共查询到20条相似文献,搜索用时 0 毫秒
1.
Purification and preliminary characterization of phosphoglycerate mutase from Schizosaccharomyces pombe 总被引:2,自引:0,他引:2
Phosphoglycerate mutase could be purified to over 95% homogeneity by a single step procedure involving elution from Cibacron Blue-Sepharose by a pulse of cofactor 2,3-bisphosphoglycerate. Although the enzyme has been isolated in only small quantities (c. 100 micrograms), gel filtration and sodium dodecylsulphate polyacrylamide gel electrophoresis indicated that it is monomeric with Mr approximately 23,000, an extremely low value for this enzyme. Preliminary investigations of the kinetic characteristics and the nature of important amino acid side chains have been undertaken. 相似文献
2.
Spåhr H Bève J Larsson T Bergström J Karlsson KA Gustafsson CM 《The Journal of biological chemistry》2000,275(2):1351-1356
We have purified the RNA polymerase II holoenzyme from Schizosaccharomyces pombe to near homogeneity. The Mediator complex is considerably smaller than its counterpart in Saccharomyces cerevisiae, containing only nine polypeptides larger than 19 kDa. Five of these Mediator subunits have been identified as the S. pombe homologs to Rgr1, Srb4, Med7, and Nut2 found in S. cerevisiae and the gene product of a previously uncharacterized open reading frame, PMC2, with no clear homologies to any described protein. The presence of Mediator in a S. pombe RNA polymerase II holoenzyme stimulated phosphorylation of the C-terminal domain by TFIIH purified from S. pombe. This stimulation was species-specific, because S. pombe Mediator could not stimulate TFIIH purified from S. cerevisiae. We suggest that the overall structure and mechanism of the Mediator is evolutionary conserved. The subunit composition, however, has evolved to respond properly to physiological signals. 相似文献
3.
6-Phosphogluconate dehydrogenase is the pivotal enzyme that links the gluconate route and the oxidative phase of the pentose phosphate pathway in Schizosaccharomyces pombe. The enzyme differs from the known 6-phosphogluconate dehydrogenases of other sources in that the Schizosaccharomyces enzyme is tetrameric having a subunit mass of 38 kDa, that it requires NADP+ obligatorily for activity, and that it can be activated by divalent metal ions such as Co2+ and Mn2+. Steady-state kinetic studies were undertaken. Initial rate and product inhibition results suggest that 6-phosphogluconate dehydrogenase from Schizosaccharomyces pombe catalyzes NADP(+)-linked oxidative decarboxylation of 6-phosphogluconate by an equilibrium random mechanism with two independent binding sites, namely one site for the nicotinamide coenzyme, NADP+/NADPH, and another site for 6-phosphogluconate-D-ribulose-5-phosphate and for CO2. Studies of pH dependence implicated a basic residue with a pK value of 7.4 in the binding of 6-phosphogluconate and an acidic residue with a pK value of 6.7 in the cation-mediated interaction of NADP+ with the enzyme. 相似文献
4.
Fission yeast Schizosaccharomyces pombe is an important genetic model organism for studying the mechanisms of endocytosis and cytokinesis. However, most work on the biochemical properties of fission yeast actin-binding proteins has been done with skeletal muscle actin for matters of convenience. When simulations of mathematical models of the mechanism of endocytosis were compared with events in live cells, some of the reactions appeared to be much faster than observed in biochemical experiments with muscle actin. Here, we used gelsolin affinity chromatography to purify actin from fission yeast. S. pombe actin shares many properties with skeletal muscle actin but has higher intrinsic nucleotide exchange rate, faster trimer nucleus formation, faster phosphate dissociation rate from polymerized actin, and faster nucleation of actin filaments with Arp2/3 complex. These properties close the gap between the biochemistry and predictions made by mathematical models of endocytosis in S. pombe cells. 相似文献
5.
