughout, those with the same mesh size and escape gaps caught significantly fewer (by 95%) undersize (<85 mm carapace length – CL) crabs while maintaining legal catches. Traps made from 101-mm mesh (but with the same funnel entrances as conventional designs) and with and without escape gaps similarly retained fewer undersize crabs and also yellowfin bream Acanthopagrus australis (the key bycatch species) by up to 94%, but there were concomitant reductions in fishing power for legal sizes of S. serrata. Although there were no immediate mortalities among any discarded crabs, there was a greater bias towards wounding among post molts than late inter-molts and less damage to individuals in the 101-mm conventional than 51-mm conventional traps (without escape gaps). The results support retrospectively fitting escape gaps in conventional S. serrata traps as a means for reducing discarding, but additional work is required to determine appropriate mesh sizes/configurations that maximize species and size selectivity.  相似文献   

12.
The net movement of individuals from marine reserves (also known as no-take marine protected areas) to the remaining fishing grounds is known as spillover and is frequently used to promote reserves to fishers on the grounds that it will benefit fisheries. Here we consider how mismanaged a fishery must be before spillover from a reserve is able to provide a net benefit for a fishery. For our model fishery, density of the species being harvested becomes higher in the reserve than in the fished area but the reduction in the density and yield of the fished area was such that the net effect of the closure was negative, except when the fishery was mismanaged. The extent to which effort had to exceed traditional management targets before reserves led to a spillover benefit varied with rates of growth and movement of the model species. In general, for well-managed fisheries, the loss of yield from the use of reserves was less for species with greater movement and slower growth. The spillover benefit became more pronounced with increasing mis-management of the stocks remaining available to the fishery. This model-based result is consistent with the literature of field-based research where a spillover benefit from reserves has only been detected when the fishery is highly depleted, often where traditional fisheries management controls are absent. We conclude that reserves in jurisdictions with well-managed fisheries are unlikely to provide a net spillover benefit.  相似文献   

13.
The responsible approach to marine stock enhancement is a set of principles aimed at maximising the success and benefits of artificially re‐stocking depleted fisheries. The benefits of such an approach are evident in the 400% increase in survival of stocked striped mullet in Hawaii through refinement of release techniques, however financially or temporally constrained stocking programs in Australia have not adhered to all principles. A pragmatic approach to address these principles is proposed, using international examples and Australian marine finfish pilot stockings of barramundi, mulloway, sand whiting, dusky flathead and black bream. Biological ranking of candidate species by estuarine residency, a low natural‐mortality to growth ratio, a large L and comparison by recreational value and available rearing technologies, show that mulloway, barramundi and sea mullet are ideal species for stocking in Australia. Australian intermittently closed opening landlocked lagoons and recreational fishing havens, especially near cities, provide experimental opportunities to apply this approach and stock suitable species through small‐scale pilot experiments. This would allow evaluation of production and carrying capacity, and density dependent processes with respect to optimal stocking strategies unconfounded by emigration and commercial fishing practices. Twenty per cent of Australians fish each year, and harvest approximately 27 000 t of finfish. Stocking recreationally important species in Australia should give a greater financial benefit, which is spread across a larger cross‐section of the community, compared to stocking to enhance commercial fisheries. The pragmatic application of the responsible approach, and stocking of fast growing estuarine residents into recreational fishing havens would enhance the benefit from marine stocking.  相似文献   

14.

