首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
A low-molecular-mass chromium-binding substance (LMCr), which is recognized as a detoxification ligand of chromium, was isolated from the livers of rabbits injected intravenously with K2Cr2O7 (200 mumol Cr/kg body wt) as a biologically active form. LMCr appears as an anionic, organic Cr compound with a relative molecular mass of 1500. It is composed of glutamic acid or glutamine, glycine, cysteine and aspartic acid or asparagine with a Cr/amino-terminal residue ratio of 4:1. The purified LMCr (10-300 ng Cr/ml) shows in vitro activities comparable to those of glucose tolerance factor in relation to insulin action. In the presence of insulin it enhances [U-14C]glucose conversion to 14CO (23-30% up) in rat epididymal adipocytes above the value obtained with insulin alone. LMCr also stimulates the rate of [3-3H]glucose incorporation into lipid by 30-40% with insulin or by 15-23% without insulin, as compared with the basic value obtained with insulin alone or without insulin. These findings suggest that LMCr plays essential roles in both glucose metabolism and detoxification of invaded Cr in the body.  相似文献   

2.
A new dietary factor, the glucose tolerance factor (GTF), was reported in 1957 that improved impaired glucose tolerance in rats. Most studies on GTF have used brewer's yeast as the starting material, and it has been postulated that the active material is a low-mol wt organic complex containing Cr3+. It seemed thus important to isolate an active GTF from chromium-rich yeast (228 ppm Cr) obtained by incubation with chromium and to compare each fraction with corresponding ones from untreated yeast (0.48 ppm Cr). We developed an isolation and purification procedure by fractionation of yeast extract on an anion and cation exchange resin, and tested the GTF activity (glucose oxidation) on rat adipocytes. PIXE (proton-induced X-ray emission) was used to measure the chromium content of the individual fraction. Individual fractions with GTF activity did not differ between Cr-rich and Cr-deficient yeast, and there was no relationship between Cr content and GTF activity. This does not support the hypothesis that chromium is an obligatory constituent of the GTF, assuming that GTF is a unique substance.  相似文献   

3.
The present study was undertaken to explore the effects of creatine and creatine plus protein supplementation on GLUT-4 and glycogen content of human skeletal muscle. This was investigated in muscles undergoing a decrease (immobilization) and subsequent increase (resistance training) in activity level, compared with muscles with unaltered activity pattern. A double-blind, placebo-controlled trial was performed by 33 young healthy subjects. The subjects' right legs were immobilized with a cast for 2 wk, followed by a 6-wk resistance training program for the right knee extensor muscles. The participants were supplemented throughout the study with either placebo (Pl group) or creatine (Cr group) or with creatine during immobilization and creatine plus protein during retraining (Cr+P group). Needle biopsies were bilaterally taken from the vastus lateralis. GLUT-4 protein expression was reduced by the immobilization in all groups (P < 0.05). During retraining, GLUT-4 content increased (P < 0.05) in both Cr (+24%) and Cr+P (+33%), which resulted in higher posttraining GLUT-4 expression compared with Pl (P < 0.05). Compared with Pl, muscle glycogen content was higher (P < 0.05) in the trained leg in both Cr and Cr+P. Supplements had no effect on GLUT-4 expression or glycogen content in contralateral control legs. Area under the glucose curve during the oral glucose tolerance test was decreased from 232 +/- 23 mmol. l(-1). min(-1) at baseline to 170 +/- 23 mmol. l(-1). min(-1) at the end of the retraining period in Cr+P (P < 0.05), but it did not change in Cr or Pl. We conclude that creatine intake stimulates GLUT-4 and glycogen content in human muscle only when combined with changes in habitual activity level. Furthermore, combined protein and creatine supplementation improved oral glucose tolerance, which is supposedly unrelated to the changes in muscle GLUT-4 expression.  相似文献   

