首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 The urease accessory protein encoded by ureE from Klebsiella aerogenes is proposed to function in Ni(II) delivery to the urease apoprotein. Wild-type UreE contains a histidine-rich region at its carboxyl terminus and binds 5–6 Ni per dimer, whereas the functionally active but truncated H144*UreE lacks the histidine-rich motif and binds only two Ni per dimer [Brayman TG, Hausinger RP (1996) J Bacteriol 178 : 5410-5416]. For both proteins, Cu(II), Co(II), and Zn(II) ions compete for the Ni-binding sites. In order to characterize the coordination environments of bound metals, especially features that are unique to Ni, the Ni-, Cu-, and Co-bound forms of H144*UreE were studied by a combination of EPR, ESEEM, hyperfine-shifted 1H-NMR, XAS, and RR spectroscopic methods. For each metal ion, the two binding sites per homodimer were spectroscopically distinguishable. For example, the two Ni-binding sites each have pseudo-octahedral geometry in an N/O coordination environment, but differ in their number of histidine donors. The two Cu-binding sites have tetragonal geometry with two histidine donors each; however, the second Cu ion is bound by at least one cysteine donor in addition to the N/O-type donors found for the first Cu ion. Two Co ions are bound to H144*UreE in pseudo-octahedral geometry with N/O coordination, but the sites differ in the number of histidine donors that can be observed by NMR. The differences in coordination for each type of metal ion are relevant to the proposed function of UreE to selectively facilitate Ni insertion into urease in vivo. Received: 8 October 1997 / Accepted: 30 December 1997  相似文献   

2.
We examined several compounds for their mechanisms of inhibition with the nickel-containing active site of homogeneous Klebsiella aerogenes urease. Thiolate anions competitively inhibit urease and directly interact with the metallocenter, as shown by the pH dependence of inhibition and by UV-visible absorbance spectroscopic studies. Cysteamine, which possesses a cationic beta-amino group, exhibited a high affinity for urease (Ki = 5 microM), whereas thiolates containing anionic carboxyl groups were uniformly poor inhibitors. Phosphate monoanion competitively inhibits a protonated form of urease with a pKa of less than 5. Both the thiolate and phosphate inhibition results are consistent with charge repulsion by an anionic group in the urease active site. Acetohydroxamic acid (AHA) was shown to be a slow-binding competitive inhibitor of urease. This compound forms an initial E.AHA complex which then undergoes a slow transformation to yield an E.AHA* complex; the overall dissociation constant of AHA is 2.6 microM. Phenylphosphorodiamidate, also shown to be a slow-binding competitive inhibitor, possesses an overall dissociation constant of 94 pM. The tight binding of phenylphosphorodiamidate was exploited to demonstrate the presence of two active sites per enzyme molecule. Urease contains 4 mol of nickel/mol enzyme, hence there are two nickel ions/catalytic unit. Each of the two slow-binding inhibitors are proposed to form complexes in which the inhibitor bridges the two active site nickel ions. The inhibition results obtained for K. aerogenes urease are compared with inhibition studies of other ureases and are interpreted in terms of a model for catalysis proposed for the jack bean enzyme (Dixon, N.E., Riddles, P.W., Gazzola, C., Blakely, R.L., and Zerner, B. (1980) Can. J. Biochem. 58, 1335-1344).  相似文献   