Implementing new and effective control strategies to reduce populations of invasive species is needed to offset their negative impacts worldwide. The spread of Indo-Pacific lionfish (Pterois sp.) through much of the western Atlantic has been one of the most publicized marine invasions globally, and is considered a major biodiversity threat whose longer-term impacts are still uncertain. Marine managers have explored several strategies to control lionfish, such as fishing tournaments (derbies) and commercial fisheries. Commercial fisheries for invasive species are controversial because they could create perverse incentives to maintain these populations, and they have never been demonstrated to successfully control target populations. We analyzed the development and impacts of an opportunistic fishing operation aimed at commercializing invasive lionfish in the Mexican Caribbean. We examined official lionfish landings and compared them to catches from lionfish derbies and lionfish densities from locations in the state of Quintana Roo, Mexico. We found that commercial fishers, particularly from one fishing cooperative on Cozumel Island, were effective at catching lionfish, with landings peaking at 20,000 individuals in 2014. This number is comparable to the number of lionfish caught in derbies across the entire Caribbean in the same year. Ecological survey data suggest a?~?60% reduction in lionfish density on Cozumel reefs over two years (2013–2015), matching the peak landings in the lionfish fishing operation. However, the fishery’s apparent success as a control tool during the time window analyzed seemed to trigger its own demise: a decline in landings was followed by evaporating market interest and loss of economic viability. If fisheries are to be established and used as management strategies to control future invasions, managers must develop strategic collaboration plans with commercial fishing partners.

  相似文献   

15.
Protection from fishing generally results in an increase in the abundance and biomass of species targeted by fisheries within marine reserve boundaries. Natural refuges such as depth may also protect such species, yet few studies in the Indo Pacific have investigated the effects of depth concomitant with marine reserves. We studied the effects of artisanal fishing and depth on reef fish assemblages in the Kubulau District of Vanua Levu Island, Fiji, using baited remote underwater stereo-video systems. Video samples were collected from shallow (5–8 m) and deep (25–30 m) sites inside and outside of a large old marine reserve (60.6 km2, 13 years old) and a small new marine reserve (4.25 km2, 4 years old). Species richness tended to be greater in the shallow waters of the large old reserve when compared to fished areas. In the deeper waters, species richness appeared to be comparable. The difference in shallow waters was driven by species targeted by fisheries, indicative of a depth refuge effect. In contrast, differences in the abundance composition of the fish assemblage existed between protected and fished areas for deep sites, but not shallow. Fish species targeted by local fisheries were 89% more abundant inside the large old reserve than surrounding fished areas, while non-targeted species were comparable. We observed no difference in the species richness or abundance of species targeted by fisheries inside and outside of the small new reserve. This study suggests that artisanal fishing impacts on the abundance and species richness of coral reef fish assemblages and effects of protection are more apparent with large reserves that have been established for a long period of time. Observed effects of protection also vary with depth, highlighting the importance of explicitly incorporating multiple depth strata in studies of marine reserves.  相似文献   

16.
Abstract Establishing permanent ‘no-take’ marine reserves, areas where fishing and all other extractive activities are prohibited, is an attractive but under-utilized tool for fisheries management. Marine reserves could potentially deal with many fishery problems that are not effectively addressed by other traditional management measures; they also offer numerous social, economic, and scientific benefits not directly related to fisheries. Limited but growing research has shown beneficial biological and economic effects of marine reserves on fisheries. More research is needed, especially at larger scales, to determine the ideal marine reserve size, number and location necessary to optimize fisheries productivity and resource conservation. Sufficient evidence is available to justify the expanded use of marine reserves in an adaptive approach to fisheries management.  相似文献   

17.
Marine fisheries as ecological experiments   总被引:1,自引:0,他引:1  
There are many examples of ecological theory informing fishery management. Yet fisheries also provide tremendous opportunities to test ecological theory through large-scale, repeated, and well-documented perturbations of natural systems. Although treating fisheries as experiments presents several challenges, few comparable tests exist at the ecosystem scale. Experimental manipulations of fish populations in lakes have been widely used to develop and test ecological theory. Controlled manipulation of fish populations in open marine systems is rarely possible, but fisheries data provide a valuable substitute for such manipulations. To highlight the value of marine fisheries data, we review leading ecological theories that have been empirically tested using such data. For example, density dependence has been examined through meta-analysis of spawning stock and recruitment data to show that compensation (higher population growth) occurs commonly when populations are reduced to low levels, while depensation (the Allee effect) is rare. As populations decline, spatial changes typically involve populations contracting into high-density core habitats while abandoning less productive habitats. Fishing down predators may result in trophic cascades, possibly shifting entire ecosystems into alternate stable states, although alternate states can be maintained by both ecological processes and continued fishing pressure. Conversely, depleting low trophic level groups may affect central-place foragers, although these bottom–up effects rarely appear to impact fish—perhaps because many fish populations have been reduced to the point that they are no longer prey limited. Fisheries provide empirical tests for diversity–stability relations: catch data suggest that more diverse systems recover faster and provide more stable returns than less diverse systems. Fisheries have also provided examples of the tragedy of the commons, as well as counter-examples where common property resources have been managed successfully. We also address two barriers to use of fisheries data to answer ecological questions: differences in terminology for similar concepts and misuse of records of fishery landings (catch data) as a proxy for biomass trends.  相似文献   

