首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Proteases are ubiquitous enzymes that occur in various biological systems ranging from microorganisms to higher organisms. Microbial proteases are largely utilized in various established industrial processes. Despite their numerous industrial applications, they are not efficient in hydrolysis of recalcitrant, protein-rich keratinous wastes which result in environmental pollution and health hazards. This paved the way for the search of keratinolytic microorganisms having the ability to hydrolyze “hard to degrade” keratinous wastes. This new class of proteases is known as “keratinases”. Due to their specificity, keratinases have an advantage over normal proteases and have replaced them in many industrial applications, such as nematicidal agents, nitrogenous fertilizer production from keratinous waste, animal feed and biofuel production. Keratinases have also replaced the normal proteases in the leather industry and detergent additive application due to their better performance. They have also been proved efficient in prion protein degradation. Above all, one of the major hurdles of enzyme industrial applications (cost effective production) can be achieved by using keratinous waste biomass, such as chicken feathers and hairs as fermentation substrate. Use of these low cost waste materials serves dual purposes: to reduce the fermentation cost for enzyme production as well as reducing the environmental waste load. The advent of keratinases has given new direction for waste management with industrial applications giving rise to green technology for sustainable development.  相似文献   

2.
Massive production of keratinaceous byproducts in the form of agricultural and industrial wastes throughout the world necessitates its justified utilization. Chemical treatment of keratin waste is proclaimed as an eco-destructive approach by various researchers since it generates secondary pollutants. Microbial degradation of keratin waste is an emerging and eco-friendly approach and offers dual benefits, i.e., treatment of recalcitrant pollutant (keratin) and procurement of a commercially important enzyme (keratinase). This review summarizes the potential utility of some bacterial and fungal species for the production of keratinase using a variety of keratinaceous wastes as growth substrates. The application of microbial keratinases in waste management; animal feed, detergent, and fertilizer manufacturing; and leather, cosmetic, and pharmaceutical industries is also abridged in this review.  相似文献   

3.
Keratinases are special proteases which attack the highly recalcitrant keratin substrates. They stand apart from the conventional proteases due to their broad substrate specificity towards a variety of insoluble keratin rich substrates like feather, wool, nail, hair. Owing to this ability, keratinases find immense applications in various environmental and biotechnological sectors. The current boost in keratinase research has come up with the discovery of the ability of keratinases to address the challenging issue of prion decontamination. Here we present a comprehensive review on microbial keratinases giving an account of chronological progress of research along with the major milestones. Major focus has been on the key characteristics of keratinases, such as substrate specificity, keratin degradation mechanisms, molecular properties, and their role in prion decontamination along with other pharmaceutical applications. We conclude by critically evaluating the present state of the keratinases discussing their commercial status along with future research directions.  相似文献   

4.
Microbial keratinases and their prospective applications: an overview   总被引:1,自引:0,他引:1  
Microbial keratinases have become biotechnologically important since they target the hydrolysis of highly rigid, strongly cross-linked structural polypeptide “keratin” recalcitrant to the commonly known proteolytic enzymes trypsin, pepsin and papain. These enzymes are largely produced in the presence of keratinous substrates in the form of hair, feather, wool, nail, horn etc. during their degradation. The complex mechanism of keratinolysis involves cooperative action of sulfitolytic and proteolytic systems. Keratinases are robust enzymes with a wide temperature and pH activity range and are largely serine or metallo proteases. Sequence homologies of keratinases indicate their relatedness to subtilisin family of serine proteases. They stand out among proteases since they attack the keratin residues and hence find application in developing cost-effective feather by-products for feed and fertilizers. Their application can also be extended to detergent and leather industries where they serve as specialty enzymes. Besides, they also find application in wool and silk cleaning; in the leather industry, better dehairing potential of these enzymes has led to the development of greener hair-saving dehairing technology and personal care products. Further, their prospective application in the challenging field of prion degradation would revolutionize the protease world in the near future.  相似文献   

