首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Drosophila alphaPS2betaPS integrin is required for diverse development events, including muscle attachment. We characterized six unusual mutations in the alphaPS2 gene that cause a subset of the null phenotype. One mutation changes a residue in alphaPS2 that is equivalent to the residue in alphaV that contacts the arginine of RGD. This change severely reduced alphaPS2betaPS affinity for soluble ligand, abolished the ability of the integrin to recruit laminin to muscle attachment sites in the embryo and caused detachment of integrins and talin from the ECM. Three mutations that alter different parts of the alphaPS2 beta-propeller, plus a fourth that eliminated a late phase of alphaPS2 expression, all led to a strong decrease in alphaPS2betaPS at muscle ends, but, surprisingly, normal levels of talin were recruited. Thus, although talin recruitment requires alphaPS2betaPS, talin levels are not simply specified by the amount of integrin at the adhesive junction. These mutations caused detachment of talin and actin from integrins, suggesting that the integrin-talin link is weaker than the ECM-integrin link.  相似文献   

2.
Src-family kinases, cytoplasmic enzymes that participate in various signaling events, are found at not only the plasma membrane but also subcellular compartments, such as the nucleus, the Golgi apparatus and late endosomes/lysosomes. Lyn, a member of the Src-family kinases, is known to play a role in DNA damage response and cell cycle control in the nucleus. However, it is still unclear how the localization of Lyn to the nucleus is regulated. Here, we investigated the mechanism of the distribution of Lyn between the cytoplasm and the nucleus in epitheloid HeLa cells and hematopoietic THP-1 cells. Lyn was definitely detected in purified nuclei by immunofluorescence and immunoblotting analyses. Nuclear accumulation of Lyn was enhanced upon treatment of cells with leptomycin B (LMB), an inhibitor of Crm1-mediated nuclear export. Moreover, Lyn mutants lacking the sites for lipid modification were highly accumulated in the nucleus upon LMB treatment. Intriguingly, inhibition of the kinase activity of Lyn by SU6656, Csk overexpression, or point mutation in the ATP-binding site induced an increase in nuclear Lyn levels. These results suggest that Lyn being imported into and rapidly exported from the nucleus preferentially accumulates in the nucleus by inhibition of the kinase activity and lipid modification.  相似文献   

3.
4.
J W Bloor  N H Brown 《Genetics》1998,148(3):1127-1142
The integrin family of cell surface receptors mediates cell-substrate and cell-to-cell adhesion and transmits intracellular signals. In Drosophila there is good evidence for an adhesive role of integrins, but evidence for integrin signalling has remained elusive. Each integrin is an alphabeta heterodimer, and the Drosophila betaPS subunit forms at least two integrins by association with different alpha subunits: alphaPS1betaPS (PS1) and alphaPS2betaPS (PS2). The complex pattern of PS2 integrin expression includes, but is more extensive than, the sites where PS2 has a known requirement. In order to investigate whether PS2 integrin is required at these additional sites and/or has functions besides mediating adhesion, a comprehensive genetic analysis of inflated, the gene that encodes alphaPS2, was performed. We isolated 35 new inflated alleles, and obtained 10 alleles from our colleagues. The majority of alleles are amorphs (36/45) or hypomorphs (4/45), but five alleles that affect specific developmental processes were identified. Interallelic complementation between these alleles suggests that some may affect distinct functional domains of the alphaPS2 protein, which specify particular interactions that promote adhesion or signalling. One new allele reveals that the PS2 integrin is required for the development of the adult halteres and legs as well as the wing.  相似文献   

5.
The mitogen-activated protein kinase (MAPK) cascade consists of the MAPK (extracellular signal-regulated kinase 2; ERK2) and its activator, MAPK kinase (MAP/ERK kinase; MEK). However, the mechanisms for activation of ERK2 have not been defined yet in cells. Here, we used fluorescent protein-tagged ERK2 and MEK to examine the localization of ERK2 and MEK in living rat basophilic leukemia (RBL-2H3) cells. ERK2 was mainly in the cytoplasm in resting cells but translocated into the nucleus after the ligation of IgE receptors. The import of ERK2 reached the maximum at 6--7 min, and then the imported ERK2 was exported from the nucleus. MEK mainly resided in the cytoplasm, and no significant MEK translocation was detected statically after ligation of IgE receptors. However, analysis of the dynamics of ERK2 and MEK suggested that both of them rapidly shuttle between the cytoplasm and the nucleus and that MEK regulates the nuclear shuttling of ERK2, whereas MEK remains mainly in the cytoplasm. In addition, the data suggested that the sustained calcium increase was required for the optimal translocation of ERK2 into the nucleus in RBL-2H3 cells. These results gave a new insight of the dynamics of ERK2 and MEK in the nuclear shuttling of RBL-2H3 cells after the ligation of IgE receptors.  相似文献   

