首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The P2X7 receptor is an ion‐gated channel, which is activated by high extracellular concentrations of adenosine triphosphate (ATP). Activation of P2X7 receptors has been shown to induce neuroinflammatory changes associated with several neurological conditions. The matrix metalloproteinases (MMPs) are a family of endopeptidases that have several functions including degradation of the extracellular matrix, cell migration and modulation of bioactive molecules. The actions of MMPs are prevented by a family of protease inhibitors called tissue inhibitors of metalloproteinases (TIMPs). In this study, we show that ATP‐treated glial cultures from neonatal C57BL/6 mice release and increase MMP‐9 activity, which is coupled with a decrease in release of TIMP‐1 and an increase in activated cathepsin B within the extracellular space. This process occurs independently of NLRP3‐inflammasome formation. Treatment with a P2X7 receptor antagonist prevents ATP‐induced MMP‐9 activity, inhibition of active cathepsin B release and allows for TIMP‐1 to be released from the cell. We have shown that cathepsin B degrades TIMP‐1, and inhibition of cathepsin B allows for release of TIMP‐1 and inhibits MMP‐9 activity. We also present data that indicate that ATP or cell damage induces glial cell migration, which is inhibited by P2X7 antagonism, depletion of MMP‐9 or inhibition of cathepsin B.  相似文献   

3.
The tissue inhibitors of metalloproteinases (TIMPs) are endogenous inhibitors of the matrix metalloproteinases (MMPs). Since unregulated MMP activities are linked to arthritis, cancer, and atherosclerosis, TIMP variants that are selective inhibitors of disease-related MMPs have potential therapeutic value. The structures of TIMP/MMP complexes reveal that most interactions with the MMP involve the N-terminal pentapeptide of TIMP and the C-D beta-strand connector which occupy the primed and unprimed regions of the active site. The loop between beta-strands A and B forms a secondary interaction site for some MMPs, ranging from multiple contacts in the TIMP-2/membrane type-1 (MT1)-MMP complex to none in the TIMP-1/MMP-1 complex. TIMP-1 and its inhibitory domain, N-TIMP-1, are weak inhibitors of MT1-MMP; inhibition is not improved by grafting the longer AB loop from TIMP-2 into N-TIMP-1, but this change impairs binding to MMP-3 and MMP-7. Mutational studies with N-TIMP-1 suggest that its weak inhibition of MT1-MMP, as compared to other N-TIMPs, arises from multiple (>3) sequence differences in the interaction site. Substitutions for Thr2 of N-TIMP-1 strongly influence MMP selectivity; Arg and Gly, that generally reduce MMP affinity, have less effect on binding to MMP-9. When the Arg mutation is added to the N-TIMP-1(AB2) mutant, it produces a gelatinase-specific inhibitor with Ki values of 2.8 and 0.4 nM for MMP-2 and -9, respectively. Interestingly, the Gly mutant has a Ki of 2.1 nM for MMP-9 and >40 muM for MMP-2, indicating that engineered TIMPs can discriminate between MMPs in the same subfamily.  相似文献   

4.
Mesenchymal stem cells (MSCs) have been shown to be perivascular, occupying a prime location for regulating vessel stability. Here, we focused on the MSC‐contribution of key regulators of the perivascular niche, the matrix metalloproteinases (MMPs) and their inhibitors, the TIMPs. Despite secretion of active forms of MMPs by MSCs, MMP enzyme activity was not detected in MSC‐conditioned medium (MSC‐CM) due to TIMP‐mediated inhibition. By means of bifunctional‐crosslinking to probe endogenous MMP:TIMP interactions, we showed MMP‐2‐inhibition by TIMP‐2. MSCs also inhibited high levels of exogenous MMP‐2 and MMP‐9 through TIMP‐2 and TIMP‐1, respectively. Furthermore, MSC‐CM protected vascular matrix molecules and endothelial cell structures from MMP‐induced disruption. MSCs remained matrix‐protective when exposed to pro‐inflammatory cytokines and hypoxia, countering these stresses with increased TIMP‐1 expression and augmented MMP‐inhibition. Thus, MSCs are revealed as robust sources of TIMP‐mediated MMP‐inhibition, capable of protecting the perivascular niche from high levels of MMPs even under pathological conditions. J. Cell. Physiol. 226: 385–396, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

