共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Junko Kyozuka Hideya Fujimoto Takeshi Izawa Ko Shimamoto 《Molecular & general genetics : MGG》1991,228(1-2):40-48
Summary In order to analyze expression of the maize alcohol dehydrogenase 1 gene (Adh1), its promoter was fused with the gusA reporter gene and introduced into rice by protoplast transformation. Histochemical analysis of transgenic plants and their progeny showed that the maize Adh1 promoter is constitutively expressed in root caps, anthers, anther filaments, pollen, scutellum, endosperm and shoot and root meristem of the embryo. Induction of expression by the Adh1 promoter was examined using seedlings derived from selfed progeny of the transgenic plants. The results showed that expression of the Adh1 promoter was strongly induced (up to 81-fold) in roots of seedlings after 24 h of anaerobic treatment, concomitant with an increase in the level of gusA mRNA. 2,4-D also induced Adh1 promoter-directed expression of gusA to a similar extent. In contrast, little induction by anaerobic treatment was detected in transformed calli, leaves or roots of primary transformants or shoots of seedlings. A detailed examination of seedling roots during anaerobic treatment revealed that the induction started first at the meristem and after 3 h there was strong induction in the elongation zone which is located 1–2 mm above the meristem; the induction then progressed upward from this region. Our results suggest that transgenic rice plants carring the gusA reporter gene fused with promoters are useful for the study of anaerobic regulation of genes derived from graminaceous species. 相似文献
3.
Summary A developing maize leaf grows by the activity of a basal meristematic region and an adjacent elongating zone, resulting in a morphological and functional gradient along the leaf. We have used this system to detect the spatial and temporal expression of an enzyme, sucrose synthase, which plays a pivotal role in the sucrose import-export transition which occurs along a monocotyledon leaf. Immunogold labeling was used to detect the cellular and sub-cellular distribution of sucrose synthase (SS) at the electron microscopical level; the protein was visualized using a polyclonal antiserum on embedded tissue sections. Immunolabel was observed in the cytosol of dividing meristematic cells, expanding cells of the elongation zone, and in differentiating cells of young photosynthetic tissue. In fully differentiated leaf tissue, however, the protein was no longer immuno-detectable in photosynthetic cells, but was present in the guard and subsidiary cells of stomata and in companion cells within the phloem tissue of vascular bundles. The tissue- and cell-specific localization of sucrose synthase changes along the growing leaf as a function of the developmental state and the associated need for sucrose import or export. 相似文献
4.
5.
Sericins are glue proteins produced specifically in the middle silk gland (MSG) of the silkworm Bombyx mori, while the silk fiber protein, fibroin, is produced in the posterior silk gland (PSG). These silk proteins are expected to be useful biomaterials in medical technology as well as biotechnology. In this study, we analyzed promoter elements of the sericin-1 gene (ser1) in vivo by introducing reporter constructs into silk glands via gene gun technology. The region from −1602 to +47 was sufficient to induce MSG-specific expression. The 5′ deletion mutants showed a three-step decrease in promoter activity with the key sequences located between −1362 and −1250, −201 and −116, and −115 and −37. We detected a tissue- and stage-specific factor complex (MSG-intermolt-specific complex: MIC) bound to the sequence elements around the −1350, −320, −180, and −70 regions. A mutation in the −70 region, which inhibits MIC-binding, diminished almost all promoter activity, while another mutation that did not inhibit MIC-binding showed no effect on promoter activity. The results suggest that the binding of MIC to the above elements is intrinsic for the spatiotemporal specificity of ser1 in vivo. 相似文献
6.
7.
8.
Summary Cruciferin is the major seed storage protein in Brassica napus. As much as 1.9 kbp of the BnC1 cruciferin gene promoter have been sequenced and analyzed. Promoter fragments with 5 deletions from –2500 to –v202 were fused with the ß-glucuronidase reporter gene and used for Nicotiana tabacum transformation. ß-glucuronidase could be specifically expressed in transgenic tobacco seeds under the control of the BnC1 promoter and regulatory elements were found to be dispersed over 1903 bp. An almost 5-fold increase in ß-glucuronidase expression was obtained when the promoter length was increased from –379 to –498, and another 10-fold increase was observed when sequences between –1266 and –1903 were added. Histochemical analysis shows that the region between –844 and –1266 directs the expression of the chimeric gene specifically to the root apical meristem.Abbreviations GUS
ß-glucuronidase
- MU
4-methyl umbelliferone
- MUG
4-methyl-umbelliferyl-ß-D-glucuronide
- X-gluc
5-bromo-4-chloro-3-indolyl-ß-D-glucuronide 相似文献
9.
Puri N Krishnamurthy S Habib S Hasnain SE Goswami SK Prasad R 《FEMS microbiology letters》1999,180(2):213-219
10.
11.
12.
13.
14.
15.
16.
A full-length genomic clone of 2,233 bp long containing an anther- and tapetum-specific gene TomA108 was isolated and characterized from tomato. The gene was present in one copy per haploid genome. The isolated clone contained
5′ and 3′ untranslated regions of 810 and 170 nucleotides, respectively and a single intron with highly repetitive sequences.
The cDNA encoded the protein with an apparent mass of 10.6 kDa and a pI (isoelectric point) of 5.3. It was cysteine-rich and
had an N-terminal hydrophobic domain with characteristics of a secretory signal. Amino acid sequence comparisons demonstrated
that the protein was closely related to a family of cereal seed storage proteins and protease inhibitors. The fusion of β-glucuronidase
to the TomA108 promoter demonstrated that the promoter was highly active from early-meiosis to free microspores production in tapetum of
tobacco. This strong and highly specific promoter can be potentially used to generate male sterility for efficient production
of plant hybrids. 相似文献
17.
采用染色体步移技术,从苦荞(Fagopyrum tataricum Gaertn.)中克隆获得FtCHS1基因5'端侧翼序列,共1038 bp,将其命名为PFtCHS1。生物信息学分析表明,PFtCHS1中A/T碱基含量为63.5%,含有4个可能的转录起始位点,分别位于起始密码子上游-684~-734、-692~-742、-920~-970、-929~-979 bp处,该序列包含TATA-Box和CAAT-Box等启动子核心元件以及与光、低温和激素应答等相关的功能元件。本研究进一步构建了PFtCHS1-pBI101植物表达载体,并瞬时转化拟南芥(Arabidopsis thaliana L.)叶片,结果显示该序列可驱动GUS报告基因的表达。低温(4℃)和光照(UV-B)处理苦荞幼芽后,采用荧光定量PCR技术分析FtCHS1基因的表达量,结果表明PFtCHS1可响应低温和紫外环境胁迫,从而引起FtCHS1基因表达量发生变化。 相似文献
18.
19.
以油棕(Elaeis guineensis Jacq.)叶片基因组DNA为模板,克隆获得长度为1035 bp的二酰甘油酰基转移酶基因(DGAT2)的启动子区序列。序列分析结果表明,DGAT2基因启动子含有大量光反应元件、激素响应元件及部分转录因子结合位点。本研究同时构建了DGAT2基因启动子和GUS基因植物融合表达载体,通过蘸花法侵染拟南芥(Arabidopsis thaliana L.),并对转基因拟南芥中GUS基因表达的特异性进行了分析。结果显示,GUS基因在拟南芥各组织中均有表达,但没有明显的组织特异性;荧光定量PCR分析结果表明DGAT2在油棕不同器官中的转录水平存在明显差异。 相似文献