5.
Keratinases are exciting proteolytic enzymes that display the capability to degrade the insoluble protein keratin. These enzymes are produced by diverse microorganisms belonging to the Eucarya, Bacteria, and Archea domains. Keratinases display a great diversity in their biochemical and biophysical properties. Most keratinases are optimally active at neutral to alkaline pH and 40–60°C, but examples of microbial keratinolysis at alkalophilic and thermophilic conditions have been well documented. Several keratinases have been associated to the subtilisin family of serine-type proteases by analysis of their protein sequences. Studies with specific substrates and inhibitors indicated that keratinases are often serine or metalloproteases with preference for hydrophobic and aromatic residues at the P1 position. Keratinolytic enzymes have several current and potential applications in agroindustrial, pharmaceutical, and biomedical fields. Their use in biomass conversion into biofuels may address the increasing concern on energy conservation and recycling.  相似文献   

6.
Keratinases are well-recognized enzymes with the unique ability to attack highly cross-linked, recalcitrant structural proteins such as keratin. Their potential in environmental clean-up of huge amount of feather waste has been well established since long. Today, they have gained importance in various other biotechnological and pharmaceutical applications. However, commercial availability of keratinases is still limited. Hence, to attract entrepreneurs, investors and enzyme industries it is utmost important to explicitly present the market potential of keratinases through detailed account of its application sectors. Here, the application areas have been divided into three parts: the first one is dealing with the area of exclusive applications, the second emphasizes protease dominated sectors where keratinases would prove better substitutes, and the third deals with upcoming newer areas which still await practical documentation. An account of benefits of keratinase usage, existing market size, and available commercial sources and products has also been presented.  相似文献   

7.
The increasing demands of keratinases for biodegradation of recalcitrant keratinaceous waste like chicken feathers has lead to research on newer potential bacterial keratinases to produce high-value products with biological activities. The present study reports a novel keratinolytic bacterium Bacillus velezensis strain ZBE1 isolated from deep forest soil of Western Ghats of Karnataka, which possessed efficient feather keratin degradation capability and induced keratinase production. Production kinetics depicts maximum keratinase production (11.65 U/mL) on 4th day with protein concentration of 0.61 mg/mL. Effect of various physico-chemical factors such as, inoculum size, metal ions, carbon and nitrogen sources, pH and temperature influencing keratinase production were optimized and 3.74 folds enhancement was evidenced through response surface methodology. Silver (AgNP) and zinc oxide (ZnONP) nanoparticles with keratin hydrolysate produced from chicken feathers by the action of keratinase were synthesized and verified with UV–Visible spectroscopy that revealed biological activities like, antibacterial action against Bacillus cereus and Escherichia coli. AgNP and ZnONP also showed potential antioxidant activities through radical scavenging activities by ABTS and DPPH. AgNP and ZnONP revealed cytotoxic effect against MCF-7 breast cancer cell lines with IC50 of 5.47 µg/ml and 62.26 µg/ml respectively. Characterizations of nanoparticles were carried out by Fourier transform infrared spectroscopy, scanning electron microscopy with energy dispersive X-ray, X-ray diffraction, thermogravimetric analysis and atomic force microscopy analysis to elucidate the thermostability, structure and surface attributes. The study suggests the prospective applications of keratinase to trigger the production of bioactive value-added products and significant application in nanotechnology in biomedicine.  相似文献   

8.
The aim of this work was to evaluate the effect of keratinous waste addition on oil-hydrocarbon removal, through a mixed culture of oil-degrading bacteria, with the ability to secrete keratinases. The mixed culture was grown in the media with oil, or oil supplemented with chicken-feathers as the keratinous waste. Residual oil-hydrocarbons were determined as total petroleum hydrocarbons (TPHs) and oil fractions and then quantified by GC–FID and GC–MS.Results showed that in presence of the keratinous waste, the removal of oil-hydrocarbons was 57,400 mg l?1, meanwhile the treatment without waste presented an oil-hydrocarbons removal of 35,600 mg l?1. The aliphatic fraction was the most removed in both treatments. In addition, chromatographic profiles indicated that the aliphatic fraction showed different degradation pattern; in the presence of keratinous wastes, the C18 to C28 compounds were preferably removed over the C10 to C17. The addition of keratinous waste not only improved the oil-hydrocarbons removal but, it changed the removal pattern of the target hydrocarbons.  相似文献   

