共查询到20条相似文献,搜索用时 15 毫秒
1.
Like most gram-positive oral bacteria, Actinomyces naeslundii is resistant to salivary lysozyme and to most other lytic enzymes. We are interested in studying the lysins of phages of this important oral bacterium as potential diagnostic and therapeutic agents. To identify the Actinomyces phage genes encoding these species-specific enzymes in Escherichia coli, we constructed a new cloning vector, pAD330, that can be used to enrich for and isolate phage holin genes, which are located adjacent to the lysin genes in most phage genomes. Cloned holin insert sequences were used to design sequencing primers to identify nearby lysin genes by using whole phage DNA as the template. From partial digestions of A. naeslundii phage Av-1 genomic DNA we were able to clone, in independent experiments, inserts that complemented the defective λ holin in pAD330, as evidenced by extensive lysis after thermal induction. The DNA sequence of the inserts in these plasmids revealed that both contained the complete lysis region of Av-1, which is comprised of two holin-like genes, designated holA and holB, and an endolysin gene, designated lysA. We were able to subclone and express these genes and determine some of the functional properties of their gene products. 相似文献
2.
Comparative Pathogenicity of Actinomyces naeslundii and Actinomyces israelii 总被引:3,自引:1,他引:2 下载免费PDF全文
Typical actinomycosis has been produced in mice following single intraperitoneal injections of saline suspensions of Actinomyces israelii and A. naeslundii. A. israelii produced infections in 95.8% of the animals inoculated. A. naeslundii, generally considered to be a saprophytic organism, produced lesions in 89.7% of the inoculated animals. The finding that A. naeslundii produced lesions in mice similar to those produced by A. israelii suggests that A. naeslundii has similar pathogenic potential for man. The isolation of A. naeslundii from suppurative lesions of man also supports this conclusion. 相似文献
3.
Self-disruptive Escherichia coli that produces foreign target protein was developed. E. coli was co-transformed with two vector plasmids, a target gene expression vector and a lysis gene expression vector. The lytic protein was produced after the expression of the target gene, resulting in simplification of the cell disruption process. In this study, the expression of cloned T4 phage gene e or t was used for the disruption of E. coli that produced beta-glucuronidase (GUS) as a model target protein. The expression of gene e did not lead to prompt cell disruption but weakened the cell wall. Resuspension with deionized water facilitated cell lysis, and GUS activity was observed in the resuspended liquid. Expression of gene e at mid logarithmic growth phase was the optimal induction period for GUS production and release. On the other hand, the expression of gene t induced immediate cell lysis, and intracellular GUS was released to the culture medium. Maximum GUS production was obtained when gene t was induced at late logarithmic growth phase. 相似文献
4.
5.
Identification of Actinomyces israelii and Actinomyces naeslundii by Fluorescent-Antibody and Agar-Gel Diffusion Techniques 总被引:5,自引:2,他引:5 下载免费PDF全文
This study was an attempt to develop a fluorescent-antibody (FA) test to differentiate Actinomyces israelii and A. naeslundii as an aid in their laboratory identification. Two strains of A. israelii (X522 and A601) and two strains of A. naeslundii (X454 and X600), which had received intensive study by several investigators, were used for the immunization of rabbits. Working titers, based on tests with antigens prepared from the homologous strains and from well-established heterologous strains, were determined for each labeled antibody preparation. These conjugates and their normal serum control conjugates were used separately to stain 85 cultures of Actinomyes species and 23 strains of other species that might be confused with them. Acetone-precipitated soluble antigens from these same strains were tested with different antisera in the agar-gel diffusion test. Results showed that A. israelii (X522 and A601) and A. naeslundii (X454 and X600) labeled antiglobulins, when used at their working titers, stained most strains of their homologous species. Agar-gel diffusion results showed general agreement with those of the FA tests. The two tests appear to be equal in sensitivity, but the FA test is more specific, since several cross-reactions were noted with the agar-gel diffusion test whereas no cross-reactions were obtained with the FA reagents. Agar-gel and FA studies suggest that at least two serotypes of A. israelii may be associated with human disease. Although the majority of strains tested in this study appear to belong to a common serotype, "serotype 1," two strains of an apparent second serotype, "serotype 2," were encountered. FA staining of tissue impression smears from experimentally infected mice was successful when a counterstain, Evans Blue dye, was used. 相似文献
6.
