共查询到20条相似文献,搜索用时 15 毫秒
1.
正With the discovery of the central dogma of life science, the molecular mechanism of genetics and evolution of biological species has basically been established. However, the completion of the Human Genome Project at the turn of the 21st century has begun to uncover the complexity of individual lives. Although the evolution of living individuals depends mainly on the sequence of genes, its complexity and diversity cannot be explained by the central dogma alone.Biomolecules, including proteins, 相似文献
2.
Even when there is agreement on what measure a protein multiple structure alignment should be optimizing, finding the optimal alignment is computationally prohibitive. One approach used by many previous methods is aligned fragment pair chaining, where short structural fragments from all the proteins are aligned against each other optimally, and the final alignment chains these together in geometrically consistent ways. Ye and Godzik have recently suggested that adding geometric flexibility may help better model protein structures in a variety of contexts. We introduce the program Matt (Multiple Alignment with Translations and Twists), an aligned fragment pair chaining algorithm that, in intermediate steps, allows local flexibility between fragments: small translations and rotations are temporarily allowed to bring sets of aligned fragments closer, even if they are physically impossible under rigid body transformations. After a dynamic programming assembly guided by these “bent” alignments, geometric consistency is restored in the final step before the alignment is output. Matt is tested against other recent multiple protein structure alignment programs on the popular Homstrad and SABmark benchmark datasets. Matt's global performance is competitive with the other programs on Homstrad, but outperforms the other programs on SABmark, a benchmark of multiple structure alignments of proteins with more distant homology. On both datasets, Matt demonstrates an ability to better align the ends of α-helices and β-strands, an important characteristic of any structure alignment program intended to help construct a structural template library for threading approaches to the inverse protein-folding problem. The related question of whether Matt alignments can be used to distinguish distantly homologous structure pairs from pairs of proteins that are not homologous is also considered. For this purpose, a p-value score based on the length of the common core and average root mean squared deviation (RMSD) of Matt alignments is shown to largely separate decoys from homologous protein structures in the SABmark benchmark dataset. We postulate that Matt's strong performance comes from its ability to model proteins in different conformational states and, perhaps even more important, its ability to model backbone distortions in more distantly related proteins. 相似文献
3.
Prediction of protein secondary structure content 总被引:5,自引:0,他引:5
All existing algorithms for predicting the content of protein secondary structure elements have been based on the conventional amino-acid-composition, where no sequence coupling effects are taken into account. In this article, an algorithm was developed for predicting the content of protein secondary structure elements that was based on a new amino-acid-composition, in which the sequence coupling effects are explicitly included through a series of conditional probability elements. The prediction was examined by a self-consistency test and an independent dataset test. Both indicated a remarkable improvement obtained when using the current algorithm to predict the contents of alpha-helix, beta-sheet, beta-bridge, 3(10)-helix, pi-helix, H-bonded turn, bend and random coil. Examples of the improved accuracy by introducing the new amino-acid-composition, as well as its impact on the study of protein structural class and biologically function, are discussed. 相似文献
4.
5.
GhoshMoulick R Bhattacharya J Roy S Basak S Dasgupta AK 《Biochimica et biophysica acta》2007,1774(2):233-242
Glycation, a local covalent interaction, leads to alterations in secondary and tertiary structures of hemoglobin, the changes produced by fructose being more pronounced than those caused by glucose. The Stokes diameter of hemoglobin increases upon glycation from 7 to 14 nm and a concurrent inter-chain cross-linking and heme loss are also observed, particularly in the later stage of glycation. An initial increase of tryptophan (trp) fluorescence was observed in both glucation and fructation. In case of frucation however there was a decrease in tryptophan fluorescence that was accompanied by an increase in fluorescence of the advanced glycosylation end products (AGEs). This fluorescence behavior is indicative of energy transfer between tryptophan and the AGEs formed during the late stage of glycation. Emergence of an isosbestic point in the fluorescence spectra (taken at different time intervals) implies existence of two distinct glycation stages. The late glycation stage is also marked by an increase of beta structure and random coil at the expense of alpha helix. It is further observed that this compensatory loss of alpha helix (reported for the first time) and increase in beta sheet and random coil elements depend on the number of solvent-accessible glycation sites (rather than total number of such sites) and the subunit assembly of the protein. 相似文献
6.
