首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cerebellum is a highly conserved structure which exhibits patterns of gene expression and axonal connections that are organized into parasagittal domains. These aspects of the mature cerebellum are presaged during embryonic development by the expression patterns of vertebrate homologs of Drosophila segmentation genes. We wished to determine whether the parasagittal domains of gene expression are compartments of lineage restriction. To this end, a clonal analysis of the chick cerebellum was conducted with a complex retroviral library. From embryonic day (E) 8 to E12, clones derived from the more medial portion of the cerebellar ventricular zone (VZ) were observed to spread preferentially in the mediolateral direction, crossing the boundaries of the parasagittal domains of gene expression. In late embryonic and posthatch periods, VZ clones were found to comprise Purkinje cells, glial cells, or both types of cells. At these later times, clonally related glial cells formed tight parasagittal clusters, while clonally related Purkinje cells were scattered extensively in the anteroposterior direction. We propose that a subset of the cerebellar VZ clones, those with medial origins, undergoes a biphasic dispersion: an early phase of mediolateral dispersion and a late phase of anteroposterior dispersion. This novel pattern of clonal dispersion suggests that the cerebellar VZ is not partitioned into parasagittal domains of lineage restriction. It leaves open the possibility that the later dispersion along the anteroposterior axis results from the parasagittal patterns of gene expression in the developing cerebellar cortex.  相似文献   

2.
We describe the complete embryonic cell lineage of the marine nematode Pellioditis marina (Rhabditidae) up to somatic muscle contraction, resulting in the formation of 638 cells, of which 67 undergo programmed cell death. In comparison with Caenorhabditis elegans, the overall lineage homology is 95.5%; fate homology, however, is only 76.4%. The majority of the differences in fate homology concern nervous, epidermal, and pharyngeal tissues. Gut and, remarkably, somatic muscle is highly conserved in number and position. Partial lineage data from the slower developing Halicephalobus sp. (Panagrolaimidae) reveal a lineage largely, but not exclusively, built up of monoclonal sublineage blocs with identical fates, unlike the polyclonal fate distribution in C. elegans and P. marina. The fate distribution pattern in a cell lineage could be a compromise between minimizing the number of specification events by monoclonal specification and minimizing the need for migrations by forming the cells close at their final position. The latter could contribute to a faster embryonic development. These results reveal that there is more than one way to build a nematode.  相似文献   

3.
D K Simon  D D O'Leary 《Neuron》1992,9(5):977-989
We show that rat retinal ganglion cell axons exhibit no topographic specificity in growth along the rostral-caudal axis of the embryonic superior colliculus (SC). Position-related, morphological differences are not found between temporal and nasal axon growth cones. However, embryonic retinal axons respond in vitro to a position-dependent molecular property of SC membranes. In vivo, regional specificity in side branching is the earliest indication that axons make topographic distinctions along the rostral-caudal SC axis. Our contrasting in vivo and in vitro results indicate that molecules encoding rostral-caudal position in the SC neither guide nor restrict retinal axon growth, but may promote the development of topographic connections by controlling specificity in the extension or stabilization of branches.  相似文献   

4.
The embryonic heart is composed of two cell layers: the myocardium, which contributes to cardiac muscle tissue, and the endocardium, which covers the inner lumen of the heart. Whereas significant progress has been made toward elucidating the embryonic origins of the myocardium, the origins of the endocardium remain unclear. Here, we have identified an endocardium-forming field medial to the cardiac crescent, in a continuum with the endothelial plexus. In vivo live imaging of quail embryos revealed that endothelial progenitors, like second/anterior heart field progenitors, migrate to, and enter, the heart from the arterial pole. Furthermore, embryonic endothelial cells implanted into the cardiac crescent contribute to the endocardium, but not to the myocardium. In mouse, lineage analysis focusing on endocardial cells revealed an unexpected heterogeneity in the origins of the endocardium. To gain deeper insight into this heterogeneity, we conditionally ablated Flk1 in distinct cardiovascular progenitor populations; FLK1 is required in vivo for formation of the endocardium in the Mesp1 and Tie2 lineages, but not in the Isl1 lineage. Ablation of Flk1 coupled with lineage analysis in the Isl1 lineage revealed that endothelium-derived Isl1(-) endocardial cells were significantly increased, whereas Isl1(+) endocardial cells were reduced, suggesting that the endocardium is capable of undergoing regulative compensatory growth. Collectively, our findings demonstrate that the second heart field contains distinct myocardial and endocardial progenitor populations. We suggest that the endocardium derives, at least in part, from vascular endothelial cells.  相似文献   

