首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Genomic fingerprints produced by PCR with consensus tRNA gene primers.   总被引:36,自引:3,他引:33       下载免费PDF全文
The polymerase chain reaction using only a single 'consensus' tRNA gene primer, or a pair of primers facing outward from tRNA genes, amplifies a set of DNA fragments in bacterial, plant and animal genomic DNAs. Presumably, these PCR fingerprints are mainly derived from the regions between closely linked tRNA genes. The pattern of the PCR products is determined by which genomes and which primer(s) are used. Genomic fingerprints are largely conserved within a species and, in bacteria, most products in the fingerprint are conserved between closely related species. Thus, PCR with tRNA gene consensus primers helps to identify species and genera.  相似文献   

2.
We have developed a new primer design strategy for PCR amplification of distantly related gene sequences based on consensus-degenerate hybrid oligonucleotide primers (CODEHOPs). An interactive program has been written to design CODEHOP PCR primers from conserved blocks of amino acids within multiply-aligned protein sequences. Each CODEHOP consists of a pool of related primers containing all possible nucleotide sequences encoding 3-4 highly conserved amino acids within a 3' degenerate core. A longer 5' non-degenerate clamp region contains the most probable nucleotide predicted for each flanking codon. CODEHOPs are used in PCR amplification to isolate distantly related sequences encoding the conserved amino acid sequence. The primer design software and the CODEHOP PCR strategy have been utilized for the identification and characterization of new gene orthologs and paralogs in different plant, animal and bacterial species. In addition, this approach has been successful in identifying new pathogen species. The CODEHOP designer (http://blocks.fhcrc.org/codehop.html) is linked to BlockMaker and the Multiple Alignment Processor within the Blocks Database World Wide Web (http://blocks.fhcrc.org).  相似文献   

3.
We present a strategy for phylogenetic marker development in non-model systems. Rather than using the traditional approach of comparing distantly related taxa to develop conserved primers for unknown species, we explore an alternative strategy that builds primers directly from a single, relatively well characterized species and applies those primers to increasingly distantly related taxa. We develop and test our protocol with turtles. Using a single BAC end-sequence library consisting of 3461 sequences totaling 2.43 million base pairs of data, we outline a procedure to flag repeat elements, followed by a BLAST approach to categorize sequences into high, low, and no similarity compartments compared to GenBank sequences. We developed and tested a panel of 96 primer pairs with a set of turtle tissues that forms a series of increasingly distantly related taxa with respect to the BAC reference species. Finally, we sequenced 11 of these newly discovered markers across a diverse set of 18 turtle species that spans the 210 million years of chelonian crown-group history and that includes representatives of most of the major clades of extant turtles. Our results indicate that large numbers of new, phylogenetically informative markers can be developed quickly and inexpensively from a single BAC, EST, or similar genomic resource, and that those markers provide reliable phylogenetic information across both shallow and deep levels of phylogenetic history. Our results also highlight the importance of screening for and managing repetitive elements found in randomly sequenced DNA fragments. We presume that our strategy should work well across any similarly divergent clade, suggesting that many-marker datasets can be developed quickly and efficiently for phylogenetic analysis.  相似文献   

4.
Progress on mammalian comparative maps could be significantly accelerated by developing reagents defining orthologous landmarks in the genome of many mammalian species. Using the large databases of gene sequences, we designed 225 orthologous gene-specific primer pairs corresponding to 146 functional genes. Of these 225 primer pairs, 155 (68.9%), 182 (80.9%), 126 (56.0%), and 82 (36.4%) produced a single PCR product when tested against human, pig, dog, and hamster genomic DNA, respectively. In addition to the general rules of primer designing, particular factors must be taken into consideration when choosing gene-specific universal primers—for instance, preference for single-exon regions or highly conserved segments among species, avoidance of GC-rich regions. Sequencing all the canine PCR products traced by these primers demonstrated that of 123 traced canine fragments with readable and reliable sequences, 121 (98.4%) were found to match the GenBank orthologous sequences used for designing the primers, after a BLAST search. Comparative characterization of PCR fragments among human, pig, dog, and hamster revealed that the length of a single exon was much conserved among species, with few exceptions. As the fragments were traced with amplification by orthologous gene-specific primers, we suggest they be termed Traced Orthologous Amplified Sequence Tags (TOASTs). Received: 22 December 1997 / Accepted: 16 March 1998  相似文献   