5.
Viral infection of the central nervous system (CNS) can result in perturbation of cell-to-cell communication involving the extracellular matrix (ECM). ECM integrity is maintained by a dynamic balance between the synthesis and proteolysis of its components, mainly as a result of the action of matrix metalloproteinases (MMPs) and the tissue inhibitors of metalloproteinases (TIMPs). An MMP/TIMP imbalance may be critical in triggering neurological disorders, in particular in virally induced neural disorders. In the present study, a mouse model of brain infection using a neurotropic strain of canine distemper virus (CDV) was used to study the effect of CNS infection on the MMP/TIMP balance and cytokine expression. CDV replicates almost exclusively in neurons and has a unique pattern of expression (cortex, hypothalamus, monoaminergic nuclei, hippocampus, and spinal cord). Here we show that although several mouse brain structures were infected, they exhibited a differential pattern in terms of MMP, TIMP, and cytokine expression, exemplified by (i) a large increase in pro-MMP9 levels, in particular in the hippocampus, which occurred mainly in neurons and was associated with in situ gelatinolytic activity, (ii) specific and significant upregulation of MT1-MMP mRNA expression in the cortex and hypothalamus, (iii) an MMP/TIMP imbalance, suggested by the upregulation of TIMP-1 mRNA in the cortex, hippocampus, and hypothalamus and of TIMP-3 mRNA in the cortex, and (iv) a concomitant region-specific large increase in expression of Th1-like cytokines, such as gamma interferon, tumor necrosis factor alpha, and interleukin 6 (IL-6), contrasting with weaker induction of Th2-like cytokines, such as IL-4 and IL-10. These data indicate that an MMP/TIMP imbalance in specific brain structures, which is tightly associated with a local inflammatory process as shown by the presence of immune infiltrating cells, differentially impairs CNS integrity and may contribute to the multiplicity of late neurological disorders observed in this viral mouse model.  相似文献   

6.
Matrix metalloproteinases (MMPs) play a central role in many biological processes such as development, morphogenesis and wound healing, but their unbalanced activities are implicated in numerous disease processes such as arthritis, cancer metastasis, atherosclerosis, nephritis and fibrosis. One of the key mechanisms to control MMP activities is inhibition by endogenous inhibitors called tissue inhibitors of metalloproteinases (TIMPs). This review highlights the structures and inhibition mechanism of TIMPs, the biological activities of TIMPs, the unique properties of TIMP-3, and the altered specificity towards MMPs achieved by mutagenesis. A potential therapeutic use of TIMP variants is discussed.  相似文献   

7.
8.
Matrix metalloproteinases (MMPs) and their endogenous inhibitors (TIMPs) need to be finely modulated in physiological processes. However, oxygen tension influences MMP/TIMP balances, potentially leading to pathology. Intriguingly, new 2H,3H-decafluoropentane-based oxygen-loaded nanodroplets (OLNDs) have proven effective in abrogating hypoxia-dependent dysregulation of MMP and TIMP secretion by single cell populations. This work explored the effects of different oxygen tensions and dextran-shelled OLNDs on MMP/TIMP production in an organized and multicellular tissue (term human placenta). Chorionic villous explants from normal third-trimester pregnancies were incubated with/without OLNDs in 3 or 20% O2. Explants cultured at higher oxygen tension released constitutive proMMP-2, proMMP-9, TIMP-1, and TIMP-2. Hypoxia significantly altered MMP-2/TIMP-2 and MMP-9/TIMP-1 ratios enhancing TIMP-2 and reducing proMMP-2, proMMP-9, and TIMP-1 levels. Intriguingly, OLNDs effectively counteracted the effects of low oxygen tension. Collectively, these data support OLND potential as innovative, nonconventional, and cost-effective tools to counteract hypoxia-dependent dysregulation of MMP/TIMP balances in human tissues.  相似文献   