3.
The urease accessory protein encoded by ureE from Klebsiella aerogenes is proposed to bind intracellular Ni(II) for transfer to urease apoprotein. While native UreE possesses a histidine-rich region at its carboxyl terminus that binds several equivalents of Ni, the Ni-binding sites associated with urease activation are internal to the protein as shown by studies involving truncated H144UreE [Brayman and Hausinger (1996) J. Bacteriol. 178, 5410-5416]. Nine potential Ni-binding residues (five His, two Cys, one Asp, and one Tyr) within H144UreE were independently substituted by mutagenesis to determine their roles in metal binding and urease activation. In vivo effects of these substitutions on urease activity were measured in Escherichia coli strains containing the K. aerogenes urease gene cluster with the mutated ureE genes. Several mutational changes led to reductions in specific activity, with substitution of His96 producing urease activity below the level obtained from a ureE deletion mutant. The metal-binding properties of purified variant UreE proteins were characterized by a combination of equilibrium dialysis and UV/visible, EPR, and hyperfine-shifted 1H NMR spectroscopic methods. Ni binding was unaffected for most H144UreE variants, but mutant proteins substituted at His110 or His112 exhibited greatly reduced affinity for Ni and bound one, rather than two, metal ions per dimer. Cys79 was identified as the Cu ligand responsible for the previously observed charge-transfer transition at 370 nm, and His112 also was shown to be associated with this chromophoric site. NMR spectroscopy provided clear evidence that His96 and His110 serve as ligands to Ni or Co. The results from these and other studies, in combination with prior spectroscopic findings for metal-substituted UreE [Colpas et al. (1998) J. Biol. Inorg. Chem. 3, 150-160], allow us to propose that the homodimeric protein possesses two nonidentical metal-binding sites, each symmetrically located at the dimer interface. The first equivalent of added Ni or Co binds via His96 and His112 residues from each subunit of the dimer, and two other N or O donors. Asp111 either functions as a ligand or may affect this site by secondary interactions. The second equivalent of Ni or Co binds via the symmetric pair of His110 residues as well as four other N or O donors. In contrast, the first equivalent of Cu binds via the His110 pair and two other N/O donors, while the second equivalent of Cu binds via the His112 pair and at least one Cys79 residue. UreE sequence comparisons among urease-containing microorganisms reveal that residues His96 and Asp111, associated with the first site of Ni binding, are highly conserved, while the other targeted residues are missing in many cases. Our data are most compatible with one Ni-binding site per dimer being critical for UreE's function as a metallochaperone.  相似文献   

4.
 Urease possesses a dinuclear Ni active site with the protein providing a bridging carbamylated lysine residue as well as an aspartyl and four histidyl ligands. The apoprotein can be activated in vitro by incubation with bicarbonate/CO2 and Ni(II); however, only ∼15% forms active enzyme (Ni-CO2-ureaseA), with the remainder forming inactive carbamylated Ni-containing protein (Ni-CO2-ureaseB). In the absence of CO2, apoprotein plus Ni(II) forms a distinct inactive Ni-containing species (Ni-urease). The studies described here were carried out to better define the metal-binding sites for the inactive Ni-urease and Ni-CO2-ureaseB species, and to examine the properties of various forms of Co-, Mn-, and Cu-substituted ureases. X-ray absorption spectroscopy (XAS) indicated that the two Ni atoms present in the Ni-urease metallocenter are coordinated by an average of two histidines and 3–4 N/O ligands, consistent with binding to the usual enzyme ligands with the lysine carbamate replaced by solvent. Neither XAS nor electronic spectroscopy provided evidence for thiolate ligation in the inactive Ni-containing species. By contrast, comparative studies of Co-CO2-urease and its C319A variant by electronic spectroscopy were consistent with a portion of the two Co being coordinated by Cys319. Whereas the inactive Co-CO2-urease possesses a single histidyl ligand per metal, the species formed using C319A apoprotein more nearly resembles the native metallocenter and exhibits low levels of activity. Activity is also associated with one of two species of Mn-CO2-urease. A crystal structure of the inactive Mn-CO2-urease species shows a metallocenter very similar in structure to that of native urease, but with a disordering of the Asp360 ligand and movement in the Mn-coordinated solvent molecules. Cu(II) was bound to many sites on the protein in addition to the usual metallocenter, but most of the adventitious metal was removed by treatment with EDTA. Cu-treated urease was irreversibly inactivated, even in the C319A variant, and was not further characterized. Metal speciation between Ni, Co, and Mn most affected the higher of two pK a values for urease activity, consistent with this pK a being associated with the metal-bound hydrolytic water molecule. Our results highlight the importance of precisely positioned protein ligands and solvent structure for urease activity. Received: 11 February 1999 / Accepted: 19 May 1999  相似文献   