6.
In response to extracellular stimuli, mitogen-activated protein kinase (MAPK, also known as ERK), which localizes to the cytoplasm in quiescent cells, translocates to the nucleus and then relocalizes to the cytoplasm again. The relocalization of nuclear MAPK to the cytoplasm was not inhibited by cycloheximide, confirming that the relocalization is achieved by nuclear export, but not synthesis, of MAPK. The nuclear export of MAPK was inhibited by leptomycin B (LMB), a specific inhibitor of the nuclear export signal (NES)-dependent transport. We have then shown that MAP kinase kinase (MAPKK, also known as MEK), which mostly localizes to the cytoplasm because of its having NES, is able to shuttle between the cytoplasm and the nucleus constantly. MAPK, when injected into the nucleus, was rapidly exported from the nucleus by coinjected wild-type MAPKK, but not by the NES-disrupted MAPKK. In addition, injection of the fragment corresponding to the MAPK-binding site of MAPKK into the nucleus, which would disrupt the binding of MAPK to MAPKK in the nucleus, significantly inhibited the nuclear export of endogenous MAPK. Taken together, these results suggest that the relocalization of nuclear MAPK to the cytoplasm involves a MAPKK-dependent, active transport mechanism.  相似文献   

7.
Integrin engagement generates cellular signals leading to the recruitment of structural and signalling molecules which, in concert with rearrangements of the actin cytoskeleton, leads to the formation of focal adhesion complexes. Using antisera reactive either with total ERK or with phosphorylated/activated forms of ERK, in rat embryo fibroblasts and embryonic avian cells that express v-Src, we found that active ERK is targeted to newly forming focal adhesions after integrin engagement or activation of v-Src. UO126, an inhibitor of MAP kinase kinase 1 (MEK1), suppressed focal adhesion targeting of active ERK and cell spreading. Also, integrin engagement and v-Src induced myosin light chain kinase (MLCK)-dependent phosphorylation of myosin light chain downstream of the MEK/ERK pathway, and MLCK and myosin activities are required for the focal adhesion targeting of ERK. The translocation of active ERK to newly forming focal adhesions may direct specificity towards appropriate downstream targets that influence adhesion assembly. These findings support a role for ERK in the regulation of the adhesion/cytoskeletal network and provide an explanation for the role of ERK in cell motility.  相似文献   

8.
We have identified a direct physical interaction between the stress signaling p38alpha MAP kinase and the mitogen-activated protein kinases ERK1 and ERK2 by affinity chromatography and coimmunoprecipitation studies. Phosphorylation and activation of p38alpha enhanced its interaction with ERK1/2, and this correlated with inhibition of ERK1/2 phosphotransferase activity. The loss of epidermal growth factor-induced activation and phosphorylation of ERK1/2 but not of their direct activator MEK1 in HeLa cells transfected with the p38alpha activator MKK6(E) indicated that activated p38alpha may sequester ERK1/2 and sterically block their phosphorylation by MEK1.  相似文献   

9.
10.
The Drosophila alphaPS2 integrin subunit is found in two isoforms. alphaPS2C contains 25 residues not found in alphaPS2m8, encoded by the alternative eighth exon. Previously, it was shown that cells expressing alphaPS2C spread more effectively than alphaPS2m8 cells on fragments of the ECM protein Tiggrin, and that alphaPS2C-containing integrins are relatively insensitive to depletion of Ca(2+). Using a ligand mimetic probe for Tiggrin affinity (TWOW-1), we show that the affinity of alphaPS2CbetaPS for this ligand is much higher than that of alphaPS2m8betaPS. However, the two isoforms become more similar in the presence of activating levels of Mn(2+). Modeling indicates that the exon 8-encoded residues replace the third beta strand of the third blade of the alpha subunit beta-propeller structure, and generate an exaggerated loop between this and the fourth strand. alphaPS2 subunits with the extra loop structure but with an m8-like third strand, or subunits with a C-like strand but an m8-like short loop, both fail to show alphaPS2C-like affinity for TWOW-1. Surprisingly, a single C > m8-like change at the third strand-loop transition point is sufficient to make alphaPS2C require Ca(2+) for function, despite the absence of any known cation binding site in this region. These data indicate that alternative splicing in integrin alpha subunit extracellular domains may affect ligand affinity via relatively subtle alterations in integrin conformation. These results may have relevance for vertebrate alpha6 and alpha7, which are alternatively spliced at the same site.  相似文献   