J L Johnson L V Moore B Kaneko W E Moore 《International journal of systematic bacteriology》1990,40(3):273-286
DNAs of type strains and representative members of Actinomyces groups from the human periodontal flora and from other habitats were compared by using the S1 nuclease procedure to determine their genetic relatedness. One rather common group from the human periodontal flora, previously called "Actinomyces D08," is phenotypically distinct from, and genetically unrelated to, previously described species. We propose the name of Actinomyces georgiae for this organism; the type strain is strain ATCC 49285. Another common group from the human periodontal flora is Actinomyces israelii serotype II, which was found genetically distinct from the type strain of A. israelii (serotype I) and from other previously described species of Actinomyces. We propose the name Actinomyces gerencseriae for this organism; the type strain is strain ATCC 23860. A. naeslundii serotype I strains were distinct from the other strains studied. A separate genospecies which included strains of A. naeslundii serotypes II and III and A. viscosus serotype II was delineated. Strains of Actinomyces serotype WVA 963 constitute an additional distinct genospecies. Because there are no reliable phenotypic tests, other than serological analyses, to differentiate Actinomyces serotype WVA 963 and the two genospecies of A. naeslundii, no taxonomic changes are proposed for these three genospecies. 相似文献
7.
The repeated isolation of Actinomyces naeslundii from clinical materials associated with disease led to a comparison of isolates from the normal mouth with isolates from pathological clinical materials not from the mouth area. No important differences were observed between the isolates from these two sources. A human case of empyema of the gall bladder, apparently due to A. naeslundii, is described. 相似文献
8.
Paddick JS Brailsford SR Rao S Soares RF Kidd EA Beighton D Homer KA 《Applied and environmental microbiology》2006,72(5):3774-3779
The predominant surface proteins of biofilm and planktonic Actinomyces naeslundii, a primary colonizer of the tooth surface, were examined. Seventy-nine proteins (the products of 52 genes) were identified in biofilm cells, and 30 of these, including adhesins, chaperones, and stress-response proteins, were significantly up-regulated relative to planktonic cells. 相似文献
9.
10.
Two types of adhesive fimbriae are expressed by Actinomyces; however, the architecture and the mechanism of assembly of these structures remain poorly understood. In this study we characterized two fimbrial gene clusters present in the genome of Actinomyces naeslundii strain MG-1. By using immunoelectron microscopy and biochemical analysis, we showed that the fimQ-fimP-srtC1-fimR gene cluster encodes a fimbrial structure (designated type 1) that contains a major subunit, FimP, forming the shaft and a minor subunit, FimQ, located primarily at the tip. Similarly, the fimB-fimA-srtC2 gene cluster encodes a distinct fimbrial structure (designated type 2) composed of a shaft protein, FimA, and a tip protein, FimB. By using allelic exchange, we constructed an in-frame deletion mutant that lacks the SrtC2 sortase. This mutant produces abundant type 1 fimbriae and expresses the monomeric FimA and FimB proteins, but it does not assemble type 2 fimbriae. Thus, SrtC2 is a fimbria-specific sortase that is essential for assembly of the type 2 fimbriae. Together, our experiments pave the way for several lines of molecular investigation that are necessary to elucidate the fimbrial assembly pathways in Actinomyces and their function in the pathogenesis of different biofilm-related oral diseases. 相似文献
11.
