首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Both developmental nutrition and adult nutrition affect life‐history traits; however, little is known about whether the effect of developmental nutrition depends on the adult environment experienced. We used the fruit fly to determine whether life‐history traits, particularly life span and fecundity, are affected by developmental nutrition, and whether this depends on the extent to which the adult environment allows females to realize their full reproductive potential. We raised flies on three different developmental food levels containing increasing amounts of yeast and sugar: poor, control, and rich. We found that development on poor or rich larval food resulted in several life‐history phenotypes indicative of suboptimal conditions, including increased developmental time, and, for poor food, decreased adult weight. However, development on poor larval food actually increased adult virgin life span. In addition, we manipulated the reproductive potential of the adult environment by adding yeast or yeast and a male. This manipulation interacted with larval food to determine adult fecundity. Specifically, under two adult conditions, flies raised on poor larval food had higher reproduction at certain ages – when singly mated this occurred early in life and when continuously mated with yeast this occurred during midlife. We show that poor larval food is not necessarily detrimental to key adult life‐history traits, but does exert an adult environment‐dependent effect, especially by affecting virgin life span and altering adult patterns of reproductive investment. Our findings are relevant because (1) they may explain differences between published studies on nutritional effects on life‐history traits; (2) they indicate that optimal nutritional conditions are likely to be different for larvae and adults, potentially reflecting evolutionary history; and (3) they urge for the incorporation of developmental nutritional conditions into the central life‐history concept of resource acquisition and allocation.  相似文献   

2.
Hyperactivation of p53 leads to a reduction in tumor formation and an unexpected shortening of life span in two different model systems . The decreased life span occurs with signs of accelerated aging, such as osteoporosis, reduction in body weight, atrophy of organs, decreased stress resistance, and depletion of hematopoietic stem cells. These observations suggest a role for p53 in the determination of life span and the speculation that decreasing p53 activity may result in positive effects on some aging phenotypes . In this report, we show that expression of dominant-negative versions of Drosophila melanogaster p53 in adult neurons extends life span and increases genotoxic stress resistance in the fly. Consistent with this, a naturally occurring allele with decreased p53 activity has been associated with extended survival in humans . Expression of the dominant-negative Drosophila melanogaster p53 constructs does not further increase the extended life span of flies that are calorie restricted, suggesting that a decrease in p53 activity may mediate a component of the calorie-restriction life span-extending pathway in flies.  相似文献   

3.
Sun J  Folk D  Bradley TJ  Tower J 《Genetics》2002,161(2):661-672
A transgenic system ("FLP-out") based on yeast FLP recombinase allowed induced overexpression of MnSOD enzyme in adult Drosophila melanogaster. With FLP-out a brief heat pulse (HP) of young, adult flies triggered the rearrangement and subsequent expression of a MnSOD transgene throughout the adult life span. Control (no HP) and overexpressing (HP) flies had identical genetic backgrounds. The amount of MnSOD enzyme overexpression achieved varied among six independent transgenic lines, with increases up to 75%. Life span was increased in proportion to the increase in enzyme. Mean life span was increased by an average of 16%, with some lines showing 30-33% increases. Maximum life span was increased by an average of 15%, with one line showing as much as 37% increase. Simultaneous overexpression of catalase with MnSOD had no added benefit, consistent with previous observations that catalase is present in excess in the adult fly with regard to life span. Cu/ZnSOD overexpression also increases mean and maximum life span. For both MnSOD and Cu/ZnSOD lines, increased life span was not associated with decreased metabolic activity, as measured by O2 consumption.  相似文献   

4.
Studies have been made on the relationship between incubation temperature (20-30 degrees C) of D. melanogaster and the life span as well as the content of various products of lipid peroxidation. It was shown that the increase in the environmental temperature results in the decrease in the life span, the content of unsaturated fatty acids and conjugated hydroxyperoxids; ketodienic content increases. Strong correlation was observed between the life span and the content of peroxidation products. As it is indicated by coefficients of bifactorial linear regression with interaction, conjugated hydroperoxids and ketodiens exert negative influence on the life span. Their combined effect on the life span is less significant than the sum of their separate effects, which indicates the existence of common "canals" of their influences on the life span.  相似文献   