Bayesian segmentation of protein secondary structure. 总被引:12,自引:0,他引:12
We present a novel method for predicting the secondary structure of a protein from its amino acid sequence. Most existing methods predict each position in turn based on a local window of residues, sliding this window along the length of the sequence. In contrast, we develop a probabilistic model of protein sequence/structure relationships in terms of structural segments, and formulate secondary structure prediction as a general Bayesian inference problem. A distinctive feature of our approach is the ability to develop explicit probabilistic models for alpha-helices, beta-strands, and other classes of secondary structure, incorporating experimentally and empirically observed aspects of protein structure such as helical capping signals, side chain correlations, and segment length distributions. Our model is Markovian in the segments, permitting efficient exact calculation of the posterior probability distribution over all possible segmentations of the sequence using dynamic programming. The optimal segmentation is computed and compared to a predictor based on marginal posterior modes, and the latter is shown to provide significant improvement in predictive accuracy. The marginalization procedure provides exact secondary structure probabilities at each sequence position, which are shown to be reliable estimates of prediction uncertainty. We apply this model to a database of 452 nonhomologous structures, achieving accuracies as high as the best currently available methods. We conclude by discussing an extension of this framework to model nonlocal interactions in protein structures, providing a possible direction for future improvements in secondary structure prediction accuracy. 相似文献
7.
Shestopalov BV 《Tsitologiia》2003,45(7):702-706
The calculation of protein three-dimensional structure from the amino acid sequence is a fundamental problem to be solved. This paper presents principles of the code theory of protein secondary structure, and their consequence--the amino acid code of protein secondary structure. The doublet code model of protein secondary structure, developed earlier by the author (Shestopalov, 1990), is part of this theory. The theory basis are: 1) the name secondary structure is assigned to the conformation, stabilized only by the nearest (intraresidual) and middle-range (at a distance no more than that between residues i and i + 5) interactions; 2) the secondary structure consists of regular (alpha-helical and beta-structural) and irregular (coil) segments; 3) the alpha-helices, beta-strands and coil segments are encoded, respectively, by residue pairs (i, i + 4), (i, i + 2), (i, i = 1), according to the numbers of residues per period, 3.6, 2, 1; 4) all such pairs in the amino acid sequence are codons for elementary structural elements, or structurons; 5) the codons are divided into 21 types depending on their strength, i.e. their encoding capability; 6) overlappings of structurons of one and the same structure generate the longer segments of this structure; 7) overlapping of structurons of different structures is forbidden, and therefore selection of codons is required, the codon selection is hierarchic; 8) the code theory of protein secondary structure generates six variants of the amino acid code of protein secondary structure. There are two possible kinds of model construction based on the theory: the physical one using physical properties of amino acid residues, and the statistical one using results of statistical analysis of a great body of structural data. Some evident consequences of the theory are: a) the theory can be used for calculating the secondary structure from the amino acid sequence as a partial solution of the problem of calculation of protein three-dimensional structure from the amino acid sequence, and the calculated secondary structure and codon strength distribution can be used for simulating the next step of protein folding; b) one can propose that the same secondary structures can be folded into different tertiary structures and, vice versa, different secondary structures can be folded into the same tertiary structures, provided codon distributions are considered also; c) codons can be considered as first elements of protein three-dimensional structure language. 相似文献
8.
GOR V server for protein secondary structure prediction 总被引:3,自引:0,他引:3
SUMMARY: We have created the GOR V web server for protein secondary structure prediction. The GOR V algorithm combines information theory, Bayesian statistics and evolutionary information. In its fifth version, the GOR method reached (with the full jack-knife procedure) an accuracy of prediction Q3 of 73.5%. Although GOR V has been among the most successful methods, its online unavailability has been a deterrent to its popularity. Here, we remedy this situation by creating the GOR V server. 相似文献
9.
We present a new method for protein secondary structure prediction, based on the recognition of well-defined pentapeptides, in a large databank. Using a databank of 635 protein chains, we obtained a success rate of 68.6%. We show that progress is achieved when the databank is enlarged, when the 20 amino acids are adequately grouped in 10 sets and when more pentapeptides are attributed one of the defined conformations, alpha-helices or beta-strands. The analysis of the model indicates that the essential variable is the number of pentapeptides of well-defined structure in the database. Our model is simple, does not rely on arbitrary parameters and allows the analysis in detail of the results of each chosen hypothesis. 相似文献
10.
