首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Obesity is associated with lower skeletal muscle capillarization and lower insulin sensitivity. Vascular endothelial growth factor (VEGF) is important for the maintenance of the skeletal muscle capillaries. To investigate whether VEGF and VEGF receptor [kinase insert domain-containing receptor (KDR) and Flt-1] expression are lower with obesity, vastus lateralis muscle biopsies were obtained from eight obese and eight lean young sedentary men before and 2 h after a 1-h submaximal aerobic exercise bout for the measurement of VEGF, KDR, Flt-1, and skeletal muscle fiber and capillary characteristics. There were no differences in VEGF or VEGF receptor mRNA at rest between lean and obese muscle. Exercise increased VEGF (10-fold), KDR (3-fold), and Flt-1 (5-fold) mRNA independent of group. There were no differences in VEGF, KDR, or Flt-1 protein between groups. Compared with lean skeletal muscle, the number of capillary contacts per fiber was the same, but lower capillary density (CD), greater muscle cross sectional area, and lower capillary-to-fiber area ratio were observed in both type I and II fibers in obese muscle. Multiple linear regression revealed that 49% of the variance in insulin sensitivity (homeostasis model assessment) could be explained by percentage of body fat (35%) and maximal oxygen uptake per kilogram of fat-free mass (14%). Linear regression revealed significant relationships between maximal oxygen uptake and both CD and capillary-to-fiber perimeter exchange. Although differences may exist in CD and capillary-to-fiber area ratio between lean and obese skeletal muscle, the present results provide evidence that VEGF and VEGF receptor expression are not different between lean and obese muscle.  相似文献   

2.
In humans, the majority of studies demonstrate an age-associated reduction in the number of capillaries surrounding skeletal muscle fibers; however, recent reports in rats suggest that muscle capillarization is well maintained with advanced age. In sedentary and trained men, aging lowers the number of capillaries surrounding type II, but not type I, skeletal muscle fibers. The fiber type-specific effect of aging on muscle capillarization is unknown in women. Vascular endothelial growth factor (VEGF) is important in the basal maintenance of skeletal muscle capillarization, and lower VEGF expression is associated with increased age in nonskeletal muscle tissue of women. Compared with young women (YW), we hypothesized that aged women (AW) would demonstrate 1) lower muscle capillarization in a fiber type-specific manner and 2) lower VEGF and VEGF receptor expression at rest and in response to acute exercise. Nine sedentary AW (70 + 8 yr) and 11 YW (22 + 3 yr) had vastus lateralis muscle biopsies obtained before and at 4 h after a submaximal exercise bout for the measurement of morphometry and VEGF and VEGF receptor expression. In AW compared with YW, muscle capillary contacts were lower overall (YW: 2.36 + 0.32 capillaries; AW: 2.08 + 0.17 capillaries), specifically in type II (YW: 2.37 + 0.39 capillaries; AW: 1.91 + 0.36 capillaries) but not type I fibers (YW: 2.36 + 0.34 capillaries; AW: 2.26 + 0.24 capillaries). Muscle VEGF protein was 35% lower at rest, and the exercise-induced increase in VEGF mRNA was 50% lower in AW compared with YW. There was no effect of age on VEGF receptor expression. These results provide evidence that, in the vastus lateralis of women, 1) capillarization surrounding type II muscle fibers is lower in AW compared with YW and 2) resting VEGF protein and the VEGF mRNA response to exercise are lower in AW compared with YW.  相似文献   