Purification and characterization of the Pac1 ribonuclease of Schizosaccharomyces pombe. 总被引:3,自引:0,他引:3 下载免费PDF全文
The pac1+ gene of the fission yeast Schizosaccharomyces pombe is essential for viability and its overexpression induces sterility and suppresses mutations in the pat1+ and snm1+ genes. The pac1+ gene encodes a protein that is structurally similar to RNase III from Escherichia coli, but its normal function is unknown. We report here the purification and characterization of the Pac1 protein after overexpression in E. coli. The purified protein is a highly active, double-strand-specific endoribonuclease that converts long double-stranded RNAs into short oligonucleotides and also cleaves a small hairpin RNA substrate. The Pac1 RNase is inhibited by a variety of double- and single-stranded polynucleotides, but polycytidylic acid greatly enhances activity and also promotes cleavage specificity. The Pac1 RNase produces 5'-phosphate termini and requires Mg2+; Mn2+ supports activity but causes a loss of cleavage specificity. Optimal activity was obtained at pH 8.5, at low ionic strength, in the presence of a reducing agent. The enzyme is relatively insensitive to N-ethylmaleimide but is strongly inhibited by ethidium bromide and vanadyl ribonucleoside complexes. The properties of the Pac1 RNase support the hypothesis that it is a eukaryotic homolog of RNase III. 相似文献
6.
We have purified to near homogeneity a DNA exonuclease from meiotic cells of Schizosaccharomyces pombe. The enzyme, designated exonuclease II (ExoII), had an apparent molecular weight of 134,000 and was abundant in the cell. It specifically degraded single-stranded DNA in the 5'----3' direction with an apparent Km for 5' DNA ends of 3.6 x 10(-11) M and produced 5' deoxynucleoside monophosphates. Its mode of degradation is similar to that of the RecJ protein from Escherichia coli; ExoII may, therefore, be involved in genetic recombination and DNA damage repair. 相似文献
7.
8.
9.
A method is described for the purification of the tyrosine inhibitable isoenzyme 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase (7-phospho-2-keto-3-deoxy-D-arabino-heptonate D-erythrose-4-phosphate-lyase(pyruvate phosphorylating), EC 4.1.2.15) to homogeneity as judged by polyacrylamide gel electrophoresis. 相似文献
10.
The origin recognition complex (ORC) plays a central role in the initiation of DNA replication in eukaryotic cells. It interacts with origins of DNA replication in chromosomal DNA and recruits additional replication proteins to form functional initiation complexes. These processes have not been well characterized at the biochemical level except in the case of Saccharomyces cerevisiae ORC. We report here the expression, purification, and initial characterization of Schizosaccharomyces pombe ORC (SpORC) containing six recombinant subunits. Purified SpORC binds efficiently to the ars1 origin of DNA replication via the essential Nterminal domain of the SpOrc4 subunit which contains nine AT-hook motifs. Competition binding experiments demonstrated that SpORC binds preferentially to DNA molecules rich in AT-tracts, but does not otherwise exhibit a high degree of sequence specificity. The complex is capable of binding to multiple sites within the ars1 origin of DNA replication with similar affinities, indicating that the sequence requirements for origin recognition in S. pombe are significantly less stringent than in S. cerevisiae. We have also demonstrated that SpORC interacts directly with Cdc18p, an essential fission yeast initiation protein, and recruits it to the ars1 origin in vitro. Recruitment of Cdc18p to chromosomal origins is a likely early step in the initiation of DNA replication in vivo. These data indicate that the purified recombinant SpORC retains at least two of its primary biological functions and that it will be useful for the eventual reconstitution of the initiation reaction with purified proteins. 相似文献
11.
Purification and Characterization of Two Dihydroxyacetone Kinases from Schizosaccharomyces pombe IFO 0354 下载免费PDF全文
K. Yoshihara Y. Shimada S. Karita T. Kimura K. Sakka K. Ohmiya 《Applied microbiology》1996,62(12):4663-4665
Two dihydroxyacetone kinases (DHAKs), DHAK I and DHAK II, were purified to homogeneity from Schizosaccharomyces pombe IFO 0354. They were immunologically different from each other. Although both of the enzymes had some affinity for glycerol and dl-glyceraldehyde in addition to dihydroxyacetone and glyceraldehyde, V(infmax) values for dihydroxyacetone were much higher than those for glycerol and dl-glyceraldehyde. On the basis of the K(infm) values of both enzymes for dihydroxyacetone, DHAK II plays a more important role than DHAK I in dissimilation of glycerol via dihydroxyacetone. 相似文献
12.