This paper proposes an efficient ensemble system to tackle the protein secondary structure prediction problem with neural networks as base classifiers. The experimental results show that the multi-layer system can lead to better results. When deploying more accurate classifiers, the higher accuracy of the ensemble system can be obtained. 相似文献
11.
The back-propagation neural network algorithm is a commonly used method for predicting the secondary structure of proteins. Whilst popular, this method can be slow to learn and here we compare it with an alternative: the cascade-correlation architecture. Using a constructive algorithm, cascade-correlation achieves predictive accuracies comparable to those obtained by back-propagation, in shorter time. 相似文献
12.
We have developed a program to convert the three dimensional coordinates describing protein structure in the Brookhaven Data Bank into an assignment of secondary structure. The program assigns secondary structure in the same way a person assigns structure visually. It uses two angles and three distances to assign alpha-helix, 3(10)-helix, beta-strand, hydrogen-bonded beta-turn, non-hydrogen-bonded beta-turn, and poly (L-proline) II type 3(1)-helix. The program is concerned with amide-amide interactions and should be particularly useful to spectroscopists. 相似文献
13.
Hybrid system for protein secondary structure prediction. 总被引:13,自引:0,他引:13
We have developed a hybrid system to predict the secondary structures (alpha-helix, beta-sheet and coil) of proteins and achieved 66.4% accuracy, with correlation coefficients of C(coil) = 0.429, C alpha = 0.470 and C beta = 0.387. This system contains three subsystems ("experts"): a neural network module, a statistical module and a memory-based reasoning module. First, the three experts independently learn the mapping between amino acid sequences and secondary structures from the known protein structures, then a Combiner learns to combine automatically the outputs of the experts to make final predictions. The hybrid system was tested with 107 protein structures through k-way cross-validation. Its performance was better than each expert and all previously reported methods with greater than 0.99 statistical significance. It was observed that for 20% of the residues, all three experts produced the same but wrong predictions. This may suggest an upper bound on the accuracy of secondary structure predictions based on local information from the currently available protein structures, and indicate places where non-local interactions may play a dominant role in conformation. For 64% of the residues, at least two experts were the same and correct, which shows that the Combiner performed better than majority vote. For 77% of the residues, at least one expert was correct, thus there may still be room for improvement in this hybrid approach. Rigorous evaluation procedures were used in testing the hybrid system, and statistical significance measures were developed in analyzing the differences among different methods. When measured in terms of the number of secondary structures (rather than the number of residues) that were predicted correctly, the prediction produced by the hybrid system was also better than those of individual experts. 相似文献
14.
Does a protein's secondary structure determine its three-dimensional fold? This question is tested directly by analyzing proteins of known structure and constructing a taxonomy based solely on secondary structure. The taxonomy is generated automatically, and it takes the form of a tree in which proteins with similar secondary structure occupy neighboring leaves. Our tree is largely in agreement with results from the structural classification of proteins (SCOP), a multidimensional classification based on homologous sequences, full three-dimensional structure, information about chemistry and evolution, and human judgment. Our findings suggest a simple mechanism of protein evolution. 相似文献
15.
Several methods for determination of the secondary structure of proteins by spectroscopic measurements are reviewed. Circular dichroism (CD) spectroscopy provides rapid determinations of protein secondary structure with dilute solutions and a way to rapidly assess conformational changes resulting from addition of ligands. Both CD and Raman spectroscopies are particularly useful for measurements over a range of temperatures. Infrared (IR) and Raman spectroscopy require only small volumes of protein solution. The frequencies of amide bands are analyzed to determine the distribution of secondary structures in proteins. NMR chemical shifts may also be used to determine the positions of secondary structure within the primary sequence of a protein. However, the chemical shifts must first be assigned to particular residues, making the technique considerably slower than the optical methods. These data, together with sophisticated molecular modeling techniques, allow for refinement of protein structural models as well as rapid assessment of conformational changes resulting from ligand binding or macromolecular interactions. A selected number of examples are given to illustrate the power of the techniques in applications of biological interest. 相似文献
16.