Phosphorylating enzymes involved in glucose fermentation of Actinomyces naeslundii. 总被引:1,自引:0,他引:1 下载免费PDF全文
Enzymatic activities involved in glucose fermentation of Actinomyces naeslundii were studied with glucose-grown cells from batch cultures. Glucose could be phosphorylated to glucose 6-phosphate by a glucokinase that utilized polyphosphate and GTP instead of ATP as a phosphoryl donor. Glucose 6-phosphate was further metabolized to the end products lactate, formate, acetate, and succinate through the Embden-Meyerhof-Parnas pathway. The phosphoryl donor for phosphofructokinase was only PPi. Phosphoglycerate kinase, pyruvate kinase, and acetate kinase coupled GDP as well as ADP, but P(i) compounds were not their phosphoryl acceptor. Cell extracts showed GDP-dependent activity of phosphoenolpyruvate carboxykinase, which assimilates bicarbonate and phosphoenolpyruvate into oxaloacetate, a precursor of succinate. Considerable amounts of GTP, polyphosphate, and PPi were found in glucose-fermenting cells, indicating that these compounds may serve as phosphoryl donors or acceptors in Actinomyces cells. PPi could be generated from UTP and glucose 1-phosphate through catalysis of UDP-glucose synthase, which provides UDP-glucose, a precursor of glycogen. 相似文献
12.
Henssge U Do T Gilbert SC Cox S Clark D Wickström C Ligtenberg AJ Radford DR Beighton D 《PloS one》2011,6(6):e21430
Actinomyces naeslundii and Actinomyces oris are members of the oral biofilm. Their identification using 16S rRNA sequencing is problematic and better achieved by comparison of metG partial sequences. A. oris is more abundant and more frequently isolated than A. naeslundii. We used a multi-locus sequence typing approach to investigate the genotypic diversity of these species and assigned A. naeslundii (n = 37) and A. oris (n = 68) isolates to 32 and 68 sequence types (ST), respectively. Neighbor-joining and ClonalFrame dendrograms derived from the concatenated partial sequences of 7 house-keeping genes identified at least 4 significant subclusters within A. oris and 3 within A. naeslundii. The strain collection we had investigated was an under-representation of the total population since at least 3 STs composed of single strains may represent discrete clusters of strains not well represented in the collection. The integrity of these sub-clusters was supported by the sequence analysis of fimP and fimA, genes coding for the type 1 and 2 fimbriae, respectively. An A. naeslundii subcluster was identified with both fimA and fimP genes and these strains were able to bind to MUC7 and statherin while all other A. naeslundii strains possessed only fimA and did not bind to statherin. An A. oris subcluster harboured a fimA gene similar to that of Actinomyces odontolyticus but no detectable fimP failed to bind significantly to either MUC7 or statherin. These data are evidence of extensive genotypic and phenotypic diversity within the species A. oris and A. naeslundii but the status of the subclusters identified here will require genome comparisons before their phylogenic position can be unequivocally established. 相似文献
13.
14.
doi: 10.1111/j.1741‐2358.2011.00595.x Effect of saliva viscosity on the co‐aggregation between oral streptococci and Actinomyces naeslundii Background: The co‐aggregation of oral bacteria leads to their clearance from the oral cavity. Poor oral hygiene and high saliva viscosity are common amongst the elderly; thus, they frequently suffer from pneumonia caused by the aspiration of oral microorganisms. Objectives: To examine the direct effect of saliva viscosity on the co‐aggregation of oral streptococci with actinomyces. Materials and methods: Fifteen oral streptococcal and a single actinomyces strain were used. Co‐aggregation was assessed by a visual assay in phosphate buffer and a spectrophotometric assay in the same buffer containing 0–60% glycerol or whole saliva. Results: Nine oral streptococci co‐aggregated with Actinomyces naeslundii ATCC12104 in the visual assay and were subsequently used for the spectrophotometric analysis. All tested strains displayed a decrease in co‐aggregation with increasing amounts of glycerol in the buffer. The co‐aggregation of Streptococcus oralis with A. naeslundii recovered to baseline level following the removal of glycerol. The per cent co‐aggregation of S. oralis with A. naeslundii was significantly correlated with the viscosity in unstimulated and stimulated whole saliva samples (correlation coefficients: ?0.52 and ?0.48, respectively). Conclusion: This study suggests that saliva viscosity affects the co‐aggregation of oral streptococci with actinomyces and that bacterial co‐aggregation decreases with increasing saliva viscosity. 相似文献
15.