A DNA primase activity has been purified from the budding yeast Saccharomyces. The resulting preparation was nearly homogeneous and was devoid of DNA and RNA polymerase activities. The primase activity cofractionated with a Mr 65,000 polypeptide in sedimentation and chromatography procedures, and the native molecular weight of the enzyme corresponded closely to this value suggesting that the primase or an active proteolytic fragment of the protein exists as a monomer. Both heat-denatured calf thymus DNA and poly(dT) could be utilized by the enzyme as templates. Primase exhibited an absolute requirement for divalent cations and for rATP on a poly(dT) template. Although it required the ribonucleotide to initiate primer chains, the enzyme could incorporate the deoxynucleotide into primers. The product of the primase-catalyzed reaction was an oligonucleotide of discrete length (11-13 nucleotides), and oligonucleotides that were apparently dimers of this unit length were also observed. Primers that were synthesized were virtually identical in size in both the presence and absence of dATP incorporation. Although the bulk of DNA primase activity was isolated as a "free" enzyme, a portion of cellular primase activity co-chromatographed with DNA polymerase suggesting an association between these enzymes similar to that found in several higher eukaryotes. 相似文献
13.
Molecular identification and characterization of peptide: N-glycanase from Schizosaccharomyces pombe
Xin F Wang S Song L Liang Q Qi Q 《Biochemical and biophysical research communications》2008,368(4):907-912
Peptide:N-glycanase (PNGase) is an enzyme responsible for deglycosylation of misfolded glycoproteins in so-called endoplasmic reticulum-associated degradation (ERAD) system. In this study, we reported the molecular identification and characterization of SpPNGase (Schizosaccharomyces pombe PNGase). Enzymatic analysis revealed that SpPNGase deglycosylated the misfolded glycoproteins and distinguished native and denatured high-mannose glycoproteins in vitro. The deglycosylation activity was lost with the addition of chelating agent EDTA and was not restored by re-addition of metal ions. By construction of deletion mutant, we confirmed that N-terminal α-helix of SpPNGase was responsible for the protein-protein interaction. Combining the results from ternary structure prediction and dendrogram analysis, we suggested that the N-terminal α-helices of PNGase are derived from evolutionary motif/peptide fusion. 相似文献
14.
We have isolated 14 different Schizosaccharomyces pombe mutants that synthesize invertase enzyme constitutively. Analyses of invertase activities revealed that the degrees of resistance to glucose repression were not similar among different complementation groups. One of the complementation groups appeared to be associated with functional and/or regulatory defects in hexose transport. Another complementation group appeared to be specific for the regulation of the inv1 gene alone, implying that these mutations might be associated with different genes acting on the glucose sensing and signaling pathway. In addition, we found that the wild-type level glucose uptake is essential for the full-level repression of inv1 expression. 相似文献
15.
Chen X Zuo S Kelman Z O'Donnell M Hurwitz J Goodman MF 《The Journal of biological chemistry》2000,275(23):17677-17682
The fidelity of Schizosaccharomyces pombe DNA polymerase delta was measured in the presence or absence of its processivity subunits, proliferating cell nuclear antigen (PCNA) sliding clamp and replication factor C (RFC) clamp-loading complex, using a synthetic 30-mer primer/100-mer template. Synthesis by pol delta alone was distributive. Processive synthesis occurred in the presence of PCNA, RFC, and Escherichia coli single strand DNA-binding protein (SSB) and required the presence of ATP. "Passive" self-loading of PCNA onto DNA takes place in the absence of RFC, in an ATP-independent reaction, which was strongly inhibited by SSB. The nucleotide substitution error rate for pol delta holoenzyme (HE) (pol delta + PCNA + RFC) was 4.6 x 10(-4) for T.G mispairs, 5.3 x 10(-5) for G.G mispairs, and 4.5 x 10(-6) for A.G mispairs. The T.G misincorporation frequency for pol delta without the accessory proteins was unchanged. The fidelity of pol delta HE was between 1 and 2 orders of magnitude lower than that measured for the E. coli pol III HE at the same template position. This relatively low fidelity was caused by inefficient proofreading by the S. pombe polymerase-associated proofreading exonuclease. The S. pombe 3'-exonuclease activity was also extremely inefficient in excising primer-3'-terminal mismatches in the absence of dNTP substrates and in hydrolyzing single-stranded DNA. A comparison of pol delta HE with E. coli pol IIIalpha HE (lacking the proofreading exonuclease subunit) showed that both holoenzymes exhibit similar error rates for each mispair. 相似文献
16.