4.
M. Kuwajima, C. B. Newgard, D. W. Foster, and J. D. McGarry (1986, J. Biol. Chem. 261, 8849-8853) have concluded that the reason postprandial hepatic glycogenesis occurs primarily from gluconeogenic precursors rather than glucose is because glucokinase activity is insufficient to support the observed rates of glycogen synthesis. F. L. Alvares and R. C. Nordlie (1977, J. Biol. Chem. 252, 8404-8414) have concluded that the combined activities of glucokinase and hexokinase are less than the apparent rates of hepatic glucose uptake. We have identified several factors in the assays used in these studies which lead to substantial underestimations of glucokinase activity. Glucokinase was assayed either by allowing glucose 6-phosphate to accumulate over 10 min (discontinuous assay) or by coupling the formation of glucose 6-phosphate with its oxidation by Leuconostoc mesenteroides glucose 6-phosphate dehydrogenase and NAD (continuous assay). Accurate determinations of glucokinase at 37 degrees C with subsaturating glucose require both 100 mM KCl and 2.5 mM dithioerythritol in the assay medium; 2-mercaptoethanol will not substitute for dithioerythritol. When both KCl and dithioerythritol are absent (Kuwajima et al.) glucokinase activity is underestimated by 3- to 5-fold. The discontinuous assay as used previously (Alvares and Nordlie) underestimates glucokinase activity in crude extracts by 2- to 2.5-fold, due in part to the hydrolysis of glucose 6-phosphate and its transformation to other hexose monophosphates. Under optimized conditions at 37 degrees C both assays yield similar results in extracts from fed rats, i.e., 2-3 and 4-5 units/g liver at 10 and 100 mM glucose, respectively. Some implications of the finding that total hepatic glucose phosphorylating capacity at physiological concentrations significantly exceeds the observed rates of postprandial glycogen synthesis are discussed.  相似文献   

5.
As recently demonstrated by our group (da-Silva, W. S., Gómez-Puyou, A., Gómez-Puyou, M. T., Moreno-Sanchez, R., De Felice, F. G., de Meis, L., Oliveira, M. F., and Galina, A. (2004) J. Biol. Chem. 279, 39846-39855) mitochondrial hexokinase activity (mt-HK) plays a preventive antioxidant role because of steady-state ADP re-cycling through the inner mitochondrial membrane in rat brain. In the present work we show that ADP re-cycling accomplished by the mitochondrial creatine kinase (mt-CK) regulates reactive oxygen species (ROS) generation, particularly in high glucose concentrations. Activation of mt-CK by creatine (Cr) and ATP or ADP, induced a state 3-like respiration in isolated brain mitochondria and prevention of H(2)O(2) production obeyed the steady-state kinetics of the enzyme to phosphorylate Cr. The extension of the preventive antioxidant role of mt-CK depended on the phosphocreatine (PCr)/Cr ratio. Rat liver mitochondria, which lack mt-CK activity, only reduced state 4-induced H(2)O(2) generation when 1 order of magnitude more exogenous CK activity was added to the medium. Simulation of hyperglycemic conditions, by the inclusion of glucose 6-phosphate in mitochondria performing 2-deoxyglucose phosphorylation via mt-HK, induced H(2)O(2) production in a Cr-sensitive manner. Simulation of hyperglycemia in embryonic rat brain cortical neurons increased both DeltaPsi(m) and ROS production and both parameters were decreased by the previous inclusion of Cr. Taken together, the results presented here indicate that mitochondrial kinase activity performed a key role as a preventive antioxidant against oxidative stress, reducing mitochondrial ROS generation through an ADP-recycling mechanism.  相似文献   