A A Adzhubei F Eisenmenger V G Tumanyan M Zinke S Brodzinski N G Esipova 《Journal of biomolecular structure & dynamics》1987,5(3):689-704
A complete classification of types of the protein secondary structure is developed on the basis of computer analysis of the crystallographic structural data deposited in the protein Data Bank. The majority of amino acid residues fall into five conformation types. A conclusion is drawn that the number of sequence variants of torsion angles phi, psi in globular proteins is limited and is essentially less than the number of possible amino acid sequences for this chain length. Along with alpha-helix and beta-structure, the distribution analysis assigning every maximum of distribution of amino acid conformations on Ramachandran map to a certain type of the secondary structure exposed a third type of the secondary structure that was previously neglected. This type of the structure is extended left-handed helical conformation, designated as mobile (M-) conformation. A full set of M-conformation fragments that seems to play a major role in protein globule dynamics has been obtained, a small radius of correlation for the polypeptide chain in M-conformation is demonstrated. It explains a prevalence of short segments of mobile conformation revealed in globular proteins. For secondary structure types, the frequency of occurrence of amino acid residues has been computed. 相似文献
17.
In this study we present an accurate secondary structure prediction procedure by using a query and related sequences. The most novel aspect of our approach is its reliance on local pairwise alignment of the sequence to be predicted with each related sequence rather than utilization of a multiple alignment. The residue-by-residue accuracy of the method is 75% in three structural states after jack-knife tests. The gain in prediction accuracy compared with the existing techniques, which are at best 72%, is achieved by secondary structure propensities based on both local and long-range effects, utilization of similar sequence information in the form of carefully selected pairwise alignment fragments, and reliance on a large collection of known protein primary structures. The method is especially appropriate for large-scale sequence analysis efforts such as genome characterization, where precise and significant multiple sequence alignments are not available or achievable. Proteins 27:329–335, 1997. © 1997 Wiley-Liss, Inc. 相似文献
18.
Review: protein secondary structure prediction continues to rise 总被引:15,自引:0,他引:15
Rost B 《Journal of structural biology》2001,134(2-3):204-218
Methods predicting protein secondary structure improved substantially in the 1990s through the use of evolutionary information taken from the divergence of proteins in the same structural family. Recently, the evolutionary information resulting from improved searches and larger databases has again boosted prediction accuracy by more than four percentage points to its current height of around 76% of all residues predicted correctly in one of the three states, helix, strand, and other. The past year also brought successful new concepts to the field. These new methods may be particularly interesting in light of the improvements achieved through simple combining of existing methods. Divergent evolutionary profiles contain enough information not only to substantially improve prediction accuracy, but also to correctly predict long stretches of identical residues observed in alternative secondary structure states depending on nonlocal conditions. An example is a method automatically identifying structural switches and thus finding a remarkable connection between predicted secondary structure and aspects of function. Secondary structure predictions are increasingly becoming the work horse for numerous methods aimed at predicting protein structure and function. Is the recent increase in accuracy significant enough to make predictions even more useful? Because the recent improvement yields a better prediction of segments, and in particular of beta strands, I believe the answer is affirmative. What is the limit of prediction accuracy? We shall see. 相似文献
19.
Amino acid sequence patterns have been used to identify the location of turns in globular proteins [Cohen et al. (1986) Biochemistry 25, 266-275]. We have developed sequence patterns that facilitate the prediction of helices in all helical proteins. Regular expression patterns recognize the component parts of a helix: the amino terminus (N-cap), the core of the helix (core), and the carboxy terminus (C-cap). These patterns recognize the core features of helices with a 95% success rate and the N- and C-capping features with success rates of 56% and 48%, respectively. A metapattern language, ALPPS, coordinates the recognition of turns and helical components in a scheme that predicts the location and extent of alpha-helices. On the basis of raw residue scoring, a 71% success rate is observed. By focusing on the recognition of core helical features, we achieve a 78% success rate. Amended scoring procedures are presented and discussed, and comparisons are made to other predictive schemes. 相似文献
20.
Zheng WM 《Journal of bioinformatics and computational biology》2004,2(2):333-342
Simple hidden Markov models are proposed for predicting secondary structure of a protein from its amino acid sequence. Since the length of protein conformation segments varies in a narrow range, we ignore the duration effect of length distribution, and focus on inclusion of short range correlations of residues and of conformation states in the models. Conformation-independent and -dependent amino acid coarse-graining schemes are designed for the models by means of proper mutual information. We compare models of different level of complexity, and establish a practical model with a high prediction accuracy. 相似文献