5.
A number of avian species are difficult to sex morphologically, especially as nestlings. Like other avian species, many species of Falconiformes are sexually monomorphic. Therefore, it is desirable that new methods based on DNA analysis are established in Falconiformes and other sexual monomorphic species. We identified sex in Falconiformes by two alternative methods. First, we used a sexing method based on the intronic length variation between CHD1W and CHD1Z using primers flanking the intron. In this method, two species of Falconidae could be identified for sexing. However, six species of Accipitridae could not, because they have few length variations. The second method used was based on differences in sequences between CHD1W and CHD1Z. From sequence analysis, a 3'-terminal mismatch primer on point mutation conserved among Falconiformes was designed, and identification of sex with the amplification refractory mutation system (ARMS) was performed. This method could identify sex in all species tested. In addition, because the 3'-terminal mismatch primer was designed on a point mutation conserved among Falconiformes, ARMS with these primers may identify sex in all Falconiformes. These are simple and rapid sexing methods, since only polymerase chain reaction (PCR) and agarose electrophoresis are required. In conclusion, sex identification by an alternative PCR approach based on intronic length variation and on differences in sequences between CHD1W and CHD1Z proved applicable to and useful for Falconiformes.  相似文献   

6.
To enable the accurate sexing of individuals of introduced populations of the small Indian mongoose, Herpestes auropunctatus, we designed a primer set for the amplification of the sex-specific fragments EIF2S3Y and EIF2S3X. Using this primer set, the expected amplification products were obtained for all samples of genomic DNA tested: males yielded two bands and females a single band. Sequencing of each PCR product confirmed that the 769-bp fragment amplified from DNA samples of both sexes was derived from EIF2S3X, whereas the 546-bp fragment amplified only from male DNA samples was derived from EIF2S3Y. The results indicated that this primer set is useful for sex identification in this species.  相似文献   

7.
Polymerase chain reaction (PCR) is the foundation of SSR molecular marker technology. We used sib rice varieties J518, XD1 and SD23 as experimental materials, selecting 30 pairs of SSR primers, including RM127, RM337 and RM5172, covering the rice genome, and performed single- and double-SSR primer combined analyses. We found that under the same PCR system and conditions, a single primer of the SSR primer pairs could amplify the same fragments as double primers do. The sequencing results demonstrated that some amplified fragments that we previously believed to come from double primers were actually produced by a single primer. The use of this kind of primer, such as the RM127 primer pair, for marker-assisted breeding will therefore be misleading. Additionally, using the same PCR system and conditions, some single primers that are part of SSR primer pairs can amplify many more specific fragments than double-SSR primers. For instance, in the case of the RM5172 primer pair, a single primer P1 amplified approximately three times the number of fragments as the double primer. This information can contribute to research on genetic diversity of species, understanding of genetic relationships and identification of germplasm resources. Accordingly, combined analyses of single- and double-primer amplification products not only can remove single-primer amplification fragments and false-positives from double-primer amplification products in order to improve test accuracy, but also can facilitate research on genetic diversity, exploration of phylogenetic relationships and identification of germplasm resources. We define this method as "single- and double-SSR primer combined analyses".  相似文献   