3.
We investigated whether acute systemic exercise increases vascular endothelial growth factor (VEGF), VEGF receptor (KDR and Flt-1) mRNA, and VEGF protein in sedentary humans. Twelve sedentary subjects were recruited and performed 1 h of acute, cycle ergometer exercise at 50% of maximal oxygen consumption. Muscle biopsies were obtained from the vastus lateralis before exercise and at 0, 2, and 4 h postexercise. Acute exercise significantly increased VEGF mRNA at 2 and 4 h and increased KDR and Flt-1 mRNA at 4 h postexercise. The sustained increase in VEGF mRNA through 4 h and the increases in KDR and Flt-1 at 4 h are different from their respective time course responses in rats. In contrast to the increase in VEGF mRNA postexercise, VEGF protein levels were decreased at 0 h postexercise. These results provide evidence in humans that 1) VEGF, KDR, and Flt-1 mRNA are increased by acute systemic exercise; 2) the time course of the VEGF, KDR, and Flt-1 mRNA responses are different from those previously reported in rats (Gavin TP and Wagner PD. Acta Physiol Scand 175: 201-209, 2002); and 3) VEGF protein is decreased immediately after exercise.  相似文献   

4.
5.
Exercise training improves aging-induced deterioration of angiogenesis in the heart. However, the mechanisms underlying exercise-induced improvement of capillary density in the aged heart are unclear. Vascular endothelial growth factor (VEGF) is implicated in angiogenesis, which activated angiogenic signaling cascade through Akt and endothelial nitric oxide synthase (eNOS)-related pathway. We hypothesized that VEGF angiogenic signaling cascade in the heart contributes to a molecular mechanism of exercise training-induced improvement of capillary density in old age. With the use of hearts of sedentary young rats (4 mo old), sedentary aged rats (23 mo old), and exercise-trained aged rats (23 mo old, swim training for 8 wk), the present study investigated whether VEGF and VEGF-related angiogenic molecular expression in the aged heart is affected by exercise training. Total capillary density in the heart was significantly lower in the sedentary aged rats compared with the sedentary young rats, whereas that in the exercise-trained rat was significantly higher than the sedentary aged rats. The mRNA and protein expressions of VEGF and of fms-like tyrosine kinase-1 (Flt-1) and fetal liver kinase-1 (Flk-1), which are main VEGF receptors, in the heart were significantly lower in the sedentary aged rats compared with the sedentary young rats, whereas those in the exercise-trained rats were significantly higher than those in the sedentary aged rats. The phosphorylation of Akt protein and eNOS protein in the heart corresponded to the changes in the VEGF protein levels. These findings suggest that exercise training improves aging-induced downregulation of cardiac VEGF angiogenic signaling cascade, thereby contributing to the exercise training-induced improvement of angiogenesis in old age.  相似文献   

6.
Acute exercise increases vascular endothelial growth factor (VEGF), transforming growth factor-beta(1) (TGF-beta(1)), and basic fibroblast growth factor (bFGF) mRNA levels in skeletal muscle, with the greatest increase in VEGF mRNA. VEGF functions via binding to the VEGF receptors Flk-1 and Flt-1. Captopril, an angiotensin-converting enzyme inhibitor, has been suggested to reduce the microvasculature in resting and exercising skeletal muscle. However, the molecular mechanisms responsible for this reduction have not been investigated. We hypothesized that this might occur via reduced VEGF, TGF-beta(1), bFGF, Flk-1, and Flt-1 gene expression at rest and after exercise. To investigate this, 10-wk-old female Wistar rats were placed into four groups (n = 6 each): 1) saline + rest; 2) saline + exercise; 3) 100 mg/kg ip captopril + rest; and 4) 100 mg/kg ip captopril + exercise. Exercise consisted of 1 h of running at 20 m/min on a 10 degrees incline. VEGF, TGF-beta(1), bFGF, Flk-1, and Flt-1 mRNA were analyzed from the left gastrocnemius by quantitative Northern blot. Exercise increased VEGF mRNA 4.8-fold, TGF-beta(1) mRNA 1.6-fold, and Flt-1 mRNA 1.7-fold but did not alter bFGF or Flk-1 mRNA measured 1 h after exercise. Captopril did not affect the rest or exercise levels of VEGF, TGF-beta(1), bFGF, and Flt-1 mRNA. Captopril did reduce Flk-1 mRNA 30-40%, independently of exercise. This is partially consistent with the suggestion that captopril may inhibit capillary growth.  相似文献   