5.
Summary Previously, we have engineered three-dimensional (3-D) skeletal muscle constructs that generate force and display a myosin heavy-chain (MHC) composition of fetal muscle. The purpose of this study was to evaluate the functional characteristics of 3-D skeletal muscle constructs cocultured with fetal nerve explants. We hypothesized that coculture of muscle constructs with neural cells would produce constructs with increased force and adult MHC isoforms. Following introduction of embryonic spinal cord explants to a layer of confluent muscle cells, the neural tissue integrated with the cultured muscle cells to form 3-D muscle constructs with extensions. Immunohistochemical labeling indicated that the extensions were neural tissue and that the junctions between the nerve extensions and the muscle constructs contained clusters of acetylcholine receptors. Compared to muscles cultured without nerve explants, constructs formed from nerve-muscle coculture showed spontaneous contractions with an increase in frequency and force. Upon field stimulation, both twitch (2-fold) and tetanus (1.7-fold) were greater in the nerve-muscle coculture system. Contractions could be elicited by electrically stimulating the neural extensions, although smaller forces are produced than with field stimulation. Severing the extension eliminated the response to electrical stimulation, excluding field stimulation, as a contributing factor. Nervemuscle constructs showed a tendency to have higher contents of adult and lower contents of fetal MHC isoforms, but the differences were not significant. In conclusion, we have successfully engineered a 3-D nerve-muscle construct that displays functional neuromuscular junctions and can be electrically stimulated to contract via the neural extensions projecting from the construct.  相似文献   

6.
Islet1 cardiovascular progenitors: a single source for heart lineages?   总被引:5,自引:0,他引:5  
The creation of regenerative stem cell therapies for heart disease requires that we understand the molecular mechanisms that govern the fates and differentiation of the diverse muscle and non-muscle cell lineages of the heart. Recently, different cardiac cell types have been reported to arise from a common, multipotent Islet1 (Isl1)-positive progenitor, suggesting that a clonal model of heart lineage diversification might occur that is analogous to hematopoiesis. The ability to isolate, renew and differentiate Isl1(+) precursors from postnatal and embryonic hearts and from embryonic stem cells provides a powerful cell-based system for characterizing the signaling pathways that control cardiovascular progenitor formation, renewal, lineage specification and conversion to specific differentiated progeny.  相似文献   

7.
Nerve-Muscle Interaction In Vitro : Role of acetylcholine   总被引:15,自引:0,他引:15       下载免费PDF全文
Nerve and muscle cells from clonal lines interact in vitro, resulting in the association on the muscle surface of an area of increased acetylcholine sensitivity with a site of nerve-muscle contact. This localization of acetylcholine sensitivity on the muscle cell to a site of contact between nerve and muscle was found to occur when acetylcholine receptors on the muscle had been blocked with α-neurotoxin. Localization was also found to occur when the nerve cell had been prevented from releasing acetylcholine. It is concluded that neither the presence of active acetylcholine receptors on the muscle, nor the release of acetylcholine from the nerve, was required for the events leading to the localization of acetylcholine sensitivity in vitro.  相似文献   

8.
The Ca2(+)-independent neural cell adhesion molecule, NCAM, is expressed by both nerve and muscle cells and has been shown to mediate both nerve-nerve and nerve-muscle cell interaction. A role for NCAM in muscle-muscle cell interaction has been proposed but not demonstrated. Here we report evidence that NCAM is expressed by embryonic chick muscle cells during in vitro development and functions together with Ca2(+)-dependent adhesion molecules in mediating myoblast interaction during the formation of multinucleate cells.  相似文献   