5.
Urease from Klebsiella aerogenes is composed of three subunits (UreA-UreB-UreC) that assemble into a (UreABC)(3) quaternary structure. UreC harbors the dinuclear nickel active site, whereas the functions of UreA and UreB remain unknown. UreD and UreF accessory proteins previously were suggested to reposition UreB and increase the level of exposure of the nascent urease active site, thus facilitating metallocenter assembly. In this study, cells were engineered to separately produce (UreAC)(3) or UreB, and the purified proteins were characterized. Monomeric UreB spontaneously binds to the trimeric heterodimer of UreA and UreC to form (UreABC*)(3) apoprotein, as shown by gel filtration chromatography, integration of electrophoretic gel band intensities, and mass spectrometry. Similar to the authentic urease apoprotein, the active enzyme is produced by incubation of (UreABC*)(3) with Ni(2+) and bicarbonate. Conversely, UreBΔ1-19, lacking the 19-residue potential hinge and tether to UreC, does not form a complex with (UreAC)(3) and yields negligible levels of the active enzyme when incubated under activation conditions with (UreAC)(3). Comparison of activities and nickel contents for (UreAC)(3), (UreABC*)(3), and (UreABC)(3) samples treated with Ni(2+) and bicarbonate and then desalted indicates that UreB facilitates efficient incorporation of the metal into the active site and protects the bound metal from chelation. Amylose resin pull-down studies reveal that MBP-UreD (a fusion of maltose binding protein with UreD) forms complexes with (UreABC)(3), (UreAC)(3), and UreB in vivo, but not in vitro. By contrast, MBP-UreD does not form an in vivo complex with UreBΔ1-19. The soluble MBP-UreD-UreF-UreG complex binds in vitro to (UreABC)(3), but not to (UreAC)(3) or UreB. Together, these data demonstrate that UreB facilitates the interaction of urease with accessory proteins during metallocenter assembly, with the N-terminal hinge and tether region being specifically required for this process. In addition to its role in urease activation, UreB enhances the stability of UreC against proteolytic cleavage.  相似文献   

6.
During reaction with [14C]iodoacetamide at pH 6.3, radioactivity was incorporated primarily into a single Klebsiella aerogenes urease peptide concomitant with activity loss. This peptide was protected from modification at pH 6.3 by inclusion of phosphate, a competitive inhibitor of urease, which also protected the enzyme from inactivation. At pH 8.5, several peptides were alkylated; however, modification of one peptide, identical to that modified at pH 6.3, paralleled activity loss. The N-terminal amino acid sequence and composition of the peptide containing the essential thiol was determined. Previous enzyme inactivation studies of K. aerogenes urease could not distinguish whether one or two essential thiols were present per active site (Todd, M. J., and Hausinger, R. P. (1991) J. Biol. Chem. 266, 10260-10267); we conclude that there is a single essential thiol present and identify this residue as Cys319 in the large subunit of the heteropolymeric enzyme.  相似文献   

7.
8.
Cysteine 319 in the large subunit of Klebsiella aerogenes urease was identified as an essential catalytic residue based on chemical modification studies (Todd, M.J., and Hausinger, R.P. (1991) J. Biol. Chem. 266, 24327-24331). Through site-directed mutagenesis, this cysteine has been changed independently to alanine, serine, aspartate, and tyrosine. None of these mutations (C319A, C319S, C319D, and C319Y, respectively) affected the size or level of synthesis of the urease subunits as monitored by polyacrylamide gel electrophoresis. The wild type enzyme and each of the mutant proteins was purified and their properties were compared. The C319Y protein possessed no detectable activity, while activity was reduced in C319A, C319S, and C319D to 48, 4.5, and 0.03% of wild type levels under normal assay conditions. All of the active mutants had a small increase in Km when compared to the wild type value. The active mutants displayed a greatly reduced sensitivity to inactivation by iodoacetamide in comparison to the wild type enzyme, confirming our previous assignment of the essential cysteine to this residue based on active site peptide mapping. In contrast to the wild type enzyme, inactivation of the mutant proteins was not affected by the presence of the competitive inhibitor phosphate, suggesting that the remaining slow rate of iodoacetamide inactivation is due to modification away from the active site. The pH dependence of urease activity was substantially altered in the active mutants with C319S and C319D showing a pH optimum near 5.2, and C319A near 6.7, compared to the pH 7.75 optimum of wild type urease. These data are consistent with Cys-319 facilitating catalysis at neutral and basic pH values by participating as a general acid.  相似文献   