9.
角蛋白作为家禽加工和农业废弃物的主要成分,因其结构中富含能抵抗普通蛋白酶和化学催化剂降解的稳定交联二硫键而难以被利用,因此每年都在环境中大量积累,造成了严重的环境污染。微生物角蛋白酶可将角蛋白废弃物转化为可再次利用的产物,带来了经济的可行性及环境的可持续发展。本文主要综述了角蛋白酶的生物化学特性、角蛋白酶的基本结构及其表达特性,总结了其应用价值及角蛋白降解机制,最后展望了微生物角蛋白酶的进一步研究方向。  相似文献   

10.
Singh  Chandra Jeet 《Mycopathologia》1998,143(3):147-150
Malbranchea gypsea IMI 338168 isolated from the soils of Keoladeo National Park, Bharatpur was studied for its ability to produce exocellular proteases on glucose – gelatin medium at pH 7; 28°C. The fungus was observed to be a potent producer of such enzymes. Protease production was optimal at 15 days of incubation. Asparagine was repressive to protease expression. No relationship existed between the amount of enzyme production and increase in biomass. Exogenous sugars suppressed enzyme production in descending order as follows: glucose > mannose > maltose > arabinose > fructose. The enzymes expressed showed the ability to degrade three keratinous substrate tested. Buffalo skin was the most actively degraded substrate when exogenous glucose was present, and was also the most resistant to degradation in the absence of glucose. The rate of keratin deterioration was independent of enzyme activity. Production of protease enzymes especially keratinases is ecologically important in a place like a National Park because such enzymes degrade keratinous detritus derived from mammals and birds. Accumulation of such materials can be a cause of pollution and can provide a breeding spot for various types of pathogens. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
Based on previous screening for keratinolytic nonpathogenic fungi, Paecilomyces marquandii and Doratomyces microsporus were selected for production of potent keratinases. The enzymes were purified and their main biochemical characteristics were determined (molecular masses, optimal temperature and pH for keratinolytic activity, N-terminal amino acid sequences). Studies of substrate specificity revealed that skin constituents, such as the stratum corneum, and appendages such as nail but not hair, feather, and wool were efficiently hydrolyzed by the P. marquandii keratinase and about 40% less by the D. microsporus keratinase. Hydrolysis of keratin could be increased by the presence of reducing agents. The catalytic properties of the keratinases were studied and compared to those of some known commercial proteases. The profile of the oxidized insulin B-chain digestion revealed that both keratinases, like proteinase K but not subtilisin, trypsin, or elastase, possess broad cleavage specificity with a preference for aromatic and nonpolar amino acid residues at the P-1 position. Kinetic studies were performed on a synthetic substrate, succinyl-Ala-Ala-Pro-Phe-p-nitroanilide. The keratinase of P. marquandii exhibited the lowest Km among microbial keratinases reported in the literature, and its catalytic efficiency was high in comparison to that of D. microsporus keratinase and proteinase K. All three keratinolytic enzymes, the keratinases of P. marquandii and D. microsporus as well as proteinase K, were significantly more active on keratin than subtilisin, trypsin, elastase, chymotrypsin, or collagenase.  相似文献   

12.
13.
Bacillus sp. P45, isolated from the intestine of the Amazon basin fish Piaractus mesopotamicus, showed proteolytic activity when grown on skimmed milk and feather meal agar plates. The keratinolytic potential of this strain was evaluated on whole feather broth and human hair broth. Bacillus sp. P45 degraded almost 90% of chicken feathers after 72 h of submerged cultivation on whole feather broth, and the production of extracellular proteases was observed. The formation of thiol groups was also detected during growth, indicating the contribution of sulphitolysis to the efficient hydrolysis of feather keratin. Nevertheless, Bacillus sp. P45 was unable to degrade hair keratin, possibly due to the conformational diversity of this substrate in comparison to feather keratin. Additionally, preliminary results demonstrated that this strain might be utilized in the degradation of recalcitrant collagen-containing wastes. The keratinolytic character of Bacillus sp. P45 might be utilized in environmental-friendly processes such as bioconversion of waste feathers, representing an alternative way of waste management that could lead to the production of value-added products such as microbial biomass, protein hydrolysates and proteolytic enzymes.  相似文献   