9.
Substantial data indicate that microRNA 21 (miR-21) is significantly elevated in glioblastoma (GBM) and in many other tumors of various origins. This microRNA has been implicated in various aspects of carcinogenesis, including cellular proliferation, apoptosis, and migration. We demonstrate that miR-21 regulates multiple genes associated with glioma cell apoptosis, migration, and invasiveness, including the RECK and TIMP3 genes, which are suppressors of malignancy and inhibitors of matrix metalloproteinases (MMPs). Specific inhibition of miR-21 with antisense oligonucleotides leads to elevated levels of RECK and TIMP3 and therefore reduces MMP activities in vitro and in a human model of gliomas in nude mice. Moreover, downregulation of miR-21 in glioma cells leads to decreases of their migratory and invasion abilities. Our data suggest that miR-21 contributes to glioma malignancy by downregulation of MMP inhibitors, which leads to activation of MMPs, thus promoting invasiveness of cancer cells. Our results also indicate that inhibition of a single oncomir, like miR-21, with specific antisense molecules can provide a novel therapeutic approach for “physiological” modulation of multiple proteins whose expression is deregulated in cancer.  相似文献   

10.
We investigated the involvement of matrix metalloproteinases (MMPs), tissue inhibitor (TIMP) and endothelin-1 (ET-1) in the renal damage in spontaneously hypertensive rats (SHR) following nitric oxide (NO) deprivation. SHR received Nomega-nitro-L-arginine methyl ester (L-NAME) from 5 wk-old for a period of 30 days. An ETA antagonist, FR139317 was used. We gave SHR FR139317 alone and cotreatment with L-NAME. L-NAME caused systemic hypertension, decrease in plasma nitrate/nitrite, increases in blood urea nitrogen and creatinine, impairment of glomerular dynamics. NO deprivation reduced the renal tissue cGMP, but it increased the collagen volume fraction, number of sclerotic glomeruli, arteriolar injury score and glomerular injury score. In addition, L-NAME elevated the plasma ET-1 at day 5. Cotreatment with FR139317 alleviated the L-NAME-induced functional and structural changes of renal glomeruli. L-NAME administration for 5 to 10 days resulted in decreases in MMP2 and MMP9 with increasing TIMP2. After L-NAME for 15 days, opposite changes (increases in MMP2 and MMP9 with a decrease in TIMP2) were observed. FR139317 cotreatment ameliorated the L-NAME-induced changes in MMP2 and MMP9 throughout the 30-day observation period. The ETA antagonist cotreatment attenuated the L-NAME-induced increase in TIMP2 before day 15, but not after day 20. The results indicate that ET-1, MMPs and TIMP are involved at the early stage (before 10 days) of glomerular sclerosis and arteriosclerosis with functional impairment following NO deprivation. The changes in MMPs and TIMP at the late stage (after 20 days) may be a compensatory response to prevent further renal damage.  相似文献   

11.
Tissue inhibitors of metalloproteinases (TIMPs) regulate extracellular matrix (ECM) degradation by matrix metalloproteinases (MMPs) throughout lung development. We examined lungs from TIMP3 null mice and found significant air space enlargement compared with wild type (WT) animals during a time course spanning early alveologenesis (post‐partum days 1, 5, 9 and 14). Trichrome staining revealed a similar pattern of collagen distribution in the walls of nascent alveoli; however, the alveolar walls of TIMP3 mutant mice appeared to be thinner than controls. Assessment of MMP2 and MMP9 activities by gelatin zymography demonstrated a significant elevation in the active form of MMP2 at post‐partum days 1 and 5. Treatment of null pregnant dams with a broad spectrum synthetic metalloproteinase inhibitor, GM6001, on embryonic day 16.5 enhanced the formation of primitive alveoli during the saccular stage of lung development as evidenced by a partial, but significant, rescue of alveolar size in post‐partum day 1 animals. We propose that increased MMP activity in the absence of TIMP3 enhances ECM proteolysis, upsetting proper formation of primitive alveolar septa during the saccular stage of alveologenesis. Therefore, TIMP3 indirectly regulates alveolar formation in the mouse. To our knowledge, ours is the first study to demonstrate that in utero manipulation of the TIMP/MMP proteolytic axis, to specifically inhibit proteolysis, significantly affects lung development.  相似文献   