5.
The hypothesis that overexpression of glutamate-cysteine ligase (GCL), which catalyzes the rate-limiting reaction in de novo glutathione biosynthesis, could extend life span was tested in the fruit fly, Drosophila melanogaster. The GAL4-UAS binary transgenic system was used to generate flies overexpressing either the catalytic (GCLc) or modulatory (GCLm) subunit of this enzyme, in a global or neuronally targeted pattern. The GCL protein content of the central nervous system was elevated dramatically in the presence of either global or neuronal drivers. GCL activity was increased in the whole body or in heads, respectively, of GCLc transgenic flies containing global or neuronal drivers. The glutathione content of fly homogenates was increased by overexpression of GCLc or GCLm, particularly in flies overexpressing either subunit globally, or in the heads of GCLc flies possessing neuronal drivers. Neuronal overexpression of GCLc in a long-lived background extended mean and maximum life spans up to 50%, without affecting the rate of oxygen consumption by the flies. In contrast, global overexpression of GCLm extended the mean life span only up to 24%. These results demonstrate that enhancement of the glutathione biosynthetic capability, particularly in neuronal tissues, can extend the life span of flies, and thus support the oxidative stress hypothesis of aging.  相似文献   

6.
《Autophagy》2013,9(3):298-302
Autophagy is a physiological and evolutionarily conserved process maintaining homeostatic functions, such as protein degradation and organelle turnover. Accumulating data provide evidence that autophagy also contributes to cell death under certain circumstances, but how this is achieved is not well known. Herein, we report that autophagy occurs during developmentally-induced cell death in the female germline, observed in the germarium and during middle developmental stages of oogenesis in Drosophila melanogaster. Degenerating germline cells exhibit caspase activation, chromatin condensation, DNA fragmentation and punctate staining of mCherry-DrAtg8a, a novel marker for monitoring autophagy in Drosophila. Genetic inhibition of autophagy, by removing atg1 or atg7 function, results in significant reduction of DNA fragmentation, suggesting that autophagy acts genetically upstream of DNA fragmentation in this tissue. This study provides new insights into the mechanisms that regulate cell death in vivo during development.  相似文献   

7.
Zaĭnullin VG  Moskalev AA 《Genetika》2001,37(9):1304-1306
Chronic irradiation (accumulated dose 0.6-0.8 Gy) was shown to change the life span in male Drosophila melanogaster. Death was retarded in wild-type strains and accelerated in mutant strains defective in DNA repair and displaying a higher sensitivity to induction of apoptosis.  相似文献   

8.
We used quantitative trait loci (QTL) mapping to evaluate the age specificity of naturally segregating alleles affecting life span. Estimates of age-specific mortality rates were obtained from observing 51,778 mated males and females from a panel of 144 recombinant inbred lines (RILs). Twenty-five QTL were found, having 80 significant effects on life span and weekly mortality rates. Generation of RILs from heterozygous parents enabled us to contrast effects of QTL alleles with the means of RIL populations. Most of the low-frequency alleles increased mortality, especially at younger ages. Two QTL had negatively correlated effects on mortality at different ages, while the remainder were positively correlated. Chromosomal positions of QTL were roughly concordant with estimates from other mapping populations. Our findings are broadly consistent with a mix of transient deleterious mutations and a few polymorphisms maintained by balancing selection, which together contribute to standing genetic variation in life span.  相似文献   

9.
Environments experienced during development have long‐lasting consequences for adult performance and fitness. The “environmental matching” hypothesis predicts that individuals perform best when adult and developmental environments match whereas the “silver spoon” hypothesis expects that fitness is higher in individuals developed under favorable environments regardless of adult environments. Temperature and nutrition are the two most influential determinants of environmental quality, but it remains to be elucidated which of these hypotheses better explains the long‐term effects of thermal and nutritional histories on adult fitness traits. Here we compared how the temperature and nutrition of larval environment would affect adult survivorship and reproductive success in the fruit fly, Drosophila melanogaster. The aspect of nutrition focused on in this study was the dietary protein‐to‐carbohydrate (P:C) ratio. The impact of low developmental and adult temperature was to improve adult survivorship. High P:C diet had a negative effect on adult survivorship when ingested during the adult stage, but had a positive effect when ingested during development. No matter whether adult and developmental environments matched or not, females raised in warm and protein‐enriched environments produced more eggs than those raised in cool and protein‐limiting environments, suggesting the presence of a significant silver spoon effect of larval temperature and nutrition. The effect of larval temperature on adult egg production was weak but persisted across the early adult stage whereas that of larval nutrition was initially strong but diminished rapidly after day 5 posteclosion. Egg production after day 5 was strongly influenced by the P:C ratio of the adult diet, indicating that the diet contributing mainly to reproduction had shifted from larval to adult diet. Our results highlight the importance of thermal and nutritional histories in shaping organismal performance and fitness and also demonstrate how the silver spoon effects of these aspects of environmental histories differ fundamentally in their nature, strength, and persistence.  相似文献   