6.
Bacillus strain QC1-2, isolated from a chromium-polluted zone, was selected by its high ability to both tolerate and reduce hexavalent chromium [Cr(VI)] to less-toxic trivalent chromium [Cr(III)]. Cell suspensions of strain QC1-2 rapidly reduced Cr(VI), in both aerobic and anaerobic conditions, to Cr(III) which remained in the supernatant. Cr(VI) reduction was dependent on the addition of glucose but sulfate, an inhibitor of chromate transport, had no effect. Studies with permeabilized cells and cell extracts showed that the Cr(VI) reductase of strain QC1-2 is a soluble NADH-dependent enzyme.  相似文献   

7.
The distribution of low-molecular-weight, chromium-binding substance (LMWCr) and high-molecular-weight, chromium-binding substance (HMWCr) in the organ cytosol were analyzed by means of Sephadex G-25 gel filtration, after a single i.p. injection of K2Cr2O7 (280 mumol, Cr/Kg) to mice (male dd, 23 +/- 2 g). The amount of Cr in LMWCr per mouse was highest in the liver (83 micrograms), followed by those in the kidney (10 micrograms) and other organs (3-1 micrograms), with lesser amounts of Cr in HMWCr in all the organs. In these organs LMWCr was found to bind 3-28 times the amount of Cr to that in the in vivo binding after the in vitro incubation with K2Cr2O7 at 37 degrees C, showing a high Cr binding capacity of the substance. No inductive formation of LMWCr was observed in the liver even after daily repetitive administration of Cr (150 mumol/Kg, 4 days). Time course studies on the liver and the kidney of mice injected with K2Cr2O7 showed no difference in the accumulation of Cr in LMWCr and in the ratio of Cr in LMWCr to that in HMWCr between the organs at intervals of from 5 min to 24 hr after the injection. The comparative affinity of Cr(III) for LMWCr and for the serum proteins decreases in the order LMWCr, transferrin, albumin. The transfer of Cr from LMWCr to albumin and vice versa was almost negligible. However, significant amounts of the metal transfer was found from LMWCr to transferrin and vice versa, and from albumin to transferrin. These findings suggest that LMWCr is distributed widely in the body and it quickly binds invaded Cr in stable form at an organ site, especially in the liver, with participation of albumin or/then transferrin. This supports the hypothesis that LMWCr plays a large role in Cr detoxification.  相似文献   

8.
Significant dephosphorylation of glucose 6-phosphate due to glucose-6-phosphatase activity in rat brain in vivo was recently reported (Huang, M., and Veech, R.L. (1982) J. Biol. Chem. 257, 11358-11363). The evidence was an apparent more rapid 3H than 14C loss from the glucose pool and faster [2-3H]glucose than [U-14C]glucose utilization following pulse labeling of the brain with [2-3H,U-14C]glucose. Radiochemical purity of the glucose and quantitative recovery of the labeled products of glucose metabolism isolated from the brain were obviously essential requirements of their study, but no evidence for purity and recovery was provided. When we repeated these experiments with the described isolation procedures, we replicated the results, but found that: 1) the precursor glucose pool contained detritiated, 14C-labeled contaminants arising from glucose metabolism, particularly 2-pyrrolidone-5-carboxylic acid derived from [14C]glutamine; 2) [14C]glucose metabolite were not quantitatively recovered; 3) the procedure used to isolate the glucose itself produced detritiated, 14C-labeled derivatives of [2-3H,U-14C]glucose. These deficiencies in the isolation procedures could fully account for the observations that were interpreted as evidence of significant glucose 6-phosphate dephosphorylation by glucose-6-phosphatase activity. When glucose was isolated by more rigorous procedures and its purity verified in the present studies, no evidence for such activity in rat brain was found.  相似文献   

9.