12.
Matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs (TIMPs) are the main determinants of tissue remodeling in both physiological and pathological processes. Metabolic processes, which generate oxidants and antioxidants can be influenced by environmental factors such as electromagnetic fields (EMF). We analyzed the effects of EMF on the activity and expression of MMPs in THP‐1 cells. Cells were exposed to a 50 Hz, 1 mT EMF for 24 h and incubated with or without LPS. Our data indicate that THP‐1 cells exposed to EMF causes a reduction of anti‐oxidant enzyme activity and an enhancement of nitrogen intermediates involving the iNOS pathway. We then analyzed the role of nitration of TIMP‐1 in increasing the activity of MMPs in EMF exposed cells. Molecular modeling tools were employed to identify the most plausible sites in the active conformation of TIMP‐1; at least two protein sites, Y120 and Y38 and/or Y72 were identified. Reactive nitrogen species (RNS) may affect protein targets, such as TIMP‐1, which are crucial for the regulation of MMP activities by oxidation of sulfydryl groups, or by nitration of tyrosine residues. These results may suggest a pathway connecting an imbalance of MMPs and their cognate inhibitor TIMP‐1. J. Cell. Physiol. 227: 2767–2774, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

13.
Matrix metalloproteinases (MMPs) are a family of enzymes responsible for the proteolytic processing of extracellular matrix (ECM) structural proteins under physiological and pathological conditions. During sprouting angiogenesis, the MMPs expressed by a single "tip" endothelial cell exhibit proteolytic activity that allows the cells of the sprouting vessel bud to migrate into the ECM. Membrane type I matrix metalloproteinase (MT1-MMP) and the diffusible matrix metalloproteinase MMP2, in the presence of the tissue inhibitor of metalloproteinases TIMP2, constitute a system of proteins that play an important role during the proteolysis of collagen type I matrices. Here, we have formulated a computational model to investigate the proteolytic potential of such a tip endothelial cell. The cell expresses MMP2 in its proenzyme form, pro-MMP2, as well as MT1-MMP and TIMP2. The interactions of the proteins are described by a biochemically detailed reaction network. Assuming that the rate-limiting step of the migration is the ability of the tip cell to carry out proteolysis, we have estimated cell velocities for matrices of different collagen content. The estimated velocities of a few microns per hour are in agreement with experimental data. At high collagen content, proteolysis was carried out primarily by MT1-MMP and localized to the cell leading edge, whereas at lower concentrations, MT1-MMP and MMP2 were found to act in parallel, causing proteolysis in the vicinity of the leading edge. TIMP2 is a regulator of the proteolysis localization because it can shift the activity of MT1-MMP from its enzymatic toward its activatory mode, suggesting a tight mechanosensitive regulation of the enzymes and inhibitor expression. The model described here provides a foundation for quantitative studies of angiogenesis in extracellular matrices of different compositions, both in vitro and in vivo. It also identifies critical parameters whose values are not presently available and which should be determined in future experiments.  相似文献   

14.
Extracellular matrix remodeling and degradation are of great importance in both physiological and pathological situations. Matrix metalloproteinases (MMPs) and their natural occurring inhibitors - tissue inhibitors of metalloproteinases (TIMPs) - are involved in matrix turnover. Among the TIMPs there is only little specificity for inhibiting individual MMPs. In this report we describe the mutational analysis of the interaction of human TIMP-4 with several MMPs. The effects of different substitutions of residue 2 (Ser(2)) in the inhibitory domain of TIMP-4 were determined by kinetic measurements. Size, charge and polarity of residue 2 in the TIMP structure are key factors in MMP inhibition.  相似文献   