18.
We review interactions between extrinsic threats to marine fishes and intrinsic aspects of their biology that determine how populations and species respond to those threats. Information is available on the status of less than 5% of the world's approximately 15500 marine fish species, most of which are of commercial importance. By 2001, based on data from 98 North Atlantic and northeast Pacific populations, marine fishes had declined by a median 65% in breeding biomass from known historic levels; 28 populations had declined by more than 80%. Most of these declines would be sufficient to warrant a status of threatened with extinction under international threat criteria. However, this interpretation is highly controversial, in part because of a perception that marine fishes have a suite of life history characteristics, including high fecundity and large geographical ranges, which might confer greater resilience than that shown by terrestrial vertebrates. We review 15 comparative analyses that have tested for these and other life history correlates of vulnerability in marine fishes. The empirical evidence suggests that large body size and late maturity are the best predictors of vulnerability to fishing, regardless of whether differences among taxa in fishing mortality are controlled; there is no evidence that high fecundity confers increased resilience. The evidence reviewed here is of direct relevance to the diverse criteria used at global and national levels by various bodies to assess threat status of fishes. Simple life history traits can be incorporated directly into quantitative assessment criteria, or used to modify the conclusions of quantitative assessments, or used as preliminary screening criteria for assessment of the approximately 95% of marine fish species whose status has yet to be evaluated either by conservationists or fisheries scientists.  相似文献   

19.
Large predatory fishes have long played an important role in marine ecosystems and fisheries. Overexploitation, however, is gradually diminishing this role. Recent estimates indicate that exploitation has depleted large predatory fish communities worldwide by at least 90% over the past 50-100 years. We demonstrate that these declines are general, independent of methodology, and even higher for sensitive species such as sharks. We also attempt to predict the future prospects of large predatory fishes. (i) An analysis of maximum reproductive rates predicts the collapse and extinction of sensitive species under current levels of fishing mortality. Sensitive species occur in marine habitats worldwide and have to be considered in most management situations. (ii) We show that to ensure the survival of sensitive species in the northwest Atlantic fishing mortality has to be reduced by 40-80%. (iii) We show that rapid recovery of community biomass and diversity usually occurs when fishing mortality is reduced. However, recovery is more variable for single species, often because of the influence of species interactions. We conclude that management of multi-species fisheries needs to be tailored to the most sensitive, rather than the more robust species. This requires reductions in fishing effort, reduction in bycatch mortality and protection of key areas to initiate recovery of severely depleted communities.  相似文献   

20.
The common dentex Dentex dentex (Linnaeus, 1758) is an iconic marine coastal fish in the Mediterranean Sea. It is a demersal sparid fish (0–200 m), that grows to a maximum length of 100 cm and a weight of 13 kg, with a relatively long life span (more than 20 years). As a high trophic level predator, it holds a key position in coastal marine food webs. The common dentex is of great economic importance for both artisanal (small-scale coastal fisheries) and recreational fishing. Despite its economic and ecological importance, scientific data on this species in its natural environment are still very scant. The global commercial catch of common dentex has fluctuated over the last 60 years on an interannual time scale, and has declined significantly since the 1990s. There are few data regarding fishing effort and total catch from recreational fishing for common dentex, but it appears that this species is particularly targeted by this activity. The common dentex is now classified as “vulnerable” in the Red List of Threatened Species in the Mediterranean Sea. This review summarizes the current literature on D. dentex in regard to biology, ecology, parasitology, population structure, commercial and recreational fishing, and management regulations. Future research directions to fill gaps in current knowledge are suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号