8.
PCR detection of genes encoding nitrite reductase in denitrifying bacteria   总被引:2,自引:0,他引:2  
Using consensus regions in gene sequences encoding the two forms of nitrite reductase (Nir), a key enzyme in the denitrification pathway, we designed two sets of PCR primers to amplify cd1- and Cu-nir. The primers were evaluated by screening defined denitrifying strains, denitrifying isolates from wastewater treatment plants, and extracts from activated sludge. Sequence relationships of nir genes were also established. The cd1 primers were designed to amplify a 778 to 799-bp region of cd1-nir in the six published sequences. Likewise, the Cu primers amplified a 473-bp region in seven of the eight published Cu-nir sequences. Together, the two sets of PCR primers amplified nir genes in nine species within four genera, as well as in four of the seven sludge isolates. The primers did not amplify genes of nondenitrifying strains. The Cu primers amplified the expected fragment in all 13 sludge samples, but cd1-nir fragments were only obtained in five samples. PCR products of the expected sizes were verified as nir genes after hybridization to DNA probes, except in one case. The sequenced nir fragments were related to other nir sequences, demonstrating that the primers amplified the correct gene. The selected primer sites for Cu-nir were conserved, while broad-range primers targeting conserved regions of cd1-nir seem to be difficult to find. We also report on the existence of Cu-nir in Paracoccus denitrificans Pd1222.  相似文献   

9.
Rapid assessment of single-copy nuclear DNA variation in diverse species   总被引:12,自引:0,他引:12  
We investigated the use of PCR primers designed to conserved exons within nuclear DNA to amplify potentially variable regions such as introns or hypervariable exons from a wide range of species. We then explored various approaches to assay population-level variation in these PCR products. Primers designed to amplify regions within the histone H2AF, myoglobin , MHC DQA , and aldolase (ALD) genes gave clean amplifications in diverse mammals (DQA) , and in birds, reptiles and mammals ( aldolase, H2AF, myoglobin ). The sequenced PCR products generally, but not always, confirmed that the correct locus had been amplified. Several primer sets produced smaller size fragments consistent with preferential amplification of intronless pseudogenes; this was confirmed by sequencing seal and reptile H2AF PCR products. Digestion with randomly selected four-base recognizing enzymes detected variation in some cases but not in others. In species/gene combinations with either low (e.g. seal H2AF, ALD-A ) or high (e.g. skink ALD-1 ) nucleotide diversity it was more efficient to sequence a small number of distantly related individuals (e.g. one per geographic population) and from these data to identify informative or potentially informative restriction enzymes for 'targeted' digestion. We conclude that for studies of population-level variation, the optimal approach is to use a battery of primers for initial PCR of both mtDNA and scnDNA loci, select those that give clean amplifications, and sequence one sample from each population to (i) confirm gene identity, (ii) estimate the amount of variation and, (iii) search for diagnostic restriction sites. This will allow determination of the most efficient approach for a large-scale study.  相似文献   

10.
Angiosperm systematics has progressed to the point where it is now expected that multiple, independent markers be used in phylogenetic studies. Universal primers for amplifying informative regions of the chloroplast genome are readily available, but in the faster-evolving nuclear genome it is challenging to discover priming sites that are conserved across distantly related taxa. With goals including the identification of informative markers in rosids, and perhaps other angiosperms, we screened 141 nuclear primer combinations for phylogenetic utility in two distinct groups of rosids at different taxonomic levels-Psiguria (Cucurbitaceae) and Geraniaceae. We discovered three phylogenetically informative regions in Psiguria and two in Geraniaceae, but none that were useful in both groups. Extending beyond rosids, we combined our findings with those of another recent effort testing these primer pairs in Asteraceae, Brassicaceae, and Orchidaceae. From this comparison, we identified 32 primer combinations that amplified regions in representative species of at least two of the five distantly related angiosperm families, giving some prior indication about phylogenetic usefulness of these markers in other flowering plants. This reduced set of primer pairs for amplifying low-copy nuclear markers along with a recommended experimental strategy provide a framework for identifying phylogenetically informative regions in angiosperms.  相似文献   