Background  

The aim of the study was to investigate urine matrix metalloproteinase (MMP-2 and -9) activity, alkaline phosphatase/creatinine (U-AP/Cr) and gamma-glutamyl-transpeptidase/creatinine (U-GGT/Cr) ratios, glucose concentration, and urine protein/creatinine (U-Prot/Cr) ratio and to compare data with plasma MMP-2 and -9 activity, cystatin-C and creatinine concentrations in colic horses and healthy controls. Horses with surgical colic (n = 5) were compared to healthy stallions (n = 7) that came for castration. Blood and urine samples were collected. MMP gelatinolytic activity was measured by zymography.  相似文献   

10.
In order to obtain the additional benefit of anti-diabetic activity and protective effects of liver injury for diabetes, the anti-diabetic effect and acute oral toxicity of a combination of chromium(III) malate complex (Cr(2)(LMA)(3)) and propolis were assessed. The anti-diabetic activity of the combination of the Cr(2)LMA(3) and propolis was compared with Cr(2)(LMA)(3) and propolis alone in alloxan-induced diabetic mice by daily oral gavage for a period of 2 weeks. Acute oral toxicity of the combination of the Cr(2)LMA(3) and propolis was tested using ICR mice at the dose of 1.0-5.0 g/kg body mass by a single oral gavage and observed for a period of 2 weeks. The results of the anti-diabetic activity of the combination from the aspects of blood glucose level, liver glycogen level, and the activities of aspartate transaminase, alanine transaminase, and alkaline phosphatase indicated that the increased anti-diabetic activity and the protective efficacy of liver injury for diabetes were observed. In acute toxicity study, LD(50) (median lethal dose) value for the combination was greater than 5.0 g/kg body mass. The combination of Cr(2)LMA(3) and propolis might represent the nutritional supplement with potential therapeutic value to control blood glucose and exhibit protective efficacy of liver injury for diabetes and non-toxicity in acute toxicity.  相似文献   

11.
The counterregulatory action of catecholamines on insulin-stimulated glucose transport and its relation to glucose transporter phosphorylation were studied in isolated rat adipose cells. Plasma membranes exhibiting reduced glucose transport activity were prepared as described previously (Joost, H. G., Weber, T. M., Cushman, S. W., and Simpson, I. A. (1986) J. Biol. Chem. 261, 10033-10036) from cells treated with insulin, and subsequently with isoproterenol and adenosine deaminase. In these membranes, transporter affinity for cytochalasin B binding was significantly reduced (KD = 133.5 +/- 14 versus 89.8 +/- 11 nM, means +/- S.E.) with no change in number of sites or immunoreactivity of the transporter on Western blots. Reconstituted plasma membrane transport was significantly lower with isoproterenol treatment (0.50 +/- 0.12 versus 0.97 +/- 0.27 nmol/mg protein/10 s). In contrast, transport activity reconstituted from corresponding intracellular transporters (from low density microsomes) was unchanged (5.4 +/- 2.2 versus 6.9 +/- 1.2 nmol/mg protein/10 s). Thus, the intrinsic activity change of the transporter produced by catecholamines appears to reflect a structural modification that is confined to the plasma membrane and not recycled into the intracellular compartment. In cells equilibrated with [32P]phosphate, neither insulin nor isoproterenol induced [32P]phosphate incorporation into the glucose transporter immunoprecipitated from plasma membranes. Conversely, phorbol 12-myristate 13-acetate stimulated significant incorporation of [32P]phosphate into the glucose transporter in insulin-stimulated cells without any change in plasma membrane transport activity or transporter concentration. Thus, the phosphorylation state of the glucose transporter does not seem to be involved in either signaling transporter translocation or triggering changes in transporter intrinsic activity.  相似文献   