7.
Pheochromocytomas are well-vascularized tumors, suggesting that a potent angiogenic factor may be involved in the mechanism of their formation. As vascular endothelial growth factor (VEGF) is a potent mitogen for vascular endothelial cells, here we have investigated the mRNA and protein expression of VEGF and the mRNA expression of its two receptors (Flt-1 and Flk-1/KDR) in pheochromocytomas tissue. An increase in VEGF mRNA (mainly isoforms VEGF(121) and VEGF(165)) and in VEGF protein expression were observed by semi-quantitative RT-PCR and Western blot, respectively, compared to normal adrenomedullary tissue. Flk-1/KDR, and Flt-1 levels of mRNA were also increased markedly in tumors and correlated with levels of VEGF mRNA. Therefore, we speculate that upregulation of VEGF expression and its receptors might be important in the pathogenesis of pheochromocytomas.  相似文献   

8.
The present study was undertaken to determine the expression of vascular endothelial growth factor (VEGF) and its receptors, fms-like tyrosine kinase (Flt-1) and fetal liver kinase-1/kinase insert domain-containing receptor (Flk-1/KDR), in the porcine corpus luteum (CL) during the estrous cycle and early pregnancy. Immunohistochemical studies localized proteins of VEGF ligand-receptor system in the cytoplasm of luteal cells and in some blood vessels. Western blot analysis revealed significantly higher levels of VEGF protein during early and mid-luteal phase (vs. late luteal phase; P<0.001 and P<0.01, respectively). Quantification of VEGF mRNA in the CL showed increased mRNA levels during entire luteal phase (vs. Days 16-17; P<0.05). Expression of Flt-1 protein remained high during luteal phase (P<0.001), but the mRNA levels tended to increase from the early to the late luteal phase. Elevated protein expression of Flk-1/KDR was found in the mid-luteal phase (vs. Days 16-17; P<0.05). However, induction of Flk-1/KDR mRNA expression occurred earlier, in early luteal phase. The lowest VEGF, Flt-1 and Flk-1/KDR mRNA and protein levels were observed in regressed CL (P<0.001). During pregnancy, VEGF, Flt-1 and Flk-1/KDR mRNA and protein expression was comparable to the mid-luteal phase. In conclusion, the present study has demonstrated dynamic expression of VEGF and its receptors in the porcine CL during the estrous cycle and early pregnancy. These data suggest that the VEGF ligand-receptor system may play an important role in the development and maintenance of the CL in pigs.  相似文献   

9.
Bioactivity of anti-angiogenic ribozymes targeting Flt-1 and KDR mRNA.   总被引:13,自引:0,他引:13  
Vascular endothelial growth factor (VEGF) and its receptors Flt-1 and KDR play important roles in physiological and pathological angiogenesis. Ribozymes that target the VEGF receptor mRNAs were developed and their biological activities in cell culture and an animal model were assessed. Ribozymes targeting Flt-1 or KDR mRNA sites reduced VEGF-induced proliferation of cultured human vascular endothelial cells and specifically lowered the level of Flt-1 or KDR mRNA present in the cells. Anti- Flt-1 and KDR ribozymes also exhibited anti-angiogenic activity in a rat corneal pocket assay of VEGF-induced angiogenesis. This report illustrates the anti-angiogenic potential of these ribozymes as well as their value in studying VEGF receptor function in normal and pathophysiologic states.  相似文献   