11.
Microsatellites physically linked to expressed sequence tags (EST-SSRs) are an important resource for linkage mapping and comparative genomics, and data mining in publicly available EST databases is a common strategy for EST-SSR discovery. At present, many species lack species-specific EST sequence data needed for the efficient characterization of EST-SSRs. This paper describes the discovery and development of EST-SSRs for red drum (Sciaenops ocellatus), an estuarine-dependent sciaenid species of economic importance in the USA and elsewhere, using a phylogenetically informed, comparative genomics approach to primer design. The approach entailed comparing existing genomic resources from species closely allied phylogenetically to red drum, with resources from more distantly related outgroup species. By taking into account the degree to which flanking regions are conserved across taxa, the efficiency of PCR primer design was increased greatly. The amplification success rate for primers designed for red drum was 100?% when using EST libraries from confamilial species and 92?% when using an EST library from a species in the same suborder. The primers developed also amplified EST-SSRs in a wide range of perciform fishes, suggesting potential use in comparative genomics. This study demonstrates that EST-SSRs can be efficiently developed for an organism when limited species-specific data are available by exploiting genomic resources from well-studied species, even those at extended phylogenetic distances.  相似文献   

12.

Background  

In some genomic applications it is necessary to design large numbers of PCR primers in exons flanking one or several introns on the basis of orthologous gene sequences in related species. The primer pairs designed by this target gene approach are called "intron-flanking primers" or because they are located in exonic sequences which are usually conserved between related species, "conserved primers". They are useful for large-scale single nucleotide polymorphism (SNP) discovery and marker development, especially in species, such as wheat, for which a large number of ESTs are available but for which genome sequences and intron/exon boundaries are not available. To date, no suitable high-throughput tool is available for this purpose.  相似文献   

13.
Sequence polymorphism of homologues ZFX and ZFY, in a 604-base pair exon region, was examined in 10 known males and 10 known females across seven cetacean families and used to design a simple, highly sensitive and widely applicable fluorescent 5' exonuclease assay for gender determination in cetaceans. Multiplex amplification, cloning, and sequencing of these previously uncharacterized regions revealed (i) eight fixed differences between ZFX and ZFY, (ii) 29 variable sites between ZFX and ZFY and (iii) very low interspecific nucleotide diversity for both ZFX and ZFY across all families examined. We developed a 5' exonuclease assay that produces a small (105 bp) polymerase chain reaction (PCR) product from both the X and the Y chromosome orthologs, and used double-labelled fluorescent probes to distinguish between the two genes in a real-time PCR assay that is highly reproducible and sensitive. We demonstrated sex specificity for 33 cetacean species in nine families. Given the availability of conserved primers and sequence information for many mammalian species, this approach to designing sexing assays for a wide range of species is both practical and efficient.  相似文献   

14.
The goal of this study was to develop a polymerase chain reaction (PCR) capable of differentiating Phytophthora species that are pathogenic on potatoes using a single primer pair. To achieve this objective, primers were derived from conserved regions flanking variable sequences in the internal transcribed spacer 1 (ITS1) of Phytophthora species. One primer pair produced a 140 bp product from P. infestans , P. erythroseptica and P. nicotianae . The PCR products were purified and used in an asymmetric PCR (A-PCR) protocol to generate single-strand DNA (ssDNA). The ssDNA of the Phytophthora potato pathogens reproducibly migrated in non-denaturing polyacrylamide gels in a species-specific manner.  相似文献   

15.
Reliable sex determination is an inevitable prerequisite in prenatal and preimplantation diagnosis of X-linked diseases. We report on an amelogenin-based nested polymerase chain reaction sexing method that simultaneously amplifies distinguishable fragments from both sex chromosomes. Primers matching a largely homologous region on both sex chromosomes are used that encompass a 177-bp deletion on the Y chromosome. Thus amplification results in X- and Y-specific fragments of different sizes that are resolved simply by agarose gel electrophoresis. We applied our sexing strategy to 102 single amniocytes previously subjected to primer extension preamplification. 95 showed successful amplification (93.14% sensitivity). The genotyping of all successful amplifications (from 42 male and 53 female amniocytes) was found to be correct (100% specificity). None of the media blanks showed amplification products (no false positives). Additional amplification of the locus of the most common cystic fibrosis mutation resulted in 95.1% success: 89 amniocytes (87.3%) showed no mutated allele and 7 (6.9%) were found to be heterozygous for the ΔF508 mutation. Received: 5 December 1995  相似文献   