12.
Chen Y  Gu G 《Bioresource technology》2005,96(15):1713-1721
The long-term continuous chromium(VI) removal from synthetic wastewater affected by influent hexavalent chromium (Cr(VI)) and glucose concentrations were studied with an anaerobic-aerobic activated sludge process. It was observed that before activated sludge was acclimated, the chromium in the effluent increased immediately as the influent chromium increased. However, both Cr(VI) and total chromium (TCr) in the effluent significantly decreased after acclimation. In the acclimated activated sludge, the chromium removal efficiency was 100% Cr(VI) and 98.56% TCr at influent Cr(VI) levels of 20 mg/day, 100% Cr(VI) and 98.92% TCr at influent Cr(VI) levels of 40 mg/day, and 98.64% Cr(VI) and 97.16% TCr at influent Cr(VI) levels of 60 mg/day. The corresponding effluent Cr(VI) and TCr concentrations were 0 and 0.012 mg/l, 0 and 0.018 mg/l, and 0.034 mg/l and 0.071 mg/l, respectively. When the influent glucose increased from 1125 to 1500 mg/l at influent Cr(VI) dosage of 60 mg/day, the Cr(VI) and TCr removal efficiency with the acclimated activated sludge improved from 98.64% and 97.16% to 100% and 98.48%, respectively, and the chromium concentration in the effluent decreased from 0.034 mg/l of Cr(VI) and 0.071 mg/l of TCr to 0 (Cr(VI)) and 0.038 mg/l (TCr). The effluent COD and turbidity was around 40 mg/l and 0, respectively, after the activated sludge was acclimated. Further studies showed that after the activated sludge was acclimated, its specific dehydrogenases activity (SDA) and protein contents increased. The SDA and protein increased respectively 15% and 10% when influent Cr(VI) increased from 20 to 60 mg/day.  相似文献   

13.
The present study was conducted to examine the effect of a single bout of exercise (rodent treadmill, 60 min at 26 m/min, 0% grade) on the gluconeogenic activity of periportal hepatocytes (PP-H) and perivenous hepatocytes (PV-H) in fasted (18 h) rats. Isolated PP-H and PV-H, obtained by selective destruction following liver perfusion with digitonin and collagenase, were incubated with saturating concentrations of alanine (Ala; 20 mM) or a mixture of lactate and pyruvate (Lac+Pyr; 20:2 mM) to determine the glucose production flux (J(glucose)) in the incubation medium. Results show that, in the resting conditions, J(glucose) from all exogenous substrates was significantly higher (P < 0.01) in PP-H than in PV-H. Exercise, compared with rest, resulted in a higher J(glucose) (P < 0.01) from Lac+Pyr substrate in the PV-H but not in the PP-H, resulting in the disappearance of the difference in J(glucose) between PP-H and PV-H. Exercise, compared with rest, led to a higher J(glucose) (P < 0.01) from Ala substrate in both PP-H and PV-H. However, the exercise-induced increase in J(glucose) (gluconeogenic activity) from Ala substrate was higher in PV-H than in PP-H, resulting, as from Lac+Pyr substrate, in the disappearance (P > 0.05) of the difference of J(glucose) between PP-H and PV-H. It is concluded that exercise differentially stimulates the gluconeogenic activity of PV-H to a larger extent than PP-H, indicative of a heterogeneous metabolic response of hepatocytes to exercise.  相似文献   

14.
15.
Leuconostoc sp. J2, isolated from naturally fermented Kimchi, produced a bacteriocin which was named leuconocin J. This bacteriocin exhibited an inhibitory activity against several lactic acid bacteria and some food-borne pathogens. The antimicrobial substance was secreted into the medium during the late log phase. It appears to be proteinaceous since its activity was completely inactivated by a range of proteolytic enzymes, and it was also relatively heat-stable. The bacteriocin was partially purified by ammonium sulphate precipitation, following dialysis. The apparent molecular mass of partially purified bacteriocin, as indicated by activity detection after Tricine-SDS-PAGE, was 2.5-3.5 kDa. Leuconostoc sp. J2 plasmid DNA digested by EcoRI was cloned into pUC118 and transformed into Escherichia coli DH5 alpha. Phenotypic expression of the bacteriocin production was detected in transformants harboring pULBJ5.5. Finally, Southern blotting with the 2.3 kb insert as a probe against plasmid digests of Leuconostoc sp. J2 revealed that the cloned foreign DNA originated from Leuconostoc sp. J2.  相似文献   

16.