9.
10.
Previous studies of denervated and cultured muscle have shown that the expression of the neural cell adhesion molecule (N-CAM) in muscle is regulated by the muscle's state of innervation and that N-CAM might mediate some developmentally important nerve-muscle interactions. As a first step in learning whether N-CAM might regulate or be regulated by nerve-muscle interactions during normal development, we have used light and electron microscopic immunohistochemical methods to study its distribution in embryonic, perinatal, and adult rat muscle. In embryonic muscle, N-CAM is uniformly present on the surface of myotubes and in intramuscular nerves; N-CAM is also present on myoblasts, both in vivo and in cultures of embryonic muscle. N-CAM is lost from the nerves as myelination proceeds, and from myotubes as they mature. The loss of N-CAM from extrasynaptic portions of the myotube is a complex process, comprising a rapid rearrangement as secondary myotubes form, a phase of decline late in embryogenesis, a transient reappearance perinatally, and a more gradual disappearance during the first two postnatal weeks. Throughout embryonic and perinatal life, N-CAM is present at similar levels in synaptic and extrasynaptic regions of the myotube surface. However, N-CAM becomes concentrated in synaptic regions postnatally: it is present in postsynaptic and perisynaptic areas of the muscle fiber, both on the surface and intracellularly (in T-tubules), but undetectable in portions of muscle fibers distant from synapses. In addition, N-CAM is present on the surfaces of motor nerve terminals and of Schwann cells that cap nerve terminals, but absent from myelinated portions of motor axons and from myelinating Schwann cells. Thus, in the adult, N-CAM is present in synaptic but not extrasynaptic portions of all three cell types that comprise the neuromuscular junction. The times and places at which N-CAM appears are consistent with its playing several distinct roles in myogenesis, synaptogenesis, and synaptic maintenance, including alignment of secondary along primary myotubes, early interactions of axons with myotubes, and adhesion of Schwann cells to nerve terminals.  相似文献   

11.
Analysis of the myogenic lineage in chick embryos   总被引:1,自引:0,他引:1  
Abstract. Probabilistic and programmed lineage models for the generation of terminally differentiated skeletal muscle cells were tested in a clonal culture assay. Myogenic cells from the breast muscles of 10-day chick embryos were plated at an initial density of 250–1000 cells per 60 mm dish. Well-isolated individual cells were marked with a ring on the underside of the dishes, and clones arising from only these cells were followed. The presence of post-mitotic myoblasts in clones was assayed by peroxidase-antiperoxidase (PAP) and fluorescence immunocytochemical staining for both M-type creatine kinase (MCK) and skeletal muscle myosin heavy chain (MHC). Clones were fixed at intervals up to 76 h and were scored for the number of cells per clone and the number of MCK+ and MHC+ cells per clone. Quantitative and kinetic data were obtained indicating that post-mitotic myoblasts occurred overwhelmingly in homogeneous clones (all cells MCK+ and MHC+) which contained 2n cells ( n =0, 1, 2, 3, 4). This result does not support either probabilistic models of myogenesis or the existence of 'proliferative' mitoses at the end stages of differentiation. Rather, it indicates that myogenic precursor cells are a heterogeneous population, within which individual cells are predetermined to undergo a set number of symmetrical mitoses prior to yielding terminally differentiated progeny. These findings are strong evidence for a programmed, cell cycle-dependent lineage in the end stages of muscle differentiation.  相似文献   