10.
G protein-coupled receptors (GPCRs) mediate signaling from extracellular ligands to intracellular signal transduction proteins. Methuselah (Mth) is a class B (secretin-like) GPCR, a family typified by their large, ligand-binding, N-terminal extracellular domains. Downregulation of mth increases the life span of Drosophila melanogaster; inhibitors of Mth signaling should therefore enhance longevity. We used mRNA display selection to identify high-affinity (K(d) = 15 to 30 nM) peptide ligands that bind to the N-terminal ectodomain of Mth. The selected peptides are potent antagonists of Mth signaling, and structural studies suggest that they perturb the interface between the Mth ecto- and transmembrane domains. Flies constitutively expressing a Mth antagonist peptide have a robust life span extension, which suggests that the peptides inhibit Mth signaling in vivo. Our work thus provides new life span-extending ligands for a metazoan and a general approach for the design of modulators of this important class of GPCRs.  相似文献   

11.
Vincent G 《Annals of botany》2006,97(2):245-255
BACKGROUND AND AIMS: The phenotypic plasticity of leaf life span in response to low resource conditions has a potentially large impact on the plant carbon budget, notably in evergreen species not subject to seasonal leaf shedding, but has rarely been well documented. This study evaluates the plasticity of leaf longevity, in terms of its quantitative importance to the plant carbon balance under limiting light. METHODS: Seedlings of four tropical tree species with contrasting light requirements (Alstonia scholaris, Hevea brasiliensis, Durio zibethinus and Lansium domesticum) were grown under three light regimes (full sunlight, 45 % sunlight and 12 % sunlight). Their leaf dynamics were monitored over 18 months. RESULTS: All species showed a considerable level of plasticity with regard to leaf life span: over the range of light levels explored, the ratio of the range to the mean value of life span varied from 29 %, for the least plastic species, to 84 %, for the most. The common trend was for leaf life span to increase with decreasing light intensity. The plasticity apparent in leaf life span was similar in magnitude to the plasticity observed in specific leaf area and photosynthetic rate, implying that it has a significant impact on carbon gain efficiency when plants acclimate to different light regimes. In all species, median survival time was negatively correlated with leaf photosynthetic capacity (or its proxy, the nitrogen content per unit area) and leaf emergence rate. CONCLUSIONS: Longer leaf life spans under low light are likely to be a consequence of slower ageing as a result of a slower photosynthetic metabolism.  相似文献   

12.
The nature of genetic variation for Drosophila longevity in a population of recombinant inbred lines was investigated by estimating quantitative genetic parameters and mapping quantitative trait loci (QTL) for adult life span in five environments: standard culture conditions, high and low temperature, and heat-shock and starvation stress. There was highly significant genetic variation for life span within each sex and environment. In the analysis of variance of life span pooled over sexes and environments, however, the significant genetic variation appeared in the genotype x sex and genotype x environment interaction terms. The genetic correlation of longevity across the sexes and environments was not significantly different from zero in these lines. We estimated map positions and effects of QTL affecting life span by linkage to highly polymorphic roo transposable element markers, using a multiple-trait composite interval mapping procedure. A minimum of 17 QTL were detected; all were sex and/or environment-specific. Ten of the QTL had sexually antagonistic or antagonistic pleiotropic effects in different environments. These data provide support for the pleiotropy theory of senescence and the hypothesis that variation for longevity might be maintained by opposing selection pressures in males and females and variable environments. Further work is necessary to assess the generality of these results, using different strains, to determine heterozygous effects and to map the life span QTL to the level of genetic loci.  相似文献   