9.
Klebsiella aerogenes urease was purified 1,070-fold with a 25% yield by a simple procedure involving DEAE-Sepharose, phenyl-Sepharose, Mono Q, and Superose 6 chromatographies. The enzyme preparation was comprised of three polypeptides with estimated Mr = 72,000, 11,000, and 9,000 in a alpha 2 beta 4 gamma 4 quaternary structure. The three components remained associated during native gel electrophoresis, Mono Q chromatography, and Superose 6 chromatography despite the presence of thiols, glycols, detergents, and varied buffer conditions. The apparent compositional complexity of K. aerogenes urease contrasts with the simple well-characterized homohexameric structure for jack bean urease (Dixon, N. E., Hinds, J. A., Fihelly, A. K., Gazzola, C., Winzor, D. J., Blakeley, R. L., and Zerner, B. (1980) Can. J. Biochem. 58, 1323-1334); however, heteromeric subunit compositions were also observed for the enzymes from Proteus mirabilis, Sporosarcina ureae, and Selemonomas ruminantium. K. aerogenes urease exhibited a Km for urea of 2.8 +/- 0.6 mM and a Vmax of 2,800 +/- 200 mumol of urea min-1 mg-1 at 37 degrees C in 25 mM N-2-hydroxyethylpiperazineN'-2-ethanesulfonic acid, 5.0 mM EDTA buffer, pH 7.75. The enzyme activity was stable in 1% sodium dodecyl sulfate, 5% Triton X-100, 1 M KCl, and over a pH range from 5 to 10.5, with maximum activity observed at pH 7.75. Two active site groups were defined by their pKa values of 6.55 and 8.85. The amino acid composition of K. aerogenes urease more closely resembled that for the enzyme from Brevibacter ammoniagenes (Nakano, H., Takenishi, S., and Watanabe, Y. (1984) Agric. Biol. Chem. 48, 1495-1502) than those for plant ureases. Atomic absorption analysis was used to establish the presence of 2.1 +/- 0.3 mol of nickel per mol of 72,000-dalton subunit in K. aerogenes urease.  相似文献   

10.
The urease accessory protein encoded by ureE from Klebsiella aerogenes is proposed to deliver Ni(II) to the urease apoprotein during enzyme activation. Native UreE possesses a histidine-rich region at its carboxyl terminus that binds several equivalents of Ni(2+); however, a truncated form of this protein (H144*UreE) binds only 2 Ni(2+) per dimer and is functionally active (Brayman, T. G., and Hausinger, R. P. (1996) J. Bacteriol. 178, 5410-5416). The urease activation kinetics were studied in vivo by monitoring the development of urease activity upon adding Ni(2+) to spectinomycin-treated Escherichia coli cells that expressed the complete K. aerogenes urease gene cluster with altered forms of ureE. Site-specific alterations of H144*UreE decrease the rate of in vivo urease activation, with the most dramatic changes observed for the H96A, H110A, D111A, and H112A substitutions. Notably, urease activity in cells producing H96A/H144*UreE was lower than cells containing a ureE deletion. Prior studies had shown that H110A and H112A variants each bound a single Ni(2+) per dimer with elevated K(d) values compared with control H144*UreE, whereas the H96A and D111A variants bound 2 Ni(2+) per dimer with unperturbed K(d) values (Colpas, G. J., Brayman, T. G., Ming, L.-J., and Hausinger, R. P. (1999) Biochemistry 38, 4078-4088). To understand why cells containing the latter two proteins showed reduced rates of urease activation, we characterized their metal binding/dissociation kinetics and compared the results to those obtained for H144*UreE. The truncated protein was shown to sequentially bind two Ni(2+) with k(1) approximately 18 and k(2) approximately 100 M(-1) s(-1), and with dissociation rates k(-1) approximately 3 x 10(-3) and k(-2) approximately 10(-4) s(-1). Similar apparent rates of binding and dissociation were noted for the two mutant proteins, suggesting that altered H144*UreE interactions with Ni(2+) do not account for the changes in cellular urease activation. These conclusions are further supported by in vitro experiments demonstrating that addition of H144*UreE to urease apoprotein activation mixtures inhibited the rate and extent of urease formation. Our results highlight the importance of other urease accessory proteins in assisting UreE-dependent urease maturation.  相似文献   