Adrian L. Cookson Pauline S. Handley Alan E. Jacob G. Keith Watson Clive Allison 《FEMS microbiology letters》1995,132(3):291-296
Abstract Using a visual coaggregation assay, 43% (6 of 14) of Prevotella nigrescens and 50% (4 of 8) of Prevotella intermedia strains coaggregated with Actinomyces naeslundii strains which represented the six Actinomyces coaggregation groups (A to F). For both species, coaggregation occurred most frequently with A. naeslundii strains from coaggregation groups C, D and E. No coaggregation was observed with Actinomyces israelii , Actinomyces odontolyticus or six oral Streptococcus species. Coaggregation was not inhibited by lactose, saliva or serum. Pretreatment of Prevotella strains with heat, SDS and proteinase K abolished coaggregation when the treated cells were added to untreated Actinomyces strains. The same pretreatment of the Actinomyces strains had no effect on their ability to coaggregate with untreated Prevotella strains. Pretreatment of all coaggregating P. nigrescens strains with trypsin abolished coaggregation, whereas the coaggregation ability of the P. intermedia and Actinomyces strains was resistant to trypsin pretreatment. Pretreatment of the strains of both Prevotella species and the Actinomyces with periodate abolished coaggregation in all cases. These results suggest that the Prevotella strains each possess a protein coaggregation adhesin, which for the P. intermedia strains is resistant to trypsin, that interacts with a non-protein receptor on the A. naeslundii strains. 相似文献
16.
In dental plaque alpha-haemolytic streptococci, including Streptococcus gordonii, are considered beneficial for oral health. These organisms produce hydrogen peroxide (H(2)O(2)) at concentrations sufficient to kill many oral bacteria. Streptococci do not produce catalase yet tolerate H(2)O(2). We recently demonstrated that coaggregation with Actinomyces naeslundii stabilizes arginine biosynthesis in S. gordonii. Protein arginine residues are sensitive to oxidation by H(2)O(2). Here, the ability of A. naeslundii to protect S. gordonii against self-produced H(2)O(2) was investigated. Coaggregation with A. naeslundii enabled S. gordonii to grow in the absence of arginine, and promoted survival of S. gordonii following growth with or without added arginine. Arginine-replete S. gordonii monocultures contained 20-30 microM H(2)O(2) throughout exponential growth. Actinomyces naeslundii did not produce H(2)O(2) but synthesized catalase, removed H(2)O(2) from coaggregate cultures and decreased protein oxidation in S. gordonii. On solid medium, S. gordonii inhibited growth of A. naeslundii; exogenous catalase overcame this inhibition. In coaggregate cultures, A. naeslundii cell numbers were >90% lower than in monocultures after 24 h. These results indicate that coaggregation with A. naeslundii protects S. gordonii from oxidative damage. However, high cell densities of S. gordonii inhibit A. naeslundii. Therefore, H(2)O(2) may drive these organisms towards an ecologically balanced community in natural dental plaque. 相似文献
17.
Association of long surface appendages with adherence-related functions of the gram-positive species Actinomyces naeslundii 总被引:15,自引:3,他引:15 下载免费PDF全文
Electron microscopy of new isolates of gram-positive Actinomyces naeslundii demonstrated long, fragile appendages. Removal of the appendages impaired attachment to epithelial cells and reaggregation, thus implicating them in attachment-related functions. 相似文献
18.
Overlapping genes in RNA phage: a new protein implicated in lysis. 总被引:19,自引:0,他引:19
We have identified a new 75 amino acid polypeptide (L protein) following f2 phage infection of E. coli. It is encoded by an out-of-phase overlapping gene which begins within the coat protein gene, ends in the replicase gene and covers the 36 base intercistronic space between them. A mutant f2 phage carrying a UGA mutation (op3), which complements mutations in the other three f2 genes (coat, A protein and replicase), fails to lyse cells (Model, Webster and Zinder, 1979) and also fails to produce L protein. Both lysis and L protein are restored following op3 infection of a UGA suppressor-containing strain or infection of wild-type bacteria with a revertant of op3. L protein is found in the insoluble fraction of artificially lysed cells. In this paper, we present the time course of its synthesis relative to the other f2-coded polypeptides: L protein synthesis increases as replicase synthesis decreases. We also report the discovery of another phage-coded polypeptide, which appears to be the product of a novel mode of translation: initiation at the coat protein initiation site, followed by translational frame shifting into the L protein frame and termination at the L protein terminus. 相似文献