13.
Su  Yanyan 《Photosynthesis research》2019,140(3):301-310
Photosynthesis Research - The influence of six different light regimes throughout the photosynthetically active radiation range (from 400 to 700 nm, including blue, green, yellow,...  相似文献   

14.
Wilson RH  Morgan TJ  Mackay TF 《Genetics》2006,173(3):1455-1463
Limited life span and senescence are near-universal characteristics of eukaryotic organisms, controlled by many interacting quantitative trait loci (QTL) with individually small effects, whose expression is sensitive to the environment. Analyses of mutations in model organisms have shown that genes affecting stress resistance and metabolism affect life span across diverse taxa. However, there is considerable segregating variation for life span in nature, and relatively little is known about the genetic basis of this variation. Replicated lines of Drosophila that have evolved increased longevity as a correlated response to selection for postponed senescence are valuable resources for identifying QTL affecting naturally occurring variation in life span. Here, we used deficiency complementation mapping to identify at least 11 QTL on chromosome 3 that affect variation in life span between five old (O) lines selected for postponed senescence and their five base (B) population control lines. Most QTL were sex specific, and all but one affected multiple O lines. The latter observation is consistent with alleles at intermediate frequency in the base population contributing to the response to selection for postponed senescence. The QTL were mapped with high resolution and contained from 12 to 170 positional candidate genes.  相似文献   

15.
The stem of Cassia siamea L. (Fabaceae) has been used in traditional Thai medicine as a longevity remedy. The objective of this study was to investigate the effect of ethanolic stem extract of C. siamea (CSE) on the life span of Drosophila melanogaster. The results showed that a diet containing 10 mg/mL CSE could significantly extend the mean life span of D. melanogaster by 14% compared with the control diet (P < 0.01). The maximum life span was 74, 78, and 84 days in control, CSE (5 mg/mL) and CSE (10 mg/mL) groups, respectively. Supplementation of CSE at 10 mg/mL also significantly increases the activity of superoxide dismutase (SOD) and catalase (CAT) at days 25 and 40 compared with the control diet. Treatment of CSE at 5 and 10 mg/mL significantly increased the climbing ability of D. melanogaster both on days 25 and 40 compared with the control flies. Paraquat and H2O2 challenge test showed that flies fed with CSE at 10 mg/mL had a longer survival time than the control flies (P < 0.01). This study provides supportive evidence that supplementation with CSE prolonged life span and reduced oxidative stress in D. melanogaster.  相似文献   

16.
Artificial selection experiments often confer important information on the genetic correlations constraining the evolution of life history. After artificial selection has ceased however, selection pressures in the culture environment can change the correlation matrix again. Here, we reinvestigate direct and correlated responses in a set of lines of Drosophila melanogaster that were selected on virgin life span and for which selection has been relaxed for 10 years. The decrease in progeny production in long-lived lines, a strong indication of antagonistic pleiotropy, had disappeared during relaxation. This was associated with a higher cost of reproduction to long-lived flies in mated, but not in virgin life span. These data strongly suggest that genetic mechanisms of mated and virgin life span determination are partly independent. Furthermore, data on body weight, developmental time and viability indicated deleterious effects of longevity selection in either direction, giving rise to a nonlinear relationship with life span for these characters. In order to reclaim original patterns, we founded a new set of derived lines by resuming selection in mixed replicate lines of the original set. Although selection was successful, most patterns in correlated characters remained, showing that these new patterns are resistant to new episodes of selection.  相似文献   

17.
18.
19.
Upregulation of kynurenine (KYN) formation from tryptophan (TRY) was associated with aging in animal and human studies. TRY-KYN metabolism is affected by the activities of TRY 2,3-dioxygenase 2 (TDO) and AT P-binding cassette (ABC) transporter regulating TRY access to intracellular TDO. We studied the effects of TDO inhibitor, alpha-methyl tryptophan (aMT) and ABC transported inhibitor, 5-methyl tryptophan (5MT), on the life span of wild strain female Drosophila flies (Oregon-R). aMT and 5MT prolonged mean and maximum life span (by 27% and 43%, and 21% and 23%, resp.). The present results are the first observation of the extension of life span of Drosophila melanogaster by inhibitors of TRY-KYN metabolism, and in line with literature and previous studies on prolonged life span of TDO- and ABC-deficient female Drosophila mutants. Inhibition of TDO and ABC transporter activity might offer the new target for anti-aging interventions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号