10.
Utilizing in utero aortopulmonary vascular graft placement, we developed a lamb model of congenital heart disease and increased pulmonary blood flow. We showed previously that these lambs have increased pulmonary vessel number at 4 wk of age. To determine whether this was associated with alterations in VEGF signaling, we investigated vascular changes in expression of VEGF and its receptors, Flt-1 and KDR/Flk-1, in the lungs of shunted and age-matched control lambs during the first 8 wk of life. Western blot analysis demonstrated that VEGF, Flt-1, and KDR/Flk-1 expression was higher in shunted lambs. VEGF and Flt-1 expression was increased at 4 and 8 wk of age (P <0.05). However, KDR/Flk-1 expression was higher in shunted lambs only at 1 and 4 wk of age (P <0.05). Immunohistochemical analysis demonstrated that, in control and shunted lambs, VEGF localized to the smooth muscle layer of vessels and airways and to the pulmonary epithelium while increased VEGF expression was localized to the smooth muscle layer of thickened media in remodeled vessels in shunted lambs. VEGF receptors were localized exclusively in the endothelium of pulmonary vessels. Flt-1 was increased in the endothelium of small pulmonary arteries in shunted animals at 4 and 8 wk of age, whereas KDR/Flk-1 was increased in small pulmonary arteries at 1 and 4 wk of age. Our data suggest that increased pulmonary blood flow upregulates expression of VEGF and its receptors, and this may be important in development of the vascular remodeling in shunted lambs.  相似文献   

11.
12.
Thrombin, a multifunctional serine protease, is generated at the site with vascular injuries. It not only participates in the coagulation cascade, but also can induce a lot of events related to cell mitogenesis and migration. In this study, we investigated the effect of thrombin on endothelial cell proliferation induced by vascular endothelial growth factor (VEGF). Thrombin promoted proliferation of cultured bovine carotid endothelial cells in a time- and dose-dependent manner. Moreover, it drastically enhanced the cell growth stimulated by VEGF. This stimulatory effect was reduced by inhibitors of either protein kinase C (PKC) or mitogen-activated protein kinase kinase (MAPKK). Thrombin induced a significant increase in the level of mRNA of the kinase domain-containing receptor (KDR), but not tms-like tyrosine kinase (Flt-1), in a time-dependent manner, which reached the maximum after 24 h of stimulation. This increase coincides well with the KDR protein expression. The luciferase assay showed that thrombin induced an about 7.5-fold increase in the KDR promoter activity compared with the control. This enhanced KDR promoter activity was also abolished by inhibitors of either PKC or MAPKK. The deletion analyses indicated that the region between -115 and -97 (containing Sp1 binding region) within the KDR promoter gene was required for the enhanced KDR expression induced by thrombin and VEGF. Moreover, the nitric oxide synthase (NOS) inhibitor abolished both the accelerated cell proliferation and the increased KDR expression induced by thrombin and VEGF. This inhibition was abrogated by DETA NONOate, a NO donor with long half-life. These findings suggest that thrombin might potentiate the VEGF-induced angiogenic activity through increasing the level of the VEGF receptor KDR, in which production of NO is involved.  相似文献   

13.
Vascular endothelial growth factor (VEGF) is a pleiotropic factor that exerts a multitude of biological effects through its interaction with two receptor tyrosine kinases, fms-like tyrosine kinase (Flt-1) or VEGF receptor 1 and kinase insert domain-containing receptor (KDR) or VEGF receptor 2. Whereas it is commonly accepted that KDR is responsible for the proliferative activities of VEGF, considerable controversy and uncertainty exist about the role of the individual receptors in eliciting many of the other effects. Based on a comprehensive mutational analysis of the receptor-binding site of VEGF, an Flt-1-selective variant was created containing four substitutions from the wild-type protein. This variant bound with wild-type affinity to Flt-1, was at least 470-fold reduced in binding to KDR, and had no activity in cell-based assays measuring autophosphorylation of KDR or proliferation of primary human vascular endothelial cells. Using a competitive phage display strategy, two KDR-selective variants were discovered with three and four changes from wild-type, respectively. Both variants had approximately wild-type affinity for KDR, were about 2000-fold reduced in binding to Flt-1, and showed activity comparable with the wild-type protein in KDR autophosphorylation and endothelial cell proliferation assays. These variants will serve as useful reagents in elucidating the roles of Flt-1 and KDR.  相似文献   

14.