14.
Microbial diversity provides an immense reservoir of functions and supports key steps in maintaining ecosystem balance through matter decomposition processes and nutrient recycling. The use of microorganisms for biomolecule production is now common, but often involves single-strain cultures. In this review, we highlight the significance of using ecosystem-derived microbial diversity for biotechnological researches. In the context of organic matter mineralization, diversity of microorganisms is essential and enhances the degradation processes. We focus on anaerobic production of biomolecules of interest from discarded biomass, which is an important issue in the context of organic waste valorization and processing. Organic waste represents an important and renewable raw material but remains underused. It is commonly accepted that anaerobic mineralization of organic waste allows the production of diverse interesting molecules within several fields of application. We provide evidence that complex and diversified microbial communities isolated from ecosystems, i.e. microbial consortia, offer considerable advantages in degrading complex organic waste, to yield biomolecules of interest. We defend our opinion that this approach is more efficient and offers enhanced potential compared to the approaches that use single strain cultures.  相似文献   

15.
Based on previous screening for keratinolytic nonpathogenic fungi, Paecilomyces marquandii and Doratomyces microsporus were selected for production of potent keratinases. The enzymes were purified and their main biochemical characteristics were determined (molecular masses, optimal temperature and pH for keratinolytic activity, N-terminal amino acid sequences). Studies of substrate specificity revealed that skin constituents, such as the stratum corneum, and appendages such as nail but not hair, feather, and wool were efficiently hydrolyzed by the P. marquandii keratinase and about 40% less by the D. microsporus keratinase. Hydrolysis of keratin could be increased by the presence of reducing agents. The catalytic properties of the keratinases were studied and compared to those of some known commercial proteases. The profile of the oxidized insulin B-chain digestion revealed that both keratinases, like proteinase K but not subtilisin, trypsin, or elastase, possess broad cleavage specificity with a preference for aromatic and nonpolar amino acid residues at the P-1 position. Kinetic studies were performed on a synthetic substrate, succinyl-Ala-Ala-Pro-Phe-p-nitroanilide. The keratinase of P. marquandii exhibited the lowest Km among microbial keratinases reported in the literature, and its catalytic efficiency was high in comparison to that of D. microsporus keratinase and proteinase K. All three keratinolytic enzymes, the keratinases of P. marquandii and D. microsporus as well as proteinase K, were significantly more active on keratin than subtilisin, trypsin, elastase, chymotrypsin, or collagenase.  相似文献   

16.
The keratinase gene from Bacillus licheniformis MKU3 was cloned and successfully expressed in Bacillus megaterium MS941 as well as in Pichia pastoris X33. Compared with parent strain, the recombinant B. megaterium produced 3-fold increased level of keratinase while the recombinant P. pastoris strain had produced 2.9-fold increased level of keratinase. The keratinases from recombinant P. pastoris (pPZK3) and B. megaterium MS941 (pWAK3) were purified to 67.7- and 85.1-folds, respectively, through affinity chromatography. The purified keratinases had the specific activity of 365.7 and 1277.7 U/mg, respectively. Recombinant keratinase from B. megaterium was a monomeric protein with an apparent molecular mass of 30 kDa which was appropriately glycosylated in P. pastoris to have a molecular mass of 39 kDa. The keratinases from both recombinant strains had similar properties such as temperature and pH optimum for activity, and sensitivity to various metal ions, additives and inhibitors. There was considerable enzyme stability due to its glycosylation in yeast system. At pH 11 the glycosylated keratinase retained 95% of activity and 75% of its activity at 80 degrees C. The purified keratinase hydrolyzed a broad range of substrates and displayed effective degradation of keratin substrates. The K(m) and V(max) of the keratinase for the substrate N-succinyl-Ala-Ala-Pro-Phe-pNA was found to be 0.201 mM and 61.09 U/s, respectively. Stability in the presence of detergents, surfactants, metal ions and solvents make this keratinase suitable for industrial processes.  相似文献   