11.
This study was designed to explore the effect of P2X7 receptor (P2X7R) activation on the expression of p38 MAP kinase (p38 MAPK) enzyme in hippocampal slices of wild-type (WT) and P2X7R−/− mice using the Western blot technique and to clarify its role in P2X7 receptor mediated [3H]glutamate release. ATP (1 mM) and the P2X7R agonist BzATP (100 μM) significantly increased p38 MAPK phosphorylation in WT mice, and these effects were absent in the hippocampal slices of P2X7R−/− mice. Both ATP- and BzATP-induced p38 MAPK phosphorylations were sensitive to the p38 MAP kinase inhibitor, SB203580 (1 μM). ATP elicited [3H]glutamate release from hippocampal slices, which was significantly attenuated by SB203580 (1 μM) but not by the extracellular signal-regulated kinase (ERK1/2) inhibitor, PD098095 (10 μM). Consequently, we suggest that P2X7Rs and p38 MAPK are involved in the stimulatory effect of ATP on glutamate release in the hippocampal slices of WT mice.  相似文献   

12.
13.
We describe a versatile intracellular reporter of ERK/MAP kinase activity: a cDNA construct, pGFP.MBP, encoding amino acids 85-144 of the human myelin basic protein fused to the C-terminus of an enhanced green fluorescent protein (GFP). The fused fragment of myelin basic protein contains a single consensus ERK/MAP kinase phosphorylation motif (PRTP, where the threonine is phosphorylated). Phosphorylation of the specific motif can be detected via immunoblotting or immunofluorescence with a commercially available phospho-specific monoclonal antibody. When expressed in mammalian cells by either transient or stable transfection, the fusion protein acts as a bona fide kinase substrate, as demonstrated by rapid serum-induced phosphorylation that is blocked by a specific MEK inhibitor. Moreover, the localization of the total substrate pool is easily visualized by GFP autofluorescence and the extent of its phosphorylation simultaneously detected within intact fixed cells by immunofluorescence using the commercially available phospho-specific antibody. The approach described should be generally applicable to the intracellular analysis of many specific protein kinase substrates for which phospho-specific antibodies have been produced.  相似文献   

14.
Exogenous lysophosphatidic acid (LPA) has been shown to evoke a chemotactic response in aggregative cells of the social amoeba Dictyostelium discoideum. In this paper, we demonstrate that extracellular LPA is also able to induce activation of mitogen-activated protein (MAP) kinase DdERK2 (extracellular signal regulated kinase 2) in these cells. This activation is independent of cyclic AMP receptors, yet fully dependent on the single Gbeta subunit, hinting to the presence of functional heptahelical LPA receptors in a primitive eukaryote. We did not observe LPA-dependent cyclic GMP accumulation, which suggests that the pathways for LPA-induced and "classical" chemotaxis of D. discoideum cells are substantially different.  相似文献   

15.
Mitogen-activated protein kinases (MAPKs) phosphorylate target proteins in both the cytoplasm and nucleus, and a strong correlation exists between the subcellular localization of MAPK and resulting cellular responses. It was thought that MAPK phosphorylation was always followed by rapid nuclear translocation. However, we and others have found that MAPK phosphorylation is not always sufficient for nuclear translocation in vivo. In the developing Drosophila wing, MAPK-mediated signaling is required both for patterning and for cell proliferation, although the mechanism of this differential control is not fully understood. Here, we show that phosphorylated MAPK (pMAPK) is held in the cytoplasm in differentiating larval and pupal wing vein cells, and we show that this cytoplasmic hold is required for vein cell fate. At the same time, we show that MAPK does move into the nucleus of other wing cells where it promotes cell proliferation. We propose a novel Ras pathway bifurcation in Drosophila and our results suggest a mechanism by which MAPK phosphorylation can signal two different cellular outcomes (differentiation versus proliferation) based on the subcellular localization of MAPK.  相似文献   

16.
In proneural groups of cells in the morphogenetic furrow of the developing Drosophila eye phosphorylated mitogen activated protein kinase (MAPK) antigen is held in the cytoplasm for hours. We have developed a reagent to detect nuclear MAPK non-antigenically and report our use of this reagent to confirm that MAPK nuclear translocation is regulated by a second mechanism in addition to phosphorylation. This "cytoplasmic hold" of activated MAPK has not been observed in cell culture systems. We also show that MAPK cytoplasmic hold has an essential function in vivo: if it is overcome, developmental patterning in the furrow is disrupted.  相似文献   