15.
The activity of matrix metalloproteinases (MMPs) in degrading extracellular matrix is controlled by activation of pro-enzymes and inhibition of MMP tissue inhibitors (TIMPs). To assess proteolytic cascade imbalance in malignancy progression, the enzymatic activity of MMP2 and MMP9 and the expression and serum level of their inhibitors, TIMP2 and TIMP1 respectively, was evaluated in selected patients with high-risk soft tissue sarcoma (STS). Gelatinase activity and inhibitor expression was evaluated on 69 biopsies by zymography and immunohistochemistry. TIMP1 and TIMP2 serum concentration was tested in 53 STS patients and in 56 controls using a sandwich enzyme immunoassay. Clinical and biological variables were related to clinical outcome of the patients. A significant gelatinolytic activity was seen in a high percentage of STS. TIMP expression was weak or negative in the majority of samples. The difference between disease-free (p=0.001) and overall survival (p=0.007) curves based on TIMP2 immunoreactivity was statistically significant. TIMP plasma concentration of 53 STS revealed significantly lower levels compared to those of 56 controls (p=0.0001). In conclusion, low levels of negative regulators of proteolysis may be related to tumor biological aggressiveness and used to select patients with poor prognosis to improve cure.  相似文献   

16.
The human matrix metalloproteinase (MMP) gene family includes 24 genes whose regulated expression, together with that of four tissue inhibitors of metalloproteinases (TIMPs), is essential in tissue remodelling and cell signalling. Quantitative real-time-PCR (qPCR) analysis was used to evaluate the shared and unique patterns of control of these two gene families in human MRC-5 and WI-38 fibroblasts in response to the protein kinase C (PKC) activator phorbol-12-myristate-13-acetate (PMA). The requirement for ongoing translation was analysed using three protein synthesis inhibitors, anisomycin, cycloheximide and emetine. PMA induced MMP1, 3, 8, 9, 10, 12, 13, 14 and TIMP1 and TIMP3 RNAs after 4-8 h, and induction of all except MMP9 and TIMP3 was blocked by all protein synthesis inhibitors. However, even though all inhibitors effectively blocked translation, PMA-induction of MMP9 and TIMP3 was blocked by emetine but was insensitive to cycloheximide and anisomycin. Anisomycin alone induced MMP9 and TIMP3, along with MMP25 and MMP19. The extracellular signal-regulated kinases (ERKs)-1/2 were strongly activated by PMA, while anisomycin activated the c-Jun N-terminal kinase (JNK) and p38 pathways, and cycloheximide activated p38, but emetine had no effect on the stress-activated mitogen-activated protein kinase (MAPK) pathways. The involvement of the p38 and JNK pathways in the selective effects of anisomycin and cycloheximide on MMP/TIMP expression was supported by use of pharmacological inhibitors. These data confirm that most inducible MMPs and TIMP1 behave as "late" activated, protein synthesis-dependent genes in fibroblasts. However, the requirement of protein synthesis for PMA-induction of MMPs and TIMPs is not universal, since it is abrogated for MMP9 and TIMP3 by stimulation of the stress-activated MAPK pathways. The definition of clusters of co-regulated genes among the two gene families will aid in bioinformatic dissection of control mechanisms.  相似文献   

17.
The matrix metalloproteinases (MMPs) belong to a growing family of Zn2+-dependent endopeptidases, secreted or membrane-bound (MT-MMP), that regulate or degrade by proteolytic cleavage protein components of the extracellular matrix, cytokines, chemokines, cell adhesion molecules and a variety of membrane receptors. MMP activity is counterbalanced by their physiological inhibitors, the tissue inhibitors of MMPs (TIMPs), a family of 4 secreted multifunctional proteins that have growth promoting activities. In physiological conditions MMP activity is tightly regulated and altered MMP regulation is associated with pathological processes including inflammation, cell proliferation, cell death and tissue remodeling. The MMP/TIMP system is involved in the development and function of cells of the immune system by promoting their differentiation, activation, migration across basement membranes and tissues. In the last years, data has accumulated indicating that the MMP/TIMP system is expressed in the nervous system where it regulates neuro-immune interactions and plays a major role in pathophysiological processes. In this review, we present recent in vivo and in vitro studies that highlight the contribution of the MMP/TIMP system to various diseases of the nervous system, involving blood brain barrier breakdown, neuroinflammation, glial reactivity, neuronal death, reactive plasticity, and to developmental and physiological processes including cell migration, axonal sprouting and neuronal plasticity. This review also alludes to the beneficial effects of synthetic MMP inhibitors in different animal models of neuropathology. In all, a further understanding of the role of MMPs and TIMPs in the nervous system should contribute to unravel mechanisms of neuronal plasticity and pathology and set the basis of new therapeutic strategies in nervous system disorders based on the development of synthetic MMP inhibitors.  相似文献   