Key message

Chlamydomonas RNase J is the first member of this enzyme family that has endo- but no intrinsic 5′ exoribonucleolytic activity. This questions its proposed role in chloroplast mRNA maturation.

Abstract

RNA maturation and stability in the chloroplast are controlled by nuclear-encoded ribonucleases and RNA binding proteins. Notably, mRNA 5′ end maturation is thought to be achieved by the combined action of a 5′ exoribonuclease and specific pentatricopeptide repeat proteins (PPR) that block the progression of the nuclease. In Arabidopsis the 5′ exo- and endoribonuclease RNase J has been implicated in this process. Here, we verified the chloroplast localization of the orthologous Chlamydomonas (Cr) RNase J and studied its activity, both in vitro and in vivo in a heterologous B. subtilis system. Our data show that Cr RNase J has endo- but no significant intrinsic 5′ exonuclease activity that would be compatible with its proposed role in mRNA maturation. This is the first example of an RNase J ortholog that does not possess a 5′ exonuclease activity. A yeast two-hybrid screen revealed a number of potential interaction partners but three of the most promising candidates tested, failed to induce the latent exonuclease activity of Cr RNase J. We still favor the hypothesis that Cr RNase J plays an important role in RNA metabolism, but our findings suggest that it rather acts as an endoribonuclease in the chloroplast.
  相似文献   

17.
Current evidence suggests that extracellular mannose can be transported intracellularly and utilized for glycoprotein synthesis; however, the identity and the functional characteristics of the transporters of mannose are controversial. Although the glucose transporters are capable of transporting mannose, it has been postulated that the entry of mannose in mammalian cells is mediated by a transporter that is insensitive to glucose [Panneerselvam, K., and Freeze, H. (1996) J. Biol. Chem. 271, 9417-9421] or by a transporter induced by cell treatment with metformin [Shang, J., and Lehrman, M. A. (2004) J. Biol. Chem. 279, 9703-9712]. We performed a detailed analysis of the uptake of mannose in normal human erythrocytes and in leukemia cell line HL-60. Short uptake assays allowed the identification of a single functional activity involved in mannose uptake in both cell types, with a K(m) for transport of 6 mM. Transport was inhibited in a competitive manner by classical glucose transporter substrates. Similarly, the glucose transporter inhibitors cytochalasin B, genistein, and myricetin inhibited mannose transport by 100%. Using long uptake experiments, we identified a second, high-affinity component associated with the intracellular trapping of mannose in the HL-60 cells that is not directly involved in the transport of mannose via the glucose transporters. Thus, the transport of mannose via glucose transporters is a process which is kinetically and biologically separable from its intracellular trapping. A general survey of human cells revealed that mannose uptake was entirely blocked by concentrations of cytochalasin B that obliterates the activity of the glucose transporters. The transport and inhibition data demonstrate that extracellular mannose, whose physiological concentration is in the micromolar range, enters cells in the presence of physiological concentrations of glucose. Overall, our data indicate that transport through the glucose transporter is the main mechanism by which human cells acquire mannose.  相似文献   

18.
We hypothesized that glycerol, a readily diffusable hydrophilic substance, may effectively substitute for glucose and enhance intestinal water and sodium absorption in an oral rehydration solution (ORS). This was evaluated using a low osmolality (230-240 mOsm/kg) ORS containing 75 mmol/L sodium and a combination of glucose:glycerol (in mmol/L) 75:0, 50:25; 37.5:37.5, 25:50, 10:65, or 0:75 during 3-hour long in vivo rat jejunal perfusions. Water, sodium, potassium, glucose and glycerol absorption, and unidirectional fluid movement (J(in), J(eff)) were determined. Sodium and net water absorptions were maximal at glucose:glycerol ratios between 37.5:37.5 and 10:65 mmol/L. In the absence of glucose (0:75), absorption of water and electrolytes was lower than at any other concentration. The greater net rehydration seemed to be due to a higher J(in) as glycerol was increased up to 65 mmol/L. Potassium absorption followed a similar pattern. With 50 mmol/L glycerol and 25 mmol/L glucose, there was a marked expansion of the lamina propria extracellular space and increased intercellular expansion between enterocytes. These results indicate that glycerol may be an effective partial substitute for glucose in ready-to-use ORS by producing an improved rate of water and electrolyte absorption.  相似文献   