12.
The aorta is a magistral artery, which has been traditionally looked upon as a vessel whose properties are invariable throughout its length. However, in the most recent decade, there have been accumulated data that provide evidence that different aorta sections arise from different embryonic origins and that the population of smooth muscle cells making up the vessel’s wall is, consequently, heterogenic. Tracing the fate of smooth muscle cells, the basic components of the vessel, with the aid of genetic marking methods revealed that the cells’ response to various factors is largely determined by the embryonic origin of a certain cell population. However, functional differences between the smooth muscle cells making up different aorta sections remain poorly understood. The aim of the current work was to compare the functional characteristics of the populations of aortic wall smooth muscle cells obtained from the aorta sections differing by their embryonic origin. Towards this end, we obtained smooth muscle cell cultures from the three aorta sections of linear rats, namely, the neural crest derived ascending thoracic aorta, the somites derived descending thoracic aorta, and splanchnic mesoderm derived abdominal aorta. Using immunocytochemistry and Western blotting, the cells from the different regions of aorta were compared on the basis of smooth muscle actin, vimentin, and SM22 content in them. Cell proliferation rate was estimated using the growth curves method. We have demonstrated that the three smooth muscle cell populations arising from different embryonic origins differ in their morphological characteristics as well as by smooth muscle actin and SM22 content. We have shown that smooth muscle cells from the ascending aorta proliferate more actively than the corresponding cells from the descending thoracic aorta. Thus, the functional properties of the populations of rat aortic smooth muscle cells are different and depend on the embryonic origin of the aorta section from which they were obtained.  相似文献   

13.
Despite recent advances in delineating the mechanisms involved in cardiogenesis, cellular lineage specification remains incompletely understood. To explore the relationship between developmental fate and potential, we isolated a cardiac-specific Nkx2.5(+) cell population from the developing mouse embryo. The majority of these cells differentiated into cardiomyocytes and conduction system cells. Some, surprisingly, adopted a smooth muscle fate. To address the clonal origin of these lineages, we isolated Nkx2.5(+) cells from in vitro differentiated murine embryonic stem cells and found approximately 28% of these cells expressed c-kit. These c-kit(+) cells possessed the capacity for long-term in vitro expansion and differentiation into both cardiomyocytes and smooth muscle cells from a single cell. We confirmed these findings by isolating c-kit(+)Nkx2.5(+) cells from mouse embryos and demonstrated their capacity for bipotential differentiation in vivo. Taken together, these results support the existence of a common precursor for cardiovascular lineages in the mammalian heart.  相似文献   

14.
The two muscle lineage blastomeres were removed surgically from Ciona intestinalis embryos at the eight-cell stage and allowed to develop in isolation. Acetylcholinesterase, an enzyme that occurs only in muscle cells of the developing larva, was detected histochemically in progeny cells of these isolated blastomers. Acetylcholinesterase differentiation in muscle lineage cells is not, therefore, dependent on inductive interactions with embryonic tissues derived from other eight-cell stage blastomeres.  相似文献   

15.
Cytoplasm from muscle lineage blastomeres of an ascidian embryo can cause cells of a nonmuscle lineage to produce larval tail muscle acetylcholinesterase. Muscle cytoplasm was partitioned microsurgically into epidermal lineage blastomeres at the eight-cell stage. Posterior half-embryos (the two B3 cells) of Ascidia nigra were obtained first by separating the anterior and posterior blastomere pairs at the four-cell stage. At third cleavage, the two B3 cells divide into an ectodermal cell pair that gives rise solely to epidermal tissues, and a mesodermal-endodermal blastomere pair from which the tail muscle cells are derived. When the ectodermal and mesendodermal blastomere pairs were isolated from one another by microsurgery and reared as partial embryos, only cells originating from the mesendodermal blastomeres produced a histochemical acetylcholinesterase reaction. Immediately after cleavage of the isolated B3 cells into ectodermal and mesendodermal cell pairs, the cleavage furrows could be made to disappear by pressing firmly on the mesendodermal cells with a microneedle. Repeated up and down pressure with the microneedle at a new position across the mesendodermal cells caused furrows to reestablish in the new position, thereby incorporating mesodermal cytoplasm and increasing the size of the ectodermal cells. The cytoplasmically altered ectodermal blastomere pairs, which became detached from the mesendodermal cells by this microsurgical procedure, continued to divide and were reared to “larval” stages. One-third of these epidermal partial larvae produced patches of cells containing acetylcholinesterase. These results lend further support to the theory that choice of particular differentiation pathways (embryonic determination) in ascidian embryos is mediated by segregation of specific egg cytoplasmic determinants.  相似文献   