16.
We determined the sequence of the male-specific minor histocompatibility complex antigen (Smcy) from the Y chromosome of seven squirrel species (Sciuridae, Rodentia). Based on conserved regions inside the Smcy intron sequence, we designed PCR primers for sex determination in these species that can be co-amplified with nuclear loci as controls. PCR co-amplification yields two products for males and one for females that are easily visualized as bands by agarose gel electrophoresis. Our method provides simple and reliable sex determination across a wide range of squirrel species.  相似文献   

17.
The red flour beetle, Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae), is a major pest of stored grain and cereal crops. It is also an important model species in genetic, ecological, and evolutionary research. The majority of its genome was recently sequenced and published. However, the genomic sequence of the small Y-chromosome is still undetermined, which hinders the development of molecular sex identification methods. Traditional methods for sexing adult forms of Tribolium beetles are troublesome. Therefore, a method for molecular sex identification in the red flour beetle was developed. One sex-linked randomly amplified polymorphic DNA marker was converted into a sequence-characterized amplified region (SCAR). The SCAR was aligned with the T. castaneum reference whole-genome sequence and fully matched a fragment of a single contig of unknown genomic location. The novelty of the method is that the fragment consists of shorter DNA fragments that are also present at other locations around the genome, but the particular order of these fragments within the sequenced region appeared to be Y-specific and this property was utilized for marker development. A set of three primers for multiplex PCR reaction was designed resulting in amplification of different length Y-specific and not-Y-specific (control) DNA fragments in a single PCR, which allows to distinguish males from females. The primers successfully sexed pre-sexed pupae and adult beetles from six laboratory strains, showing that the order of the repeated fragments is conserved in the species and is not strain-specific.  相似文献   

18.
We present a method which allows the isolation of fragments from genes coding for homologous proteins via PCR when only one block of conserved amino acids is available. Sets of degenerated primers are defined by reverse translation of the conserved amino acids such that each set contains not more than 128 different sequences. The second primer binding site is provided by a special cassette that is designed such that it does not allow binding of the second primer prior to being copied by DNA synthesis. The cassette is ligated to partially-digested chromosomal DNA. The second primer is biotinylated to allow elimination of PCR products carrying degenerated primers on both sides via streptavidin binding. Fragments obtained after amplification and enrichment are cloned and sequenced. The feasibility of this method was demonstrated in a model experiment, where degenerated primers were deduced from six conserved amino acids within the family of homologs to the Escherichia coli Vsr protein.  相似文献   

19.
20.
We have cloned and sequenced a gene encoding cellobiose dehydrogenase (CDH) from Pycnoporus cinnabarinus (Pci). PCR primers that may recognize a homologous cdh were designed using regions of complete conservation of amino acid sequence within the known sequences of Trametes versicolor (Tv) and Phanerochaete chrysosporium (Pc) CDH. Upstream primers hybridized to regions encoding the heme domain, whereas downstream primers recognized highly conserved regions within the flavin domain. Eight different primer pairs yielded three PCR products close in size to the control amplification, which used cloned Tv cdh as template. The PCR products that were close to the control size were cloned, and one of these, a 1.8-kb product, was completely sequenced. The PCR product was highly homologous to both Tv and Pch cdh, and contained eight putative introns. The cloned product was used to isolate a full-length clone encoding CDH from a Pci genomic library. Pci cdh encoded a protein with 83% identity with Tv CDH and 74% identity with Pch CDH. Northern blot analysis revealed that Pci cdh was transcribed as a single mRNA species and was expressed in the presence of cellulose as the carbon source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号