18.
Extracellular matrix (ECM) molecules are known to play a pivotal role in morphogenesis of the secondary palate, and changes in their composition and distribution, not attributable to changes in synthesis, are known to occur during palatogenesis. The present study was undertaken to determine if the enzymes responsible for mediating their degradation, the matrix metalloproteinases (MMP), and their specific inhibitors, the tissue inhibitors of metalloproteinases (TIMP), are temporospatially regulated during murine palatal shelf morphogenesis. Palatal shelves were harvested at gestational days (gd) 12, 13 and 14. MMPs were identified by gelatin zymography, with and without inhibitors, and the identity of specific bands confirmed by Western blot analysis. TIMPs were identified by reverse zymography. MMP and TIMP messages were detected using RT-PCR with specific primers to MMPs 2, 3, 7, 9 and 13 and TIMPs 1 and 2. Zymography revealed bands of molecular weights corresponding to MMPs 2, 7, 9 and 13 at all ages examined; the intensity of these bands increased with developmental age. Western blot analysis established the presence of MMP-3 and its developmental variation in expression. RT-PCR demonstrated the presence of mRNA for all MMPs and TIMP at all sampling times and all but MMP-2 showed developmental variation. Whereas increases in mRNA were detected for MMPs 3, 9, and 13, MMP-7 mRNA decreased between gd 12 and 14. The results of this study demonstrate that MMPs 2, 3, 7, 9 and 13 and TIMPs 1 and 2 and their messages are present during the course of palatal shelf remodelling and that their expression is temporally regulated.  相似文献   

19.
20.
The membrane type (MT)-matrix metalloproteinases (MMPs) constitute a subgroup of membrane-anchored MMPs that are major mediators of pericellular proteolysis and physiological activators of pro-MMP-2. The MT-MMPs also exhibit differential inhibition by members of the tissue inhibitor of metalloproteinase (TIMP) family. Here we investigated the processing, catalytic activity, and TIMP inhibition of MT3-MMP (MMP-16). Inhibitor profile and mutant enzyme studies indicated that MT3-MMP is regulated on the cell surface by autocatalytic processing and ectodomain shedding. Inhibition kinetic studies showed that TIMP-3 is a high affinity inhibitor of MT3-MMP when compared with MT1-MMP (K(i) = 0.008 nm for MT3-MMP versus K(i) = 0.16 nm for MT1-MMP). In contrast, TIMP-2 is a better inhibitor of MT1-MMP. MT3-MMP requires TIMP-2 to accomplish full pro-MMP-2 activation and this process is enhanced in marimastatpretreated cells, consistent with regulation of active enzyme turnover by synthetic MMP inhibitors. TIMP-3 also enhances the activation of pro-MMP-2 by MT3-MMP but not by MT1-MMP. TIMP-4, in contrast, cannot support pro-MMP-2 activation with either enzyme. Affinity chromatography experiments demonstrated that pro-MMP-2 can assemble trimolecular complexes with a catalytic domain of MT3-MMP and TIMP-2 or TIMP-3 suggesting that pro-MMP-2 activation by MT3-MMP involves ternary complex formation on the cell surface. These results demonstrate that TIMP-3 is a major regulator of MT3-MMP activity and further underscores the unique interactions of TIMPs with MT-MMPs in the control of pericellular proteolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号