11.
Klebsiella aerogenes UreE, one of four accessory proteins involved in urease metallocenter assembly, contains a histidine-rich C terminus (10 of the last 15 residues) that is likely to participate in metal ion coordination by this nickel-binding protein. To study the function of the histidine-rich region in urease activation, ureE in the urease gene cluster was mutated to result in synthesis of a truncated peptide, H144* UreE, lacking the final 15 residues. Urease activity in cells containing H144* UreE approached the activities for cells possessing the wild-type protein at nickel ion concentrations ranging from 0 to 1 mM in both nutrient-rich and minimal media. In contrast, clear reductions in urease activities were observed when two ureE deletion mutant strains were examined, especially at lower nickel ion concentrations. Surprisingly, the H144* UreE, like the wild-type protein, was readily purified with a nickel-nitrilotriacetic acid resin. Denaturing polyacrylamide gel electrophoretic analysis and N-terminal sequencing confirmed that the protein was a truncated UreE. Size exclusion chromatography indicated that the H144* UreE peptide associated into a homodimer, as known for the wild-type protein. The truncated protein was shown to cooperatively bind 1.9 +/- 0.2 Ni(II) ions as assessed by equilibrium dialysis measurements, compared with the 6.05 +/- 0.25 Ni ions per dimer reported previously for the native protein. These results demonstrate that the histidine-rich motif is not essential to UreE function and is not solely responsible for UreE nickel-binding ability. Rather, we propose that internal nickel binding sites of UreE participate in urease metallocenter assembly.  相似文献   

12.
Ureases from both jack bean (Canavalia ensiformis) seeds and Klebsiella aerogenes have been crystallized by the hanging drop method. The plant-derived urease crystals are regular octahedra analogous to those obtained by Sumner. Preliminary X-ray diffraction studies show that the crystals belong to the cubic space group F4(1)32, with a = 364 A, and appear to contain one or two subunits in the asymmetric unit. Using a synchrotron source, the crystals diffract to near 3.5 A resolution. Crystals of urease from K. aerogenes belong to the cubic space group I23 or I2(1)3, with a = 170.8 A and appear to contain a single catalytic unit per asymmetric unit. The crystals diffract to better than 2.0 A resolution and are well suited for structural analysis.  相似文献   

13.
The ribitol dehydrogenase gene was cloned from wild-type Klebsiella aerogenes and also from a transducing phage lambda prbt which expresses the rbt operon constitutively. The coding sequence for 249 amino acids is separated from the following D-ribulokinase gene by 31 base pairs containing three stop codons, one of which overlaps the ribosome binding site for D-ribulokinase. Three residues in the amino acid sequence differ from that predicted from the DNA sequence: Asp-212 for Asn-212 is probably a protein sequencing error, but -Ala-Val- for -Ser-Ser- at 146-147 appears to be a 'neutral mutation' that may have arisen during prolonged chemostat selection of a strain that superproduces the enzyme from which the protein sequence was determined.  相似文献   

14.
Previous studies demonstrated that two accessory proteins, HypA and HypB, play a role in nickel-dependent maturation of both hydrogenase and urease in Helicobacter pylori. Here, the two proteins were purified and characterized. HypA bound two Ni(2+) ions per dimer with positive cooperativity (Hill coefficient, approximately 2.0). The dissociation constants K(1) and K(2) for Ni(2+) were 58 and 1.3 microM, respectively. Studies on purified site-directed mutant proteins in each of the five histidine residues within HypA, revealed that only one histidine residue (His2) is vital for nickel binding. Nuclear magnetic resonance analysis showed that this purified mutant version (H2A) was similar in structure to that of the wild-type HypA protein. A chromosomal site-directed mutant of hypA (in the codon for His2) lacked hydrogenase activity and possessed only 2% of the wild-type urease activity. Purified HypB had a GTPase activity of 5 nmol of GTP hydrolyzed per nmol of HypB per min. Site-directed mutagenesis within the lysine residue in the conserved GTP-binding motif of HypB (Lys59) nearly abolished the GTPase activity of the mutant protein (K59A). In native solution, both HypA and HypB exist as homodimers with molecular masses of 25.8 and 52.4 kDa, respectively. However, a 1:1 molar mixture of HypA plus HypB gave rise to a 43.6-kDa species composed of both proteins. A 43-kDa heterodimeric HypA-HypB complex was also detected by cross-linking. The cross-linked adduct was still observed in the presence of 0.5 mM GTP or 1 microM nickel or when the mutant version of HypA (altered in His2) and HypB (altered in Lys59) were tested. Individually, HypA and HypB formed homodimeric cross-linked adducts. An interaction between HypA and the Hp0868 protein (encoded by the gene downstream of hypA) could not be detected via cross-linking, although such an interaction was predicted by yeast two-hybrid studies. In addition, the phenotype of an insertional mutation within the Hp0868 gene indicated that its presence is not critical for either the urease or the hydrogenase activity.  相似文献   