19.
A peptidase activity of rat diencephalon membranes, which acts on the C-terminal hexapeptide sequence of substance P, was characterized using the radiolabeled substrate N alpha-[( 125I]iododesaminotyrosyl)-substance P (6-11)-hexapeptide. This activity presents certain characteristics similar to those of the substance-P-degrading enzyme purified from human brain by Lee et al. [Eur. J. Biochem. 114, 315-327 (1981)]. It is inhibited by metal chelators and some thiol reagents, but is insensitive to inhibitors of serine proteases and aminopeptidases. The activity is different from angiotensin-converting enzyme and enkephalinase, since it is not affected by specific inhibitors of these enzymes. Substance P and substance P C-terminal fragments longer than the pentapeptide inhibited the degradation of the radiolabeled substrate with inhibition constants around 200 microM. Short fragments of the substance P sequence, such as Boc-Phe-Phe-OMe and Boc-Phe-Phe-Gly-OEt, were also found to inhibit the degradation of the substrate. When the metal-chelating hydroxamic acid moiety was attached to the carboxyl terminus of these short peptides, potent inhibitors of the substance-P-degrading activity were obtained, with inhibition constants in the micromolar range. The most potent of these compounds, iododesaminotyrosyl-Phe-Phe-Gly-NHOH (IBH-Phe-Phe-Gly-NHOH), is a competitive inhibitor, with a Ki value of 1.9 microM. The degradation of substance P by rat diencephalon slices was inhibited to the same extent (40-50%) by IBH-Phe-Phe-Gly-NHOH (20 microM) and by phosphoramidon (1 microM). A combination of both reagents reduced the degradation rate by 75-80%, suggesting that both enkephalinase and the substance-P-degrading activity are involved in the metabolism of substance P in this preparation. IBH-Phe-Phe-Gly-NHOH seems to be quite specific for the latter enzyme, since at a high concentration (0.1 mM) it did not affect the degradation of the radiolabeled substrate by alpha-chymotrypsin, papain, or thermolysin.  相似文献   

20.
Effect of chromium and zinc on insulin signaling in skeletal muscle cells   总被引:2,自引:0,他引:2  
Patients on total parenteral nutrition without Cr supplementation develop symptoms similar to those of diabetes. Zn has been implicated in diabetes because of its antioxidant properties and interaction with insulin. To study the effect of these metal ions on insulin signaling proteins, cultured mouse skeletal muscle cells was used as an in vitro model, as the tissue accounts for more than 80% of insulin-stimulated glucose disposal in the body. In the present study, it has been observed that both Cr and Zn, upon prolonged exposure, could stimulate tyrosine phosphorylation of insulin receptor (IR) even in the absence of insulin. Insulin-mediated IR tyrosine phosphorylation was enhanced by the treatment with both of the metal ions. Both Cr and Zn could phosphorylate insulin receptor substrate-1 (IRS-1). Phosphorylation of IRS-1 induced by metal ions was higher than that induced by insulin. Hence, both Cr and Zn were found to have insulin mimetic activity. Both of the metal ions were also found to potentiate insulin-mediated activation of IRS-1. The basal level of glucose uptake was also increased by prolonged treatment of the cells with the metal ions. The ions could also enhance the insulin-stimulated glucose uptake into the cells. Therefore, both Zn and Cr seem to have a positive effect on insulin signaling leading to glucose uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号