16.
Pectoral muscles from chicken embryos of various ages were examined with immunofluorescent and radiolabeled probes for the presence of brain-type creatine kinase (B-CK), muscle-specific creatine kinase (M-CK), muscle-specific myosin heavy chain (MHC), and cycling cells. The diffusible creatine kinase isozymes were not detectable by indirect immunofluorescence after standard histological fixation of embryonic muscle. However, a fixation procedure was devised that permitted immunodetection of the creatine kinase isozymes (particularly B-CK) in embryonic tissue from all stages of development studied. B-CK, M-CK, and MHC were all detected in post-mitotic muscle cells, but only B-CK was detected in cycling cells. Correlations between these findings and in vitro observations of a deterministic muscle lineage are discussed.  相似文献   

17.
18.
Previous experiments have suggested that the neural cell adhesion molecule (N-CAM) may have a role in initial nerve-muscle adhesion. To determine whether N-CAM might be involved in synaptic differentiation, we grew ciliary ganglion neurons and embryonic myotubes together in the presence and absence of monovalent antibodies to N-CAM. In normal cultures, undifferentiated neurites contact myotubes, and the nerve at some of these neurite-myotube contacts acquires concentrations of synaptic vesicle antigens. Most of these vesicle antigen-positive contacts become associated with patches of acetylcholine receptor (AChR) on the surface of the underlying myotube. Contacts without concentrations of vesicle antigens do not become associated with AChR patches. In the presence of antibodies to N-CAM, adhesion between neuronal somata and myotubes was reduced, but neurites contacted myotubes with near-normal frequency. The subsequent differentiation of nerve and muscle at these contacts, as assayed by the localization of vesicle antigens and AChR, proceeded normally in the presence of anti-N-CAM antibodies. The results suggest that N-CAM-mediated adhesion between neurite and myotube is not required for synaptic differentiation.  相似文献   

19.
The epithelial components of the vertebrate inner ear and its associated ganglion arise from the otic placode. The cell types formed include neurons, hair-cell mechanoreceptors, supporting cells, secretory cells that make endolymphatic fluid or otolithic membranes, and simple epithelial cells lining the fluid-filled cavities. The epithelial sheet is surrounded by an inner layer of connective and vascular tissues and an outer capsule of bone. To explore the mechanisms of cell fate specification in the ear, retrovirus-mediated lineage analysis was performed after injecting virus into the chicken otocyst on embryonic days 2.5-5.5. Because lineage analysis might reveal developmental compartments, an effort was made to study clonal dispersion by sampling infected cells from different parts of the same ear, including the auditory ganglion, cochlea, saccule, utricle, and semicircular canals. Lineage relationships were confirmed for 75 clones by amplification and sequencing of a variable DNA tag carried by each virus. While mesenchymal clones could span different structural parts of the ear, epithelial clones did not. The circumscribed epithelial clones indicated that their progenitors were not highly migratory. Ganglion cell clones, in contrast, were more dispersed. There was no evidence for a common lineage between sensory cells and their associated neurons, a prediction based on a proposal that the ear sensory organs and fly mechanosensory organs are evolutionarily homologous. As expected, placodal derivatives were unrelated to adjacent mesenchymal cells or to nonneuronal cells of the ganglion. Within the otic capsule, fibroblasts and cartilage cells could be related by lineage.  相似文献   

20.
Myogenic cell lineages.   总被引:18,自引:0,他引:18  
For many years the mechanisms by which skeletal muscles in higher vertebrates come to be composed of diverse fiber types distributed in distinctive patterns has interested cell and developmental biologists. The fiber composition of skeletal muscles varies from class to class and from muscle to muscle within the vertebrates. The developmental basis for these events is the subject of this review. Because an individual multinucleate vertebrate skeletal muscle fiber is formed by the fusion of many individual myoblasts, more attention, in recent times, has been directed toward the origins and differences among myoblasts, and more emphasis has been placed on the lineal relationship of myoblasts to fibers. This is a review of studies related to the concepts of myogenic cell lineage in higher vertebrate development with emphases on some of the most challenging problems of myogenesis including the embryonic origins of myogenic precursor cells, the mechanisms of fiber type diversity and patterning, the distinctions among myoblasts during myogenesis, and the current hypotheses of how a variety of factors, intrinsic and extrinsic to the myoblast, determine the definitive phenotype of a muscle fiber.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号