15.
Urease was purified from recombinant Klebsiella aerogenes which was grown in the absence of nickel. The protein was inactive and contained no transition metals, yet it possessed the same heteropolymeric structure as native enzyme, demonstrating that Ni is not required for intersubunit association. Ni did, however, substantially increase the stability of the intact metalloprotein (Tm = 79 degrees C) compared with apoenzyme (Tm = 62 degrees C), as revealed by differential scanning calorimetric analysis. An increased number of histidine residues were accessible to diethyl pyrocarbonate in apourease compared with holoenzyme, consistent with possible Ni ligation by histidinyl residues. Addition of Ni to purified apourease did not yield active enzyme; however, urease apoenzyme was very slowly activated in vivo by addition of Ni ions to Ni-free cell cultures, even after treatment of the cells with spectinomycin to inhibit protein synthesis. In contrast, sonicated cells and cells treated with dinitrophenol or dicyclohexylcarbodiimide were incapable of activating apourease. These results indicate that apourease activation is an energy-dependent process that is destroyed by cell disruption.  相似文献   

16.
UreE is proposed to be a metallochaperone that delivers nickel ions to urease during activation of this bacterial virulence factor. Wild-type Klebsiella aerogenes UreE binds approximately six nickel ions per homodimer, whereas H144*UreE (a functional C-terminal truncated variant) was previously reported to bind two. We determined the structure of H144*UreE by multi-wavelength anomalous diffraction and refined it to 1.5 A resolution. The present structure reveals an Hsp40-like peptide-binding domain, an Atx1-like metal-binding domain, and a flexible C terminus. Three metal-binding sites per dimer, defined by structural analysis of Cu-H144*UreE, are on the opposite face of the Atx1-like domain than observed in the copper metallochaperone. One metal bridges the two subunits via the pair of His-96 residues, whereas the other two sites involve metal coordination by His-110 and His-112 within each subunit. In contrast to the copper metallochaperone mechanism involving thiol ligand exchanges between structurally similar chaperones and target proteins, we propose that the Hsp40-like module interacts with urease apoprotein and/or other urease accessory proteins, while the Atx1-like domain delivers histidyl-bound nickel to the urease active site.  相似文献   

17.
The recognition sites for several restriction endonucleases were mapped within deoxyribonucleic acid coding for histidine utilization (hut) genes of Salmonella typhimurium and Klebsiella aerogenes. Deoxyribonucleic acid fragments containing the two hut promoters were identified by ribonucleic acid polymerase binding.  相似文献   

18.
19.
The roles that accessory gene products play in activating the Helicobacter pylori urease apoprotein were examined. The activity of the urease apoprotein increased in the following order when it was expressed with the accessory genes: ureG相似文献   

20.
Evidence is presented for the sequence of 249 amino acids in ribitol dehydrogenase-A from Klebsiella aerogenes. Continuous culture on xylitol yields strains that superproduce 'wild-type' enzyme but mutations appear to have arisen in this process. Other strains selected by such continuous culture produce enzymes with increased specific activity for xylitol but without loss of ribitol activity. One such enzyme, ribitol dehydrogenase-D, has Pro-196 for Gly-196. Another, ribitol dehydrogenase-B, has a different mutation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号