17.
角蛋白酶的研究与应用前景   总被引:1,自引:0,他引:1  
角蛋白酶(keratinase) 是一种可以特异性降解角蛋白的酶类,其来源广泛,多种微生物在羽毛降解过程中均可产生角蛋白酶。不同菌种来源的角蛋白酶,其结构、理化性质、活性和底物也不同。其在饲料行业、制革工业和环境废弃物处理等多个方面具有广泛的应用前景,能够产生巨大的社会效益和经济效益。本文系统总结了角蛋白酶的来源、分类、理化性质、作用机理及其在基因工程研究等方面的一些最新进展,简要介绍了其应用研究现状,并展望了角蛋白酶的应用前景。  相似文献   

18.
海洋微型生物储碳过程与机制概论   总被引:3,自引:1,他引:2  
在全球气候环境演变的背景下,认识海洋微型生物对碳循环的贡献,需要了解其过程和机制.最近提出的“微型生物碳泵”理论阐释了海洋储碳的一个新机制:微型生物活动把溶解有机碳从活性向惰性转化,从而构成了海洋储碳.这个过程当中,自养与异养细菌、病毒、原生动物等具有不同生理特性微型生物类群扮演着不同的生态角色,本文将围绕微型生物碳泵主线分别论述之.  相似文献   

19.
Kaul  Sanjana  Sumbali  Geeta 《Mycopathologia》1999,146(1):19-24
Fourteen species of keratinophilic fungi belonging to ten genera (Chrysoporium, Malbranchea, Chaetomium,Sepedonium, Microascus, Scopulariopsis, Curvularia, Fusarium, Aspergillus, Penicillium) were isolated from feathers of about one hundred living poultry birds. The isolated fungi were compared for their keratinase activity after growing them on two different media: (1) basal salts solution containing natural keratin (human hair) as the only source of carbon and nitrogen; (2) the medium was supplemented with a minor amount of readily assimilable source of carbon along with natural keratin. All the test fungi could grow on keratinous material, degrading it and releasing sulphydryl containing compounds detected as cysteine, total proteins and extracellular keratinase. Maximum enzyme release by these fungi occurred in the broth supplemented with glucose and vitamins, thereby indicating a correlation between the mycelial biomass and production of proteolytic keratinases. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
Bioalcohols produced by microorganisms from renewable materials are promising substitutes for traditional fuels derived from fossil sources. For several years already ethanol is produced in large amounts from feedstocks such as cereals or sugar cane and used as a blend for gasoline or even as a pure biofuel. However, alcohols with longer carbon chains like butanol have even more suitable properties and would better fit with the current fuel distribution infrastructure. Moreover, ethical concerns contradict the use of food and feed products as a biofuel source. Lignocellulosic biomass, especially when considered as a waste material offers an attractive alternative. However, the recalcitrance of these materials and the inability of microorganisms to efficiently ferment lignocellulosic hydrolysates still prevent the production of bioalcohols from these plentiful sources. Obviously, no known organism exist which combines all the properties necessary to be a sustainable bioalcohol producer. Therefore, breeding technologies, genetic engineering and the search for undiscovered species are promising means to provide a microorganism exhibiting high alcohol productivities and yields, converting all lignocellulosic sugars or are even able to use carbon dioxide or monoxide, and thereby being highly resistant to inhibitors and fermentation products, and easy to cultivate in huge bioreactors. In this review, we compare the properties of various microorganisms, bacteria and yeasts, as well as current research efforts to develop a reliable lignocellulosic bioalcohol producing organism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号