Background

The angiogenic and invasive properties of the cytotrophoblast are crucial to provide an adequate area for feto-maternal exchange. The present study aimed at identifying the localization of interrelated angiogenic, hyperpermeability and vasodilator factors in the feto-maternal interface in pregnant guinea-pigs.

Methods

Utero-placental units were collected from early to term pregnancy. VEGF, Flt-1, KDR, B2R and eNOS were analyzed by immunohistochemistry, and the intensity of the signals in placenta and syncytial streamers was digitally analysed. Flt1 and eNOS content of placental homogenates was determined by western blotting. Statistical analysis used one-way analysis of variance and Tukey's Multiple Comparison post-hoc test.

Results

In the subplacenta, placental interlobium and labyrinth VEGF, Flt-1, KDR, B2R and eNOS were expressed in all stages of pregnancy. Syncytial streamers in all stages of gestation, and cytotrophoblasts surrounding myometrial arteries in early and mid pregnancy – and replacing the smooth muscle at term – displayed immunoreactivity for VEGF, Flt-1, KDR, eNOS and B2R. In partly disrupted mesometrial arteries in late pregnancy cytotrophoblasts and endothelial cells expressed VEGF, Flt-1, KDR, B2R and eNOS. Sections incubated in absence of the first antibody, or in presence of rabbit IgG fraction and mouse IgG serum, yielded no staining. According to the digital analysis, Flt-1 increased in the placental interlobium in days 40 and 60 as compared to day 20 (P = 0.016), and in the labyrinth in day 60 as compared to days 20 and 40 (P = 0.026), while the signals for VEGF, KDR, B2R, and eNOS showed no variations along pregnancy. In syncytial streamers the intensity of VEGF immunoreactivity was increased in day 40 in comparison to day 20 (P = 0.027), while that of B2R decreased in days 40 and 60 as compared to day 20 (P = 0.011); VEGF, Flt-1, KDR, B2R and eNOS expression showed no variations. Western blots for eNOS and Flt-1 in placental homogenates showed no significant temporal differences along pregnancy.

Conclusion

The demonstration of different angiogenic, hyperpermeability and vasodilator factors in the same cellular protagonists of angiogenesis and invasion in the pregnant guinea-pig, supports the presence of a functional network, and strengthens the argument that this species provides an adequate model to understand human pregnancy.  相似文献   

15.
Moderate ethanol consumption demonstrates a protective effect against cardiovascular disease and improves insulin sensitivity, possibly through angiogenesis. We investigated whether 1) ethanol would increase skeletal muscle growth factor gene expression and 2) the effects of ethanol on skeletal muscle growth factor gene expression were independent of exercise-induced growth factor gene expression. Female Wistar rats were used. Four groups (saline + rest; saline + exercise; 17 mmol/kg ethanol + rest; and 17 mmol/kg ethanol + exercise) were used to measure the growth factor response to acute exercise and ethanol administration. Vascular endothelial growth factor (VEGF), transforming growth factor-beta(1) (TGF-beta(1)), basic fibroblast growth factor (bFGF), Flt-1, and Flk-1 mRNA were analyzed from the left gastrocnemius by quantitative Northern blot. Ethanol increased VEGF, TGF-beta(1), bFGF, and Flt-1 mRNA at rest and after acute exercise. Ethanol increased resting Flk-1 mRNA. Ethanol increased bFGF mRNA independently of exercise. These findings suggest that 1) ethanol can increase skeletal muscle angiogenic growth factor gene expression and 2) the mechanisms responsible for the ethanol-induced increases in VEGF, TGF-beta(1), and Flt-1 mRNA appear to be different from those responsible for exercise-induced regulation. Therefore, these results provide evidence in adult rat tissue that the protective cardiovascular effects of moderate ethanol consumption may result in part through the increase of angiogenic growth factors.  相似文献   