17.
Purification and characterization of the invertase from Schizosaccharomyces pombe. A comparative analysis with the invertase from Saccharomyces cerevisiae. 总被引:2,自引:0,他引:2 下载免费PDF全文
Invertase (EC 3.2.1.26) was purified to homogeneity from exponentially growing cells of Schizosaccharomyces pombe fully de-repressed for synthesis of the enzyme, and was shown to be a high-molecular-mass glycoprotein that can be dissociated in the presence of 8 M-urea/1% SDS into identical subunits with an apparent molecular mass of 205 kDa. The carbohydrate moiety, accounting for 67% of the total mass, is composed of equimolar amounts of mannose and galactose. There is a small amount of glucosamine, which is probably involved in the linkage to the protein moiety, since the enzyme is sensitive to treatment with endoglycosidase H. The composition of the carbohydrate moiety resembles that found in higher-eukaryotic glycoproteins and differs from glycoproteins found in Saccharomyces cerevisiae. The protein portion of each subunit is a polypeptide of molecular mass 60 kDa, very similar to the invertase of Sacch. cerevisiae. Both proteins cross-react with antibodies raised against the protein fractions of the other, indicating that the two enzymes are similar. 相似文献
18.
Glycerol:NADP+ 2-oxidoreductase (EC 1.1.1.156) was isolated from Schizosaccharomyces pombe, purified and characterized. It had an Mr of 57,000, and SDS-PAGE revealed two polypeptides, of Mr 25,000 and 30,000. Its coenzyme requirement was satisfied exclusively by NADP. The pH optimum for glycerol oxidation was 9.5, for dihydroxyacetone reduction 6.0. Rates of oxidation with some structurally related diols were three- to six-fold lower than for glycerol, while glyceraldehyde and other carbonyl compounds showed negligible rates of reduction. Neither monovalent nor divalent cations activated the enzyme. Apparent Km and Vmax values were determined. The enzyme is similar to glycerol dehydrogenases isolated from Mucor javanicus and from Dunaliella parva but differs considerably from the glycerol:NAD+ 2-oxidoreductase of S. pombe. 相似文献
19.
根据GenBank中公布的粟酒裂殖酵母(Schizosaccharomyces pombe)N-糖酰胺酶(Png1p)cDNA序列, 设计并合成一对特异性引物, 利用RT-PCR技术从粟酒裂殖酵母中克隆出糖酰胺酶cDNA。将得到的基因克隆到表达载体pET-15b中。重组质粒转入大肠杆菌BL21(DE3)中, 经诱导表达和纯化提取后, 进行酶活测定。实验结果表明, 该酶的分子量约为39 kD, 纯化后的重组N-糖酰胺酶可以对变性处理的糖蛋白进行糖链的切除, 且这种作用需要还原剂DTT的辅助作用; N-糖酰胺酶只对错误折叠的糖蛋白有作用, 对天然的糖蛋白没有作用。等量粟酒裂殖酵母Png1p在不同温度、pH、DTT浓度和底物变性温度下对等量核糖核酸酶B(RNase B)的脱糖基化检测发现, 重组酶的最适反应温度30°C, 最适反应pH为7.0, 需要的最适DTT浓度为10 mmol/L, 底物在100°C处理10 min时酶的脱糖基化率最高。 相似文献
20.
The five enzymes that catalyzing steps two through six in the prechorismate polyaromatic amino acid biosynthetic pathway are physically associated and have been purified up to 400-fold from Schizosaccharomyces pombe. The native arom aggregate has a molecular weight of approx. 140,000-145,000 based on gel filtration, glycerol-density-gradient centrifugation, and polyacrylamide-gel electrophoresis in the presence of sodium dodecyl sulphate. Similarities between the S. pombe arom aggregate and that of Neurospora crassa and Euglena gracilis are discussed. 相似文献