17.
The rapid modulation of ligand-binding affinity ("activation") is a central property of the integrin family of cell adhesion receptors. The Ras family of small GTP-binding proteins and their downstream effectors are key players in regulating integrin activation. H-Ras can suppress integrin activation in fibroblasts via its downstream effector kinase, Raf-1. In contrast, to H-Ras, a closely related small GTP-binding protein R-Ras has the opposite activity, and promotes integrin activation. To gain insight into the regulation of integrin activation by Ras GTPases, we created a series of H-Ras/R-Ras chimeras. We found that a 35-amino acid stretch of H-Ras was required for full suppressive activity. Furthermore, the suppressive chimeras were weak activators of the ERK1/2 MAP kinase pathway, suggesting that the suppression of integrin activation may be independent of the activation of the bulk of ERK MAP kinase. Additional data demonstrating that the ability of H-Ras or Raf-1 to suppress integrin activation was unaffected by inhibition of bulk ERK1/2 MAP kinase activation supported this hypothesis. Thus, the suppression of integrin activation is a Raf kinase induced regulatory event that can be mediated independently of bulk activation of the ERK MAP-kinase pathway.  相似文献   

18.
The p38 mitogen-activated protein kinase (MAPK) signaling pathway plays an important role in cellular responses to inflammatory stimuli and environmental stress. Activation of p38 is mediated through phosphorylation by upstream MAPKK, which in turn is activated by MAPKKK. However, the mechanism of how different upstream MAP2Ks and MAP3Ks specifically contribute to p38 activation in response to different stimuli is still not clearly understood. By using double-stranded RNA-mediated interference (RNAi) in Drosophila cells, we demonstrate that D-MKK3 is a major MAP2K responsible for D-p38 activation by UV, heat shock, NaCl or peptiodglycan (PGN). Stimulation of UV and PGN activates D-p38 through D-MEKK1, heat shock-induced activation of D-p38 signals through both D-MEKK1 and D-ASK1. On the other hand, maximal activation of D-p38 by NaCl requires the expression of four MAP3Ks.  相似文献   

19.
Short-term regulation of catecholamine biosynthesis involves reversible phosphorylation of several serine residues in the N-terminal regulatory domain of tyrosine hydroxylase. The MAP kinases ERK1/2 have been identified as responsible for phosphorylation of Ser31. As an initial step in elucidating the effects of phosphorylation of Ser31 on the structure and activity of tyrosine hydroxylase, the kinetics of phosphorylation of the rat enzyme by recombinant rat ERK2 have been characterized. Complete phosphorylation results in incorporation of 2mol of phosphate into each subunit of tyrosine hydroxylase. The S8A and S31A enzymes only incorporate a single phosphate, while the S19A and S40A enzymes incorporate two. Phosphorylation of S8A tyrosine hydroxylase is nine times as rapid as phosphorylation of the S31A enzyme, consistent with a ninefold preference of ERK2 for Ser31 over Ser8.  相似文献   

20.
MUC1 mucin is a receptor-like glycoprotein expressed abundantly in various cancer cell lines as well as in glandular secretory epithelial cells, including airway surface epithelial cells. The role of this cell surface mucin in the airway is not known. In an attempt to understand the signaling mechanism of MUC1 mucin, we established a stable cell line from COS-7 cells expressing a chimeric receptor consisting of the extracellular and transmembrane domains of CD8 and the cytoplasmic (CT) domain of MUC1 mucin (CD8/MUC1 cells). We previously observed that treatment of these cells with anti-CD8 antibody resulted in tyrosine phosphorylation of the CT domain of the chimera. Here we report that treatment of CD8/MUC1 cells with anti-CD8 resulted in activation of extracellular signal-regulated kinase (ERK) 2 as assessed by immunoblotting, kinase assay, and immunocytochemistry. The activation of ERK2 was completely blocked either by a dominant negative Ras mutant or in the presence of a mitogen-activated protein kinase kinase (MEK) inhibitor. We conclude that tyrosine phosphorylation of the CT domain of MUC1 mucin leads to activation of a mitogen-activated protein kinase pathway through the Ras-MEK-ERK2 pathway. Combined with the existing data by others, it is suggested that one of the roles of MUC1 mucin may be regulation of cell growth and differentiation via a common signaling pathway, namely the Grb2-Sos-Ras-MEK-ERK2 pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号