16.
17.
Skeletal muscle protein and function decline with advancing age but the underlying pathophysiology is poorly understood. To test the hypothesis that the catabolic cytokine tumor necrosis factor alpha (TNF-alpha) contributes to this process, we studied the effects of aging and resistance exercise on TNF-alpha expression in human muscle. Using in situ hybridization, TNF-alpha message was localized to myocytes in sections of skeletal muscle from elderly humans. Both TNF-alpha mRNA and protein levels were elevated in skeletal muscle from frail elderly (81+/-1 year) as compared to healthy young (23+/-1 year) men and women. To determine whether resistance exercise affects TNF-alpha expression, frail elderly men and women were randomly assigned to a training group or to a nonexercising control group. Muscle biopsies were performed before and after 3 months. Muscle TNF-alpha mRNA and protein levels decreased in the exercise group but did not change in the control group. Muscle protein synthesis rate in the exercise group was inversely related to levels of TNF-alpha protein. These data suggest that TNF-alpha contributes to age-associated muscle wasting and that resistance exercise may attenuate this process by suppressing skeletal muscle TNF-alpha expression.  相似文献   

18.
The present study investigated the effect of an acute exercise bout on the mRNA response of vascular endothelial growth factor (VEGF) splice variants in untrained and trained human skeletal muscle. Seven habitually active young men performed one-legged knee-extensor exercise training at an intensity corresponding to approximately 70% of the maximal workload in an incremental test five times/week for 4 wk. Biopsies were obtained from the vastus lateralis muscle of the trained and untrained leg 40 h after the last training session. The subjects then performed 3 h of two-legged knee-extensor exercise, and biopsies were obtained from both legs after 0, 2, 6, and 24 h of recovery. Real-time PCR was used to examine the expression of VEGF mRNA containing exon 1 and 2 (all VEGF isoforms), exon 6 or exon 7, and VEGF(165) mRNA. Acute exercise induced an increase (P < 0.05) in total VEGF mRNA levels as well as VEGF(165) and VEGF splice variants containing exon 7 at 0, 2, and 6 h of recovery. The increase in VEGF mRNA was higher in the untrained than in the trained leg (P < 0.05). The results suggest that in human skeletal muscle, acute exercise increases total VEGF mRNA, an increase that appears to be explained mainly by an increase in VEGF(165) mRNA. Furthermore, 4 wk of training attenuated the exercise-induced response in skeletal muscle VEGF(165) mRNA.  相似文献   

19.
The mechanism by which vascular endothelial growth factor (VEGF) regulates endothelial nitric-oxide synthase (eNOS) expression is presently unclear. Here we report that VEGF treatment of bovine adrenal cortex endothelial cells resulted in a 5-fold increase in both eNOS protein and activity. Endothelial NOS expression was maximal following 2 days of constant VEGF exposure (500 pM) and declined to base-line levels by day 5. The elevated eNOS protein level was sustained over the time course if VEGF was co-incubated with L-N(G)-nitroarginine methyl ester, a competitive eNOS inhibitor. Addition of S-nitroso-N-acetylpenicillamine, a nitric oxide donor, prevented VEGF-induced eNOS up-regulation. These data suggest that nitric oxide participates in a negative feedback mechanism regulating eNOS expression. Various approaches were used to investigate the role of the two high affinity VEGF receptors in eNOS up-regulation. A KDR receptor-selective mutant increased eNOS expression, whereas an Flt-1 receptor-selective mutant did not. Furthermore, VEGF treatment increased eNOS expression in a KDR but not in an Flt-1 receptor-transfected porcine aorta endothelial cell line. SU1498, a selective inhibitor of the KDR receptor tyrosine kinase, blocked eNOS up-regulation, thus providing further evidence that the KDR receptor signals for eNOS up-regulation. Finally, treatment of adrenal cortex endothelial cells with VEGF or phorbol ester resulted in protein kinase C activation and elevated eNOS expression, whereas inhibition of protein kinase C with isoform-specific inhibitors abolished VEGF-induced eNOS up-regulation. Taken together, these data demonstrate that VEGF increases eNOS expression via activation of the KDR receptor tyrosine kinase and a downstream protein